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New integral relations between Legendre functions of the first and second kind are derived. These 
functions figure as the basis functions of the irreducible representations of the homogeneous Lorentz 
group, so that the derived formulas have direct applications to invariant expansions of relativistic 
amplitudes. 

1. INTRODUCTION 

In the last few years, the theory of the irreducible 
representations of the homogeneous Lorentz group 
has received a large amount of attention and has been 
widely applied in elementary particle scattering theory. 
In particular, 2-variable expansions of relativistic 
amplitudes, based on the homogeneous Lorentz group 
0(3, 1), have been introduced and discussed in a 
series of papers.1- 4 The 0(3, 1) group here figures as 
the group of motions of the space of independent 
kinematic variables (a hyperboloid in the 4-dimen
sional relativistic velocity space) and generates ex
pansions simultaneously in the Mandelstam sand t 
variables (or rather in suitable combinations of sand 
t). Since the 0(3,1) group in this approach does not 
figure as an invariance group of the scattering ampli
tude (except for elastic scattering at t = 0), it is pos
sible to apply the expansions for arbitrary values of s 
and t and for arbitrary masses. 

On the other hand, the homogeneous Lorentz group 
is the little group of the Poincare group corresponding 
to zero momentum transfer and, thus, is an invari
ance group for elastic forward scattering, which makes 
it possible to write quite specific I-variable expansions 
at t = 0 in terms of the irreducible representations of 
0(3, 1) (see Refs. 5 and 6 which also contain a com
plete list of references). These I-variable expansions 
have also been generalized7

•8 to scattering for t ¢ 0 
and applied to various reactions among elementary 
particles. 

The 2-variable expansions mentioped above have 
been developed in detail for the 2-body scattering of 
particles with spin zero. The scattering amplitude 
I(s, t) is written as a function of a single point v, the 
components of which satisfy v2 = v~ - v~ - v~ -
v~ = 1, and is expanded in terms of the basis functions 
of 0(3, 1). In the simple spin-zero case considered, 
these are just harmonic functions on th-:! hyperboloid 
v2 = 1. Different expansions are obtained by consider
ing different possible reductions of 0(3, 1) to its sub
groups, and the reductions 0(3, 1) ~ 0(3) ~ 0(2), 
0(3, 1) ~ 0(2, 1) ~ 0(2), and 0(3, 1) ~ E2 ~ 0(2) 

are of special interest since the subgroups 0(3), 
0(2, 1), and E2 also figure as the little groups of the 
physical Poincare group leaving, respectively, the 
total energy vector, or the spacelike, or lightlike 
momentum transfer invariant. 

In this paper, we concentrate on the special func
tions appearing in the reductions to the 0(3) and 
0(2, 1) subgroups. The expansions of the scattering 
amplitude can he written asl - 3 

/(s, t) == I(a, {}) 

= i (21 + 1) (OCO p2 dpAI(p) r(ip) I 
1~0 Jo r(ip - l)(sinh a)! 

1 

X p=I=:p(cosh a)rPl(coS {}) (1) 
and 

I(s, t) == I(rx, fJ) 

= ~ 1-1+ioo dl(~l + 1) 
21 -!-ioo SID TTl 

foo 2 d r(l + 1 + ip)r(-l + ip)cos TTl 
x p p --

o r(I + ip) coshrx 

X [B+(l, p)rPl"iP( -tanh rx) 

+ B-(l, p)rP;-iP(tanh rx)]PzCcosh fJ), (2) 

respectively. 
Here Al(p) and B±(l,p) are the "Lorentz ampli

tudes" which carry aU the dynamics, P~(z) and rP~(x) 
are Legendre functions of the first kind in the complex 
z plane and on the x E [-1, 1] cut, respectively. 9 If 
we write expansion (1) in the physical region of the 
t chann~l and (2) in the s channel, then the variables 
are 

z = cos {} = cosh fJ 

= -[2t(s - m~ - m~) 

+ (t + m; - mN t + m~ - m!)] 

x {[t - (mt + ma)2][t - (m! - m3)2] 

x [t - (m 2 + m4)2J[t - (m2 - m4)2]}-!, (3) 

'YJ = coth a = tanh (X = (t + m; - m:) 

x {[t - (ml + ma)2][t - (ml - ma)2]}-!. (4) 
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Formulas (1) and (2) correspond to expansions in 
terms of the unitary representations of the principal 
series and their convergence implies that the amplitude 
j(s, t) is square integrable over the whole hyperboloid 
(generalizations are considered, e.g., in Ref. 3). 

The inverse formulas to (1) and (2) can be written as 

A,(p) = P sinh2 a da r( -i) 100 

2r( -ip - I) 0 

X l"sin {} d-&j(a, {}) I! P=t~l>(cosh a)lPl(z) 
o (sinh a) 

or, making use of RTF I, 3.3 (13), as 

Alp) = _ r( - ip)e'l1 sin (l + iP)l7(",!,,)! 
17 217 

foo d1J . 11 
X 2 t Q~l>(1J) dzj(1J, z)IP!(z), (5) 

1 ("I - 1) -1 

[where Q~(z) is the Legendre function of the second 
type] and 

B±(I ) = 2r(-I- ip)r(l + 1 - ip) 
,p r(l- ip) 

11 d1J . foo 
X 2 .~ 1P:l>(=f"I) dzj(1J, z)PI(z), 

-1 (1 - "I ) 1 

1 = -t + iq, q real. (6) 

When considering the crossing transformation in 
the framework of 2-variable 0(3, 1) expansions~o it is 
possible to relate expansions (1) and (2) to each other 
via a transformation of the Sommerfeld-Watson type 
followed by analytic continuation in "I and z. At(p) and 
B±(I, p) can be considered as different "pieces" of 
certain analytic functions A.±(l, p) defined in the whole 
complex I-plane. 

To do this it is necessary to derive new integral 
formulas, relating the Legendre functions of the first 
and second kind to each other. Since we feel that these 
are of interest both for the representation theory of 
the Lorentz group and other classical noncom pact 
groupsll and for other purposes in mathematical 
physics, we have decided to publish them separately. 

2. INTEGRAL RELATIONS BETWEEN 
LEGENDRE FUNCTIONS 

In this section, we give a summary of the obtained 
formulas, together with their regions of applicability, 
while postponing the proofs to the following section. 

Applying Cauchy's integral formula to the function 
Q~(Z)(Z2 - l)azb, which is holomorphic in the z plane 

cut from 1 to - 00, we obtain 

Q~(Z)(Z2 _ l)azb 

= - 1. sin 17( v - 2a - b) 
17 

X (00 Q~(z')[(Z')2 - l]a(z')b dz' 

JI Z' + z 

+ . e
ill

" (rl[Sinl7(v+!,u-a-b)IP~(-Z') 
2 sm l7(V +1') Jo 

+ sin l7(i,u + a + b)IP~( +z')] [1 - (z')2]a(z')b dz' 
Z' + z 

~ f [sin l7(V + 11' - a)IP~(z') 

+ sin l7(t,u + a)IP~(-z')] [1 - (z,)2]a(z')b dZ') , 
Z' - z 

valid for 

Reb> -1, IRe,u1 < 2Rea + 2, 

Re v > 2 Re a + Re b - 1, Re a > -1, 

(7) 

v + I' ~ integer. (8) 

[Conditions (8) and all following validity conditions 
are those under which the corresponding formulas 
have been derived. A possible extension of the region 
of applicability of the individual integral formulas 
must be subjected to further investigations.] 

Considering the same function as a function of Z2 
on a 2-sheet Riemann surface, we obtain 

Q~(Z)(Z2 - Itzb 

= - ~ sin 17( v - 2a - b) 
17 

X (00 Q~(z')[(Z')2 - lr(z')b+l dz' 
JI (Z,)2 - Z2 

e
illlT (1 1 

+ . [sin l7(V + i,u - a - b)IP~( -z') 
sm l7(V +1') 0 

+ sin 17(~,u + a + b)lPll( +z')] [1 - (Z')2t(Z')b+l dz' 
2 v (Z')2 _ Z2 

- f[Sin l7(V + 11' - a)IP~(z') 

+ sin l7(t,u + a)IP~( -z')] [1 - ~:;:]~z;:+l dz} 

(9) 
which is valid, for 

Re a> -1, IReI'I < 2 Re a + 2, 

Re v > 2 Re a + Re b - I, Re b > - 2, 

v + I' ¥= integer. (10) 
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Combining (7) and (9), we derive the integral 
formula 

1 . foo Q~(Z')[(Z')2 - l]a(z,)b dz' 
- Slll1T(V - 2a - b) 
1T 1 Z' - Z 

e

ill1T (II = . [sin 1T(V + 1ft - a - b)iP~( -z') 
2 SIn 1T(V + ft) 0 

. (1 b)iPll( ')] [1 - (z')2]a(z')b dz' 
+ SIn 1T 2ft + a + I v + z 

z' - z 

-f [sin 1T(V + tft - a)iP~(z') 

+ sin 1T(!ft + a)iP~(-z')] [1 - (z')2]a(z')b dZ'), 
Z' + z 

(11) 

valid for 

Re b > -1, IRe ftl < 2 Re a + 2, 

Re v > 2 Re a + Re b - 1., Re a> -1, 

v + ft -:;6 integer. (12) 

Similarly, when we consider the Legendre function 
of the first type in the z plane, we obtain 

jD~(Z)(Z2 _ l)azb 

1 . foo jD~(z')[(Z')2 - 1]a(z')b dz' 
= --sm1T(v + 2a + b) 

1T 1 Z' + 7 

+ ~ sin 1T(2a + b) sin 1T(V + ft) 
1T 

X e-ill1f ('" Q~(z')[(Z')2 - 1]a(z')b dz' 

Jl Z' + z 

+ 1. sin 1T(tft - a - b) 
1T 

x (1 iP~( - z')[1 - (z,)2]a(z')b dz' 

Jo z' + z 

- 1. sin 1T(!ft - a) 
orr 

The Cauchy integral formula for the Z2 surface gives 

jD~(Z)(Z2 - Itzb 

= -~sin1T(v+ 2a + b) 
1T 

x ('" jD~(z')[(Z')2 - l]a(z')b+1 dz' 
J1 (Z')2 _ Z2 

+ 42 sin 1T(2a + b) sin 1T(V + ft) 
1T 

x e-ill1f ('" Q~(z')[(Z')2 - 1]a(z')b+1 dz' 
J1 (Z')2 - Z2 

+ ~sin 1T(tft - a - b) 
1T 

x e iP~( -z')[1 - (z,)2]a(z')b+1 dz' 

Jo (Z')2 - Z2 

- ~ sin 1T(!ft - a) 
1T 

valid for 

IRev + tl < -2Rea - Reb +!, 

IReftl < 2Rea + 2, Reb> -2, Rea>-1. 

(16) 

Combining (13) and (15), we obtain the integral 
formula 

. loo jDll(Z')[(Z')2 - lr(z')b dz' Slll 1T( V + 2a + b) --,-,v ~'-'----:.....--~~---
1 Z' - Z 

= ~ sin 1T(2a + b) sin 1T(V + ft) 
1T 

X e-ill1T (00 Q~(z')[(Z')2 - 1]a(z')b dz' 

J1 Z' - Z . II iPll( - z')[1 - (z')2]a(z')b dz' + sm 1T(!ft - a - b) ---'-v..:.....----'-''-----'-...:......:--'---'---_ 

o Z' - Z 

. 11 iP~(z')[1 - (z')2]a(z'l dz' 
- sm 1T(!ft - a) , 

o z' + Z 

valid for 
(17) 

x (1 iP~(z')[1 - (Z')2]a(Z')b dz' , 

Jo z' - z 

valid for 

(13) Re b > -1, IRe (v + !)I < 1 - 2 Re a - Re b, 

IReftl <2Rea+2, Rea> -I, 

Reb> -1, IRe (v + t)1 < 1 - 2Rea - Reb, 

IRe ftl < 2 Re a + 2, Re a> -1, 

t > 2 Re a + Re b > -3. (14) 

t > 2 Re a + Re b > -3. (18) 

The above formulas are written in a general and, 
therefore, rather complicated form, but they simplify 
considerably for values of the parameters a, b, v, and 
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I-' occurring in the 0(3, 1) group expansions and in 
other cases of interest. 

For instance, putting a = b = I-' = 0 in (7), we 
obtain a well-known formula used in the complex 
angular-momentum theory to continue partial-wave 
amplitudes in 1,12 which for I integer coincides with the 
Neumann formula RTF I, 3.6 (29). 

Of particular interest for the 0(3, 1) 2-variable 
expansions are the following special cases of (11) and 
(17) : 

sin 7Tl roo Q~1J(rO drj' 

7T J1 [(1]')2 - 1]!(1]' - 1]) 

e-'P1r 11 d1]' 

= - 2 sin 7T(l + ip) -1 [1 - (1]')2]!(1]' - 1]) 

X [cos 7T(l + iip)IP~1J( -1]') - cosh (ip7T) 1P:1J(1]')] , 

(19) 

valid for 

Re I> -2, Ilmpl < 1, (20) 

valid for 

-t<Re/<i, Ilmpl<1. (22) 

It is important that the regions of validity of (19) 
and (21) include 1m p = 0, corresponding to unitary 
irreducible representations of the principal series of 
0(3, I). Further, formula (19) is valid for the unitary 
irreducible representations of the 0(3) subgroup (l = 
nonnegative integer) and for the unitary continuous 
representations of the 0(2, I) subgroup (Re I = -t), 
whereas (21) holds for those of 0(2, 1), but not for 
those of 0(3) (except for I = 0). 

3. DERIVATION OF THE INTEGRAL 
FORMULAS 

Both the P:(Z)(Z2 - l)azb and Q~(Z)(Z2 - l)azb 
functions are holomorphic in the z-plane cut from + 1 
to - 00 along the real axis, the singular points being 
z = +1,0, -1 and Izl = 00. So we can use the 
Cauchy integral formula for an integration contour in 
the z plane as shown in Fig. 1. 

Thus, e.g., 

1 i pl'(z')[(Z')2 - l]a(z')b dz' 
P~(Z)(Z2 _ Itzb = _. v, • 

27Tl C(ol z - z 
(23) 

FIG. I. The integration contour in the z plane. 

Since in the limit of Izl ~ 00 we have [RTF-1,3.9 (19) 
and (20)] 

pl'(z) ----+ 2±(v+!l-! 
v '0'-+ 00 

X _1_ r(±v ± i) z±(v+!l-! 
) 7T r( ± v ± t + t - 1-') , 

(24) 

for Re v ~ -t, the integral over the arc 12-13-1, for 
which z' = Rei"', vanishes in the limit R ~ 00 if 

IRe v + il + 2 Re a + Re b - t < O. (25) 

The behavior of P:(z) at Iz - 11 ~ 0, given by 
RTF 1,3.9 (3) for I-'::;i: 1,2,3,"', 

2'" PIl(Z») (z - 1)-!1l 
v '0-1'-+0 r(1 _ 1-') , 

(26) 

assures the vanishing of the integral over the arc 6-7 in 
the limit Iz - 11 ~ 0 if 

Re (-tl-' + a + 1) > O. (27) 

In the case of the two arcs around z = -1, namely, 
2-3 and 10-11, we have to use first the relation 
HTF I, 3.3 (10): 

P~( -z) = e'fV1rip~(z) - (2j7T)e- il'1r sin 7T(V + I-')Q~(z), 

(28) 

where the upper or lower sign is to be taken according 
as 1m z ~ O. 

Since now 

Q~(z) ) eil'''Til'-1r( _I-') rev + I-' + 1) (z _ 1)iI', 
'0-11-+0 rev -I-' + 1) 

for Re I-' < 0, (29) 
and 

Q~(z) ----+ eil'''2i1'-1r(I-')(z - 1)-il' , 
10-11-+0 

for Re I-' > 0, (29') 
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we find, combining Eqs. (26), (28), (29), and (29'), the 
condition under which the integrals over 2-3 and 
10-11 vanish for Iz + 11---+ 0 to be 

-tIRe,u1 +Rea+ 1 >0. (30) 

The remaining two arcs 4-5 and 8-9 do not contribute 
for Izl ---+ 0 if 

Re b > -1. (31) 

The formula (13) follows immediately if we calculate 
the discontinuities over the cuts by making use of the 
formula (28) for z' E (- 00, -1) and introducing the 
Legendre functions on the cut [HTF I, 3.4 (5)]: 

fP~(x) = eh/Lup~(x + iO) = e-hJLup~(x - iO) (32) 

for x E (-1,1). 
Using the same method for the variable in a Z2 plane, 

we can write a Cauchy integral formula 

The integration contour C(Z2) is shown on Fig. 2. 
It is a closed curve on a 2-sheet Riemann surface Z2. 
The two sheets of Z2 on Fig. 2 represent the z ---+ Z2 
mapping of Fig. 1, the points indicated by numbers 
on Fig. 2 being images of the corresponding points on 
Fig. 1. 

Similarly, we now find the conditions under which 
the integrals over the arcs limit to zero and calculate 
the discontinuities over the cuts, thus obtaining rela
tion (15), together with conditions (16). 

Needless to say, the derivation of the formulas for 
Q~(Z)(Z2 - l)azb in both the z and Z2 plane is quite 
similar to that described above. In addition to the 
formulas (29), (29'), and (32), one needs the formula 
for the asymptotic behavior of Q~(z) for Izl---+ 00, 

given in HTF I, 3.9 (21), 

Q~(z) ----+ ei /LUTv- 1.j1T rev + ,u + 1) Z-v-1, (34) 
1·1 .... 00 rev + t) 

and the relation [HTF I, 3.3 (12)] 

Q~( -z) = _e±iJLvQ~(z), 1m z ~ O. (35) 

The integral formulas (11) and (17) are then simply 
obtained by subtracting (9) from (7) and (15) from 
(13) with b replaced by (b - 1) in (9) and (15). The 
conditions of validity are then the intersections of the 
conditions (8) and (10) or (14) and (16), respectively. 

4. CONCLUSIONS 

From the point of view of physical applications, 
the most immediate result is a connection between the 
2-variable expansions, corresponding to the reduction 
0(3, 1) :::J 0(2, 1) :::J 0(2) in (say) the s channel and 
to 0(3, 1) :::J 0(3) :::J 0(2) in (say) the t channel, 
expressed by formulas (19) and (21). 

We find it amusing that it is possible to derive new 
useful relations between special functions by combining 
Cauchy integral formulas for these functions, multi
plied by certain combinations of their arguments, in 
different complex planes (in our case the z and Z2 

planes). The idea of this method is somewhat similar 
to that applied in elementary particle theory when 
deriving superconvergence relations. 

Clearly, it should be possible to derive integral 
relations between other special functions by applying 
similar techniques, which may be of some importance 
when considering expansions of amplitudes based on 
other groups than 0(3, 1) (cf.,e.g., Refs. 13 and 14), or 
when generalizing the 0(3, 1) expansions to particles 
with spin. In particular, it should be possible to obtain 
relations between the special functions which appear 
in the basis functions of 0(3, 1) representations, 
corresponding to the reduction 0(3, 1) :::J E2 :::J 0(2) 
or 0(3, '1) :::J 0(2) X 0(1, 1), as well as those appear
ing in the corresponding D matrices of the Lorentz 
group. 
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The fact that the ordinary derivative y' is known to be a Darboux function implIes that the right-hand 
side of the differential equation y' = f(x, y) must also be such a function. Since it is now known that the 
mixed hyperbolic derivative u •• is also a Darboux function, this implies that under certain mild conditions 
the equation u •• - Utt = f may not have a classical global solution unless f has the proper Darboux 
structure. As with the ordinary differential equation, this nonexistence result does not depend on 
boundary conditions. 

1. INTRODUCTION 

In the theory of ordinary differential equations, it is 
known that,for the basic equation 

y' = j(x,y) (I) 

to be well defined, it is necessary that the function 
j(x, y) have certain properties which are known to 
hold for derivatives, irrespective of any boundary 
conditions which are imposed on the equation. More 
specifically, since every ordinary derivative is a Dar
boux function l [that is, a function which satisfies the 
following intermediate value property: Xl < X2 and 
y'(x l ) < A < y'(X2) implies there exists a $ with 
Xl < $ < X 2 such that y~ ($) = l], it must be the case 
that f(x,y(x») also has this property for every differ
entiable function y(x). Hence, one can say that cer
tain ordinary differential equations with non-Darboux 
right-hand sides cannot have solutions at all. 

As an example, consider the forced, second-order 
differential equation 

y"(t) + Cy'(t) + ky(t) = F(t). (2) 

Obviously, any solution must be continuous, and since 
this equation is equivalent to the system 

eJ = (F(t) - ~;2 - kyJ, (3) 

it follows that the original equaton (2) cannot have a 
solution if the driving term F(t) does not have the 
above intermediate value property. This, of course, is 
not to say that the equation does not have a solution 
in regions where F(t) does have the required property. 

It is quite natural to ask whether similar nonexist
ence results hold for partial differential equations. In 
particular, since the mixed partial derivative U",y is 
known to have many properties resembling those of the 
ordinary derivatives,2-8 one may expect similar be
havior. Some results in recent years have established 
Darboux-type properties for functions of several 

variables and interval functions in very general 
settings,9-11 and this paper will show that u"'Y' and 
hence the wave operator, has a Darboux property 
which imposes implicit conditions on the nonhomo
geneous (possibly nonlinear) wave equation. This 
enables the assertion of a nonexistence result which is 
independent of any boundary conditions. 

2. THE NONHOMOGENEOUS WAVE 
EQUATION 

Although the results in this section could be proved 
in greater generality, the basic statements are as fol
lows. Consider the equation 

uH - u~n = f($, 1], u, us' u~) (4) 

defined on some region D, and let 

(5) 

defined on the region D, be the transformed version 
of (4), under the transformation 2x = $ + 1], 2y = 
$ - 1]. One recalls here that a sufficient condition for 
the validity of the transformation of (4) into (5) is that 
u; and u~ be differentiable.12 

Theorem J: A necessary condition for (4) to have a 
solution U with the property that Us and u~ are differ
entiable is that, for each rectangle R in D, with sides 
parallel to the axes, with diagonal points PI (Xl' YI) 
and P2(x2 , Y2) such that U",y(x1 , YI) < A. < U",y(x2, Y2), 
it follows that there exists a point (a, b) in R such that 
u",y(a, b) = A.. 

It is clear that this theorem could be stated without 
reference to any differentiability requirements using 
equation (5) directly. The relevance of the result to the 
wave operator wo.uld in that case, however, not be 
clear. Also, notice that the assumption of differenti
ability for Us and u~ implies the differentiability and, 
hence, continuity of U. 

1511 
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Proof' For each interval [Zl, Z2], we define two 
functions. Letting m = Z2 - zl/2, for Zl ~ Z ~ Z2, we 
have 

(Z2 - Zl)(Z - Zl) 
4>(Zl,Z2,Z)= +Zl, 

(Z2 - Zl - m) 

for Zl ~ Z ~ Z2 - m, 

= Z2, for Z2 - m ~ Z ~ Z2, (6) 

1jJ(Zl, Z2, z) = Zl, for Zl ~ Z ~ Zl + m, 

(Z2 - Zl)(Z - Zl - m) 
= + Zl, 

(Z2 - Zl - m) 

for Zl + m ~ z. (7) 

[t follows that both functions are continuous: 

4>(Zl, Z2, Zl) = 1jJ(Zl, Z2, Zl), 

4>(Zl, Z2, Z2) = 1jJ(Zl, Z2, Z2), 

and for Zl < Z < Z2, 

4>(Zl, Z2, z) > 1jJ(Zl, Z2, z). 

Let R be a rectangle in D with two of its diagonal 
points (Xl' Yl) and (x2, h) with u"'lI(xl , 11) < A < 
u",y{X2,Y2)' We define four functions oc, fJ, y, and (l as 
follows: 

oc(X) = 4>(Xl, X2, x), X2 > Xl, 

= 4>(X2, Xl, X), Xl> X2; (8a) 

fJ(y) = 4>(Yl, 12, y), 12 >Yl, 

= 4>(Y2, Yl, y), Yl >12; (8b) 

y(x) = 1jJ(Xl , X2, x), X2 > Xl' 

= 1jJ(X2, Xl' X), Xl> X2; (8c) 

(l(y) = 1jJ(Yl, Y2, y), Y2 > Yl, 

= 1jJ(Y2,Yl,Y), Yl > Y2' (8d) 

Next, let ~(x, Y) be defined on the interior of the 
rectangle R by the difference quotient 

~(X y) = [u(oc(x), fJ(y» + u(y(x), (l(y»] - [u(oc(x), (l(y» + u(y(x), fJ(y))J . 
, [oc(x) - y(x)][fJ(y) - (l(y)] 

(9) 

Then,by letting 

~(Xl , Yl) = U",y(xl , 11) and ~(X2' h) 

= u",,,(x2 , Y2), (10) 

~(x, Y) becomes a continuous function on the interior 
of the rectangle together with the points (Xl' Yl) and 
(X2, h). Hence, using the intermediate value property 
for continuous functions, we see that there exists a 
point (x, y) in R such that ~(x, y) = A. But, if we 
use the mean-value theorem for the operator U"'II' this 
implies, from (9), that there exists a point (a, b) 
with oc(x) < a < y(x) and fJ(y) < b < (l(y) such that 
~(x, y) = u"'lI(a, b). Hence, u",y(a, b) = A, and (a, b) 
is in R. 

As an example of the applicability of this theorem, 
consider the equation 

where 

Then, 

Ugg - u~~ = f(~)f('YJ), (11) 

f(x) = 1, ° ~ X ~ 1, 
= 0, otherwise. 

UH - u~~ = 1, for 0:::;; $ :::;; 1 
and 0:::;; 'YJ :::;; 1, 

= 0, otherwise, 

and so, 
U"'II = 1, for (x,y) in D, 

= 0, otherwise, (12) 

where D is a diamond-shaped region with vertices 
(0,0), (t, i), (1,0), and G, -i). According to the 
theorem, if (11) has a continuous solution with the 
required differentiability, then U"'Y' given by (12), 
must attain intermediate values on rectangles. But 
u",y(-l,-I)=O<t<u",y(O,O)=I, and there is 
no point (a, b) such that u"'lI(a, b) = t, owing to the 
nature of the right-hand side of (11). Hence, (11) Can 
have no such global solution. 
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An analytic study is made of the dispersion relations and frequency spectra of unbounded cubic lattices 
in which there exist long-range pair potentials of the form r- P , where r is the distance between particles. 
This paper is an extension of work by Davies and Yedinak in which simple cubic lattices are studied. 
Cubic lattices having two particles per unit cell are now considered. The analytic behavior of the optical 
branches near the origin of the first Brillouin zone is determined for the case of 1 ::;; P ::;; 3 and the 
resulting contribution of the longitudinal optical branch to the frequency spectrum is obtained. A special 
case of such lattices is Kellermann's model for NaC!. This model is studied in detail. 

I. INTRODUCTION 

In an earlier paper,1 we present a study of the 
analytic properties of the vibrational dispersion rela
tions and frequency spectra of simple cubic lattices in 
which long-range interactions are present. In this 
paper, we extend our work to cubic lattices having 
two particles per cell. We rely heavily upon references 
to the earlier paper (Ref. I). 

We consider an infinite cubic lattice having either 
the sodium chloride or caesium chloride structure. 
Its particles are assumed to interact through long
range pair potentials falling off with distance r as 
r-P

, where p ~ 1. In addition, the particles are 
assumed to interact through short-range pair poten
tials which extend to a finite number of neighbors 
only. 

In Sec. IT, we show that the elements of the dynami
cal matrix for such lattices are analytic functions of 
the propagation vector everywhere in the first Brillouin 
zone except at the origin. We then determine the 
behavior of tIre dynamical matrix near the origin. In 
Sec. III, we determine the behavior of the optical 
modes of the dispersion relations near the origin, 
provided p > I. The analysis is extended to the case 
of p = I (the Coulomb interaction) in Sec. IV. The 
contribution of the region near the origin, to the 
frequency spectrum when p > 1, is studied in Sec. V. 
In Sec. VI, we extend our analysis to the case of p = 1 
for a specific model for sodium chloride. 

II. THE MODEL 

Consider an infinite diatomic lattice having either 
the sodium chloride or the caesium chloride structure. 
Let al , a2 , and aa be the primitive translation vectors. 
The equilibrium position of the kth particle in the 
lth cell is given by 

a 
x(lk) = L liai + x(k) = x(1) + x(k), (1) 

i~1 

where k = 0 or 1 and x(k) = 0, when k = O. Carte
sian coordinates are imbedded in the lattice with the 
origin at x(OO) and with axes parallel to the edges of 
the unit cubes. The primitive translation vectors of 
the reciprocal lattice are bl , b2 , and ba , and a recipro
cal lattice vector is denoted by y(h) = Li hib i , where 
hi is an integer. We employ the following notation. 
Let a be some characteristic dimension of a unit cell 
in the direct lattice. Then, we define 

Y'J(lk) = x(lk)/a = Y'J(I) + Y'J(k) 
and 

;(h) = ay(h). 

It is assumed that the particles of the lattice interact 
through long- and short-range central pair potentials. 
The long-range potentials fall off with distance r as r-P , 

where p ~ 1. The short-range potentials are assumed 
to vanish identically after a finite range. Explicitly, 
the potential energy of the koth particle in the zeroth 
cell is given by 

Vko = Vfo + V~o' (3) 

where V;;. is the contribution of the short-range 
potentials and 

vfo = G L (_I)kHo 
i,k 

1,<*O.ko 

x {t [xi(lk) + ui(lk) - x;(Oko) - U;(Oko)]2r
P/2

. 

(4) 

Here G is a constant and xi(lk) + u;(lk) is the ith 
Cartesian component of the position of the particle 
with equilibrium position x(lk). 

In the harmonic approximation, the equations of 
motion for the particles in the zeroth cell are given by 

m ii(Ok) = - "" ko u .(lk) (5) 0
2 

V; ) 
ko 0 If; oui(Oko)ou ;Clk) 0 3 , 

where mko is the mass of the koth particle. We choose 

1513 
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normal mode solutions of the form 

ui(lk) = m;;!Wki exp (27Ticp' Y)(lk) - iw(cp)t). (6) 

Substitution of Eq. (6) into Eq. (5) gives us an eigen
vector equation of the form 

where A = aP+2mow2/G. We regard the Wk ; as ele
ments of a 6-dimensional column matrix Wand the 
D.p(koi, kj) as elements of a 6 x 6 dynamical matrix 
D.p. We can write 

(8) 

where D5' and ~ are the contributions of the long
and short-range interactions, respectively. Since the 
short-range interactions vanish after a finite range, 
we assume that the elements of D: are analytic 
functions of cp everywhere in the reciprocal space. 
The secular equation giving the dispersion relations 
A( cp) for the lattice is 

ID.p - A(cp)II = 0. (9) 

There are six branches of the dispersion relations, 
three acoustic and three optical. 

Explicit expressions for the elements of D5' are 
given in Appendix A. In order to study the analytic 
properties of these elements" we apply the Ewald 
transformation2•3 to the sums appearing in Eqs. (AI) 
and (A3). For lattices of either the sodium chloride 
or caesium chloride structure, the transformed 
relations have the form given in Eqs. (Bl)-(B3) of 
Appendix B. Referring to Eqs. (Bl)-(B3) and using 
arguments similar to those used in Sec. II of Ref. 1, 
we see that the elements of D5' (and thus of D.p) are 
analytic functions of cp, unl!!ss cp = ~(h) for any 
reciprocal lattice point h. Thus, the elements ofD.p are 
analytic everywhere in the first Brillouin zone except 
at cp = 0, which is a critical point. Again, using 
methods discussed in Sec. II of Ref. 1, we easily 
obtain expansions of the elements ofD5' aboutcp = 0. 
These are given in Eqs. (Cl)-(C6) of Appendix C. 

We are interested in those values of p for which the 
non analytic terms appearing in Eqs. (CI)-(C6) 
dominate the second-order terms near cp = 0. Under 
these circumstances, the critical point at cp = 0 may 
not produce the usual square root infinite slopes in 
the frequency spectrum, which one expects to occur 
when only short-range interactions are present. 
Referring to Eqs. (Cl)-(C6), we see that the following 
three cases hold true: 

(a) If p > 3, then the second-order terms dominate 
the nonanalytic terms. 

(b) If 1 < P ~ 3, then the nonanalytic terms domi
nate the second-order terms and the behavior of 
D.p(koi, kj) near cp = 0 is of the form 

D~(koi, kj) = f(ko, k)(ocbii + h( tfo)tfoitfo;) + O( tfo2), 

(10) 

where J(O, 0) = 1, J(I, 1) = mO/ml' and J(ko, k) = 
- (mO/ml)!' if ko ¥= k. The term oc is a constant. If 
p = 3, then h(tfo) is defined by 

h(tfo) = -87T3(a3/Va) In (tfo2). (11) 

If I < p < 3, then h(tfo) is given by 

h(tfo) = 2P7TP+!(a
3)f(! - tp) tfoP-3. (12) 

va r(tp + 1) 

In the above equations, va is the volume of a unit cell 
in the direct lattice. 

(c) If p = 1, then we have 

h(tfo) = 47T(a3/Va)tfo-2. (13) 

The nonanalytic terms dominate the second-order 
terms but the values the nonanalytic terms approach 
as cp approaches zero depend upon the direction of 
approach. 

The above results are similar to those previously 
found for the corresponding case with simple cubic 
lattices. l In the following sections, we study the be
havior of the dispersion relations nearcp = ° and the 
resulting behavior of the vibrational frequency 
spectrum of the lattice. Our analysis is limited to the 
case of I ~ P ~ 3. (The above analysis shows that 
the long-range interaction should produce no un
usual behavior in the dispersion relations, when 
p > 3.) Because the case of p = I presents mathe
matical difficulties, we first assume that 1 < P ~ 3 
and then study the behavior of our results as p 
approaches one. 

III. THE DISPERSION RELATIONS 

Initially we assume that 1 < P ~ 3. Then, using 
Eqs. (Gl)-(C6) of Appendix C and taking the cubic 
symmetry of the lattice into account, we find that 
the elements of D.p have the following form near 
cp = 0: 

D.p(01, 11) = -,u![oc + h(tfo)tfoi 

+ 13tfo~ + y( 1>~ + 1>~)] + O( tfo4), (14) 

D.p(01, 12) = -,u!(h( tfo)1>ltfo2 + btfoltfo2) + O( tfo4), (15) 

D.p(01, 01) = oc + h(tfo)1>~ + b1>i 

+ c( tfo~ + tfoi) + O( tfo4), (16) 

DiOl,02) = h(1))tfoltfo2 + d1>ltfo2 + O(tfo4), (17) 
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where p = mOlml . The constants IX, p, y, <5, b, e, and by 
d (ire sums of long- and short-range contributions. 

l 
D(O) = (M -p M) 

q. IM M' (20) 
The long-range contributions are given in Appendix 
C. The remaining elements of Dq. are easily obtained 
from the cubic symmetry and from the relations 

(18) 

and 

(19) 

In order to determine the behavior of A(cI».near 
cI> = 0, we solve Eq. (7) using perturbation theory. 
We regard Dq. as the sum of an unperturbed matrix 
Dr and a perturbation D~1». The matrix D~O) is given 

First-order perturbation theory is applied in the 
usual manner.4 First, the eigenvalues of D~O) are 
determined. For each such eigenvalue A(O) (which may 
be degenerate), we form a complete set of orthonor
mal eigenvectors. The matrix elements of D~1», with 
respect to this basis, are calculated and the eigen
v~lues of the resulting matrix determined. Each such 
eigenvalue, when added to A(O), gives the behavior of A 
near cI> = ° for one branch of the dispersion relations. 

The eigenvalues of D~O) are determined by solving 

ID~O) - .1.(0)11 = ° (24) 

for .1.(0). Although the determinant is 6 x 6, the roots 
are easily calculated after a sequence of row and 
column reductions is performed. The following eigen
values are obtained: 

A(O) = (1 + p)[1X + h(~)~2], one eigenvalue, (25) 

.1.(0) = (1 + p)lX, two eigenvalues, (26) 

.1.(0) = 0, three eigenvalues. (27) 

Clearly, the first three eigenvalues correspond to 
optical modes and the last three to acoustic modes. 

The dispersion relations for the optical branches 
near <I> = 0 are easily determined. A normalized 
eigenvector corresponding to the eigenvalue given in 
Eq. (25) is 

WI = [(1 + P)~2]-!( ~:'), (28) 
-P~t¥1 

where 

(29) 

-p P 
where M is a 3 x 3 submatrix, defined by 

(

IX + h( ~)~~ h( ~)~I ~2 h( ~)~I ~3 ) 

M = h(~)~1~2 IX + h(~)~~ h(~)~2~3 . 

h(~)~1~3 h(~)~2~3 IX + h(~)~~ 
(21) 

The perturbation is given by 

D~) = ( ~(b, e, d) _plN(P, y, <5») + O( ~4), 
-p N(/3, y, <5) pN(b, e, d) 

(22) 
where N(x,y, z) is defined by 

(23) 

Applying perturbation theory as outlined above, we 
find that the behavior of the corresponding optical 
branch is given by 

.1.1(<1» = (I + p)[1X + h(~)~2] + (1 + p)-1~-2 
X [g(b, /3)(4) + 2g(e +d, y + <5)(2,2)] 

+ O[~2Ih(~)], (30) 

where g(x, y) = (1 + p2)X + 2py. The bracketed 
terms «» are polynomials in the components of 
<1>, which are defined in Appendix D. 

Two (nonunique) orthonormal eigenvectors corre
sponding to the doubly degenerate eigenvalue given 
in Eq. (26) are 

and 

W2 = [(1 + p)( ~~ + ~m-l( t¥;) (31) 
-p t¥2 

W~ = [(1 + p)(~; + ~~)~2rl( -~:t¥)' (32) 

where 

The behavior of the two corresponding optical 
branches is then given by 

A2} = (1 + p)1X + [(1 + p)~2]-1 
.1.3 

X {gee, y)(4) + g(b - d + e, (3 - b + y) 

X (2,2) ± Ig(b - d - e, (3 - b - y)1 

X «4,4) - (4,2, 2»l} + O[~2Ih(~)]. (34) 
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In directions of high symmetry, one of the optical 
modes must be pure longitudinal and the remaining 
two must be transverse. Referring to Eqs. (6), (7), 
and (28), we see that to zero order the A1 mode is 
longitudinal in any direction near cp = 0 and should 
be identified as the longitudinal branch. The zero
order eigenvectors for the second and third branches 
(.1.2 and .1.3) are some linear combinations of W2 and 
W~. Referring to Eqs. (32) and (33), we see that W2 

and W~ separately represent transverse vibrations. 
Thus, we identify A2 and As as the transverse modes. 

Notice that h(cfo) does not contribute to the behavior 
of .1.2 and As near cp = O. However, it is the leading 
term in the expression for A1 near cp = 0, for all p 
such that I < P ~ 3. These results very closely 
resemble those found in work on simple cubic lattices.1 

We have also carried out the perturbation calcula
tion for the acoustic modes using Eq. (27). In this 
case, A(O) is three-fold degenerate, and we found it 
necessary to solve a cubic equation in order to 
determine the corrections given by first-order pertur
bation theory. We were unable to express our final 
results in any simple, neat form, and as a result we do 
not include them in this paper. However, one impor
tant result of the calculation was that the function 
h(cfo) does not contribute to the leading behavior of 
any of the acoustic branches near cp = O. That this is 
true can easily be seen. A (nonunique) orthonormal 
set of eigenvectors of D~O) corresponding to the 
eigenvalue A(O) = 0 is given by 

None of these vectors contains the function h(cfo). 
Further, A(O) and D~ll) are independent of h(cfo). Thus, 
any corrections to A(O) given by first-order perturba
tion theory are also independent of h(cfo) , and the 
leading terms for the acoustic branches near cp = 0 
should be independent of h(cfo). Therefore, we do not 
expect the presence of the long-range interaction to 
produce any unusual behavior in the acoustic 
branches. 

IV. DISPERSION RELATIONS WHEN P = 1 

We now consider the behavior of the optical 
branches for the case of p = 1 (the Coulomb inter
action). The behavior of the second and third branches 
for p > I is given by Eq. (34). The form of this equa
tion does not change as p -+ 1. Referring to Eq. (13), 
we see that the remainder o [cfo2jh(cfo)] -+ O(cfo4) as 
p -+ I. Further, a study of Appendix C shows that the 
constants appearing in Eq. (34) remain well defined 
when p = I. Thus, the second and third branches obey 
Eq. (34) even when the long-range interaction is the 
Coulomb interaction. 

Next, we consider the first optical branch. From 
Eq. (30), we see that the leading term in A1 nearcp = 0 
is given by 

A1(cp) = (1 + p)rx + 2(1 + p)a 3p7r1l+! 

X r(i - tp)cfoV
-

1[var(tp + l)r1 + O( cfo2). (35) 

The above equation is similar to Eq. (27) of Ref. I. 
Using arguments similar to those used in Sec. III of 
Ref. I, we see that the value approached by A1, as 
both cp -+ 0 and p -+ I, is not well defined. However, 
consider any neighborhood of cp = 0 sufficiently 
small that the remainder O(cfo2) in Eq. (35) may be 
neglected. As p -+ I, A1 -+ (1 + p)rJ. + 4(1 + p)7rasfva 

unambiguously at any point in this neighborhood 
except at cp = 0 itself. Referring to Eq. (30), we see 
that, when p = I, the behavior of A1 near (but not 
exactly at) cp = 0 is given by 

A1 = (1 + {l)(rx + 47ra3jva) + (1 + {l)-lcfo-2 

X [g(b, fJ)(4) + 2g(c + d, y + 0)(2,2)] 

+ O(cfo4), (36) 

where g(x, y) is defined after Eq. (30). 
Notice that a three-fold degeneracy between the 

optical branches no longer occurs at cp = 0, in the 
sense that ,11 does not approach the same value as 
).2 and ).s, when cp -+ O. 

V. DISCUSSION OF THE FREQUENCY 
SPECTRUM WHEN 1 < P ~ 3 

Let G1(A) be the contribution of the longitudinal 
optical branch to the vibrational-frequency spectrum 
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of the lattice. Here G1(A) is normalized such that 

(37) 

We consider the contribution ~Gl(A) of the region 
near cJ> = 0 to G1(A) when A is near to (1 + /1)0(. Our 
discussion in this section is limited to the case of 
1 < P S 3. The contribution of the region about 

cJ> = 0 to Gl(A), when p = 1, depends upon the 
particular model chosen for the lattice and is discussed 
in the following section. 

The function Al (cJ» is a minimum at cJ> = 0 (if 
1 < p S 3). Thus, we find ~Gl(A) = 0, when A < 
(1 + /1)0(. The calculation of ~Gl (J.), for A > (1 + /1)0( 
and A ~ (1 + /1)0(, is similar to the calculation dis
cussed in Sec. IV of Ref. I. Therefore, we simply list 
the results of the calculation below: 

(a) If P = 3, then 

~Gl(J.) = 27r(Va) K{K[A - (1 + /1)0(])~ , (38) 
a3 (-In {K[A - (1 + /1)0(]})! 

where K = va [81T3a3(l + /1)]-1. The leading term in 
the derivative of this function, near A = (l + /1)0(, 
is given by 

d~Gl(J.) = ( 1TVa
K2 ) {K[J. - (1 + /1)O(]}-k . (39) 

dA a3 (-In {K[A - (1 + /1)0(]})! 

(b) If I < p < 3, then 

where 

e(p) = a 2" (
V r(lp + 1) )3/(P--1) 

2p1TP+i a3(1 + /1)r(j- - !p) 

The derivative is given by 

d~GlA) = (41T(4 - P») (Va)e(p) 
dJ. (p - 1)2 a3 

X [J. - (1 + /1)O(](5--2P)/(P--l). (41) 

The above behavior of ~Gl(A) and its derivative, 
near A. = (l + /1)0(, is similar to that found for the 
corresponding case in simple cubic lattices. l If no 
long-range interactions were present, we would 
expect to find an inverse square root infinity in the 
slope of ~G1(A) as we approach A = (I + /1)0( from 
above. Here, we find that when p = 3 the infinity in 

the slope is slightly weaker than an inverse square 
root. In the case of I < p < 3, the derivative of Gl(A) 
behaves as [A - (1 + /1)0(](5-2P)/(P-1l. If P > t the 
derivative approaches infinity as A ->- (1 + /1)0( from 
above, but more weakly than as an inverse square root. 
On the other hand, if p < !, the derivative approaches 
zero. 

When p = 1, we do not expect the region near 
cJ> = 0 to contribute to the frequency spectrum near 
A. = (1 + /1)0(. Instead, this region should contribute 
to the frequency spectrum near A. = (I + /1)0( + 
4(1 + /1)1Ta3Jva • It is easily shown that, as given in 
Eq. (40), ~G1(A) ->- 0 as p ->- 1. 

The contribution of the transverse optical branches 
to the frequency spectrum is not discussed in this 
paper. However, arguments similar to those given in 
Sec. IV of Ref. 1 indicate that each of these branches 
contributes an inverse square root infinity to the 
slope of the frequency spectrum at A. = (1 + /1)0(. 

VI. THE COULOMB INTERACTION 

We choose a specific crystal model for the case of 
p = 1 (the Coulomb interaction). The model chosen 
is Kellermann's model for sodium chloride. 5 Keller
mann assumed that, in addition to the long-range 
Coulomb interaction, a short-range repulsive potential 
existed in the lattice which extended between nearest 
neighbors only. The contribution of the short-range 
potential to the dynamical matrix was determined 
from the condition that the lattice be in equilibrium 
and by assuming a compressibility of 4.16 x 10-12 

cm2Jdyn for sodium chloride. The above is equivalent 
to assuming the existence of a short-range potential 
energy between nearest neighbors of the form Hj,.a 
with q = 7.738 and HjG = 0.0376~-\ where ro is 
the nearest-neighbor distance, assumed by Kellermann 
to be 2.814 x 10-8 cm. [G is defined in Eq. (4) and is 
now the electronic charge squared.] 

The constants appearing in Eqs. (34) and (36) are 
easily computed. Equations analogous to those 
appearing in Appendix A exist for the short-range 
contributions to D",. From these equations, the 
short-range contributions to the constants are easily 
obtained. The long-range contributions are deter
mined from Eqs. (C7)-(C24). Our results are given 
in Table I. To obtain these values, we chose a = 
J2(ro), where a is defined by Eq. (2). 

The behavior of the dispersion relations for the 
optical branches near cJ> = 0 are then given by 

A1 = 37.834 - (104.820(4) 

+ 101.398(2, 2)~-2 + O(~4) (42) 
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TABLE I. Constants for Kellermann's model. 

Short-range 
contribution 

OC
S = 11.101 

pH = -142.089 
yS = 16.262 
fJ8 = 0.000 
b8 = 0.000 
e8 = 0.000 
ds = 0.000 

and 

Long-range 
contribution 

ocL = -5.924 
pL = 36.718 
yL = -22.440 
fJL = -55.020 
bL = -21.909 
eL = 13.236 
dL = -16.190 

Total 

oc = 5.178 
P = -105.371 
Y = -6.178 
fJ = -55.020 
b = -21.909 
e = 13.236 
d = -16.190 

A2} = 8.536 + (6.545(4) - 38.002(2,2) 
,13 

± 51.092«4,4) - (4,2, 2»t]cp-z 

+ o (cp4). (43) 

In Figs. 1-3, we compare our expansions to second 
order with Kellermann's computation of the disper
sion relations in various directions. Here we have 
converted from Kellermann's values for the frequency 
into corresponding values of A. 

The behavior of Al in the region near <I> = ° is 
similar to that found for the corresponding case in 
simple cubic lattices. l When p = 1, a fluted maximum 
occurs at <I> = 0 instead of the minimum which was 
previously found when 3 ?:. p > l. The contribution 
~Gl of the region near <I> = 0 to the frequency 
spectrum for the longitudinal branch is determined by 
a calculation similar to that discussed in Sec. VI of 
Ref. l. We first rewrite the leading terms in Eq. (42) 

40 

30 

A 
20 0 

0 

"23 , 0 

FIG. I. Comparison of the dispersion relations calculated by 
Kellermann (circles) with our second-order expansions (solid lines) 
in the direction in reciprocal space indicated on the horizontal axis. 

40 

(.2.2.2) (.4:4.4) (.6.6.6) <.8.8.8) 
~(~Ic/)t~; 

FIG. 2. Comparison of the dispersion relations calculated by 
Kellermann (circles) with our second-order expansions (solid lines) 
in the direction in reciprocal space indicated on the horizontal axis. 

in terms of spherical coordinates: 

Al = 37.834 - 104.820cp2 + 108.242cp2 sin2 0 

x {I - (t)[7 + cos (4~)] sin2 O}. (44) 

Here 0 is the polar angle and , is the azimuthal 
angle. Using Eq. (44), one can easily show that the 
contribution of the region about <I> = ° to the fre
quency spectrum, when A1 ::;::;: 37.834, is given by 

~Gl(A) = 0, A > 37.834, 
and 

~Gl(A) = 2-i Q(37.834 - A)i, ,1< 37.834. (45) 

40 

30 

A 
2 

10 
A2 

II t===Q 0 

3 

U .1.1 )(.2.2.0) t.3.3.1 )( :4:4.2) 
~(4)1<jlt.4>.5) 

FIG. 3. Comparison of the dispersion relations calculated by 
Kellermann (circles) with our second-order expansions (solid lines) 
in the direction in reciprocal 'oace indicated on the horizontal axis. 
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In the above equation, the term Q is a constant 
defined by 

Q = t fIT So" {104.820 - 108.242 sin2 () 

X [1 - 1(7 + cos 40 sin2 ()]}-i sin () d() d,. (46) 

We have not evaluated this integral, but one can 
easily show that 0.00586 < Q < 0.01103. From Eq. 
(45), it is clear that the maximum in Al at ~ = 0 
produces a square root infinity in the slope of the 
frequency spectrum at Al = 37.834. Thus, as we found 
earlier for simple cubic lattices,l the analytic behavior 
of the frequency spectrum for the longitudinal branch, 
when p = I, is quite different from its behavior when 
1 <p < 3. 

VII. CONCLUDING REMARKS 

Two important limitations of the above calculation 
should be pointed out. First, we have restricted our 
calculation to a point-ion type of model. Although 
we suspect that a similar analysis could be carried out 
for the shell model,6 we have not attempted to do so. 
Second, it must be noted that we work with unbounded 
lattices. Such results as the lack of degeneracy between 
the longitudinal and transverse optical branches at 
~ = 0 when p = 1 are not necessarily true for finite 
lattices. 7 

APPENDIX A 

Using Eqs. (4)-(7), we obtain the following ex
pressions for the elements Di'(koj, ks) of Dt. If 
k =;i: ko, then· 

D~(koj, ks) 
! 

= - (mo X mo) exp {27Ti~. ["I)(k) -"I)(ko)]} 
mk mko 

X (-P(P + 2) 2 ['li(lk) -'li(ko)]['ls(lk) - 'l.(ko)] 

T (["I)(lk) - "I)(kO)]2}!P+2 

X exp [27Ti~ '"1)(1)] + 0iSP 2 exp [27Ti~ • "I)(l)] ). 
1 {("I)(lk) -"I)(kO)]2}!P+l 

(AI) 
For the case of k = ko, first define 

C~(koj, kos) = mo (_ pep + 2) 2 'li1)'l.(I) 
mko 1,00 (["I)(l)]2}!P+2 

x exp [27Ti~ • '1(1)] + (ji8P I . exp [27Ti~ '"1)(1)]) 
1,0 0 ([ "I)(l) ]2} !p+l 

(A2) 
Then, we have 

D~(koj, kos) = C~(koj, kos) - L (mk)* 
k,oko mko 

X Dt~o(koj, ks) - C~~o(koj, kos). (A3) 

APPENDIX B 

Applying the Ewald transformation to the sums 
appearing in Appendix A, we obtain the following 
expressions for the elements of Df for lattices of 
either the sodium chloride or caesium chloride 
structure. Only the real parts of the following expres
sions are nonvanishing. 

If k =;i: ko, then 

DL(k . k ) _ p7T!P+l (mo)* 
t/> oj, s - - -

r(tp + 1) ml 

X (27Ta
3 

L (-1l1+h2+ha(f>_b+![7Ta2(h)]aih)a.(h) 
va 11. 

- 27T L exp [27Ti~ • "I)(lkko)] (f>!P+1 [7Tt)2(lkko)] 
1 

x 'l;(lkko)'l.(lkko) 

+ 0i. t exp [27Ti~ • "I)(lkko)](f>!p[7T'l2(lkko)] ), (B1) 

where aj(h) = 4>; + ~;(h) and 'l;(lkko) = 'li(lk) -
'fJ;(ko)· The function (f>mex) is the incomplete gamma 
function defined by 

(f>m(x) = LX> tme-xt dt. (B2) 

For the case of k = ko, we have 

p7T!P+l m 
C~(koj, kos) = 1 _0 

r(2P + 1) mko 

(
27Ta

3 
'" ffi 2 x-£., W_!p+![7Ta (h)]a;(h)a.(h) 

Va h 

- 27T 2 'li(I)'ls(I)(f>tP+1[7T'l2(1)] exp [27Ti~ '"1)(/)] 
1,00 

_ 20;s + Ois2(f>tP[7T'l2(l)]eXp[27Ti~'"I)(l)]). 
p+2 1,00 

(B3) 

The element Dt(koj, kos) is then given by Eq. (A3). 

APPENDIX C 

U ~ing properties of the incomplete gamma functions 
given in Appendix B of Ref. 1, we obtain the following 
expansions of the elements of Dt about ~ = 0: 

D~(01, 11) = -,ut[ocL + h(4))4>i + fJL4>i 

+ yL( 4>~ + 4>i)] + O( 4>4), (C1) 

D~(OI, 12) = -,ut[h(4))4>14>2 + (jL4>14>2] + 0(4)4), 

(C2) 

D~(01, 01) = ocL + h(4))4>i + bL4>i 

and 
+ cL( 4>~ + 4>~) + 0(4)4), (C3) 
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where ft = mO/ml' The remaining elements follow 
fr011l the cubic symmetry and the relation 

D~(li, lj) = ftD~(Oi, OJ). 

In the above equations, the function h(</» is defined 
as follows: 

(a) If -ip + i is not a negative integer, then 

he</»~ = 2P7TP+! a
3 

r(t - tp) </>p-3. (C5) 
Va r(tp + 1) 

(b) If -!p + t is a negative integer, then 

h( </» = 71' - ~ </>P-3In (</>2). (C6) 2p P+!( l)!p-! (3) 
r(b + l)r(ip - i) Va 

The quantities (XL, {3L, yL, bL , bL , cL , and dL are 
constants. Using methods discussed in Ref. I, we can 
easily determine their values. For the case of I ~ P ~ 
3, these values are given by the following set of 
equations: 

(XL = C(p)[(27Ta3/Va)(H1) - 27TLI + L2], (C7) 

(3L = C(p)[(27Ta3/va)(27T2H4 - 57TH3 + H2) 

+ 47T3L3 - 27T2L, - S(p)], (CS) 

yL = C(p)[(27Ta3/va)(27T2H5 - 7TH3) 

+ 47T3L5 - 27T2L4], (C9) 

bL = C(p){(27Ta3/Va)[H2 -, 47TH3 + (27T)2H5] 

+ (27T)3L5 - S(p)}, (ClO) 

bL = C(p)[(27Ta3/va)(27T2H~ - 57TH~ + H~) 
+ 47T3L~ - 27T2L~ - S(p)], (Cll) 

cL = C(p)[(27Ta3/va)(27T2H~ - 7TH~) 

+ 47T3L~ - 27T2L~], (C12) 
and 

dL = C(p){(27Ta3/va)[H~ - 47TH~ + (27T)2H~] 

If I ~ P < 3, then 
+ (27T)3L~ - S(p)}. (C13) 

S(p) = 471'(3 - p)-I(:). 

If p = 3, then 

S(p) = 27T(:)on 71' - N), 

where N = 0.577215 , ... 

The remaining symbols appearing above are defined 
as follows: 

C(p) = p7T!P+1jr(!p + 1), (C14) 

HI = t ! (-lll+h2+h3<!>_!p+![7T~2(h)W(h), (C15) 
h'*O 

H2 = L (_1)h1+h2+h3<!>_!p+![7T;2(h)], (C16) 
h'*O 

H3 = t L (-1)h1+h.+h3<!>_!p+i[7Te(h)W(h), (C17) 
h'*O 

H4 = L (_lll+h2+h3<!>_!p+~[7T;2(h)]~(h), (CIS) 
h'*O 

H5 = L (_1)hl+h2+h3;~(h)~~(h)<!>_!p+~[7T;2(h)], (C19) 
h'*O 

L1 = t ! 1]2(lkko)<!>!p+1[7T1]2(lkko)], (C20) 
z 

L2 = L <!>!A7T1]2(lkko)], (C2l) 
z 

L3 = L 1]Wkko)<!>!p+l[m/(lkko)], (C22) 
I 

L4 = t! 1]2(lkko)<!>!p[7T1]2(lkko)], (C23) 
! 

and 

L5 = L 1]~(lkko)1]~(lkko)<!>!P+l[7T1]2(lkko)]. (C24) 

In the above equations, 1]i(lkko) = 1]i(lk)- 1]i(ko). 
The H; are obtained by replacing (_I)h1+h2+ha with 
one in Eqs. (CI5)-(C19). The L; are obtained by 
replacing 1]i(lkko) with 1];(1) in Eqs, (C20)-(C24) and 
not including 1 = 0 in the summations. 

APPENDIX D 

The bracketed terms « », first appearing in Eqs. 
(30) and (34), are defined as follows: (m, n, r) is 
the sum of all distinct terms of the form c/;1'4>;4>~, 
where i, j, and k are distinct. For example, (4,2, 2) = 
4>~4>~4>~ + 4>~4>~4>~ + 4>:4>~4>~. Finally, we define (m, n) == 
(m, n, 0) and (m) == (m, 0, 0). For example, (2) = 4>2. 
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For a Hamiltonian with a ground-state energy Eo = 0, we show that for any normalized state 
1'1')' ('1'1 e-PH 1'1') S e-P (op/HI1I')', where a = exp [-f3 ('1'1 H 2 11p)/('I'1 H 1'1')]. From this inequality, a 
general formula for a lower bound on the free energy is derived. 

Bounds of free energy and canonical ensemble 
averages are of considerable interest. l For many 
complex systems, such as Ising ferromagnets2 or 
composite materials,3 methods of obtaining bounds 
are the only useful tools which are both tractable and 
informative. Free energy in the canonical ensemble 
is given by F = -fJ-1ln 28 (sl e- ilH Is), where {Is)} 
is any complete set of orthonormal states. Bounds of 
F can be obtained from bounds of (sl e-PH Is). A 
very simple upper bound of F was given by Peierls,4 
and one wayS to prove his theorem is by showing that 
(1fJ1 e-ilH 11fJ) ~ e-P (opl H lop). We derive a rather simple 
lower bound of F by similar method. For simplicity, 
we set Eo = 0. This is not a severe restriction, as Eo 
is usualIy known, and merely shifting the energy 
reference does not alter the thermal properties of the 
system.6 

We first note that, for a real functionf(E) = e-PE , 

fJ > 0, Taylor's theorem gives 

fee) - fJ(E - E)f(E) ~f(E) ~f(e') - fJ(E - E')f(E) 

(1) 
for arbitrary E, E'. 

Next, let H be any Hermitian operator with ortho
normal eigenstates l1fJn) , eigenvalues En' and En ;;:: 
Eo = 0. Let 11fJ) be any normalized state with 11fJ) = 
2n an l1fJn), (1fJ 11fJ) = 2n Pn = 1, Pn = ana:. Then 
the expectation value of any function of H in the state 

11fJ) is simply given by O(R) = (1fJ1 ° 11fJ) = 2n PnO (En) , 
e.g., E = (1fJ1 H 11fJ) = 2n PnEn, J = (1fJ1 e-ilH 11fJ) = 
2n Pne- PEn . Since En ;;:: 0, we can multiply Eq. (1) by 
PnE~ , and then sum over n. 

The choice 

E == Ei = Ei+lIEi, E' == < = Ei+YIE1 
causes the term with the coefficient fJ to vanish and we 
find that 

(2) 

If we let i = 0, we obtainf(EflJ) ~J~f(E). Since 
Eo = 0, so J ~ 1. This, together with Eq. (2) for the 
case i = I, yields a weaker but simpler upper bound 
for las 

e-P(opIH lop)a;;:: (1fJ1 e-PH 11fJ) ;;:: e-P(opIH lop), (3) 

where a = exp [-fJ (1fJ1 H 2 11fJ)/(1fJ1 H 11fJ)].' Identifying 
fJ = (kT)-l and H as Hamiltonian, we obtain a lower 
bound of free energy from Eq. (3) as 

F ;;:: -fJ-1 In 2 e-P (opi H lop) a, 
op 

where {11fJj} is any complete orthonormal set of states. 
Upper and lower bounds of the canonical ensemble 

average of any operator ° can be written down in 
terms of <Onl R IOn), where the IOn) are eigenstates 
of 0. Furthermore, bounds of thermodynamic deriva
tives can be obtained by noting that the bounds of 

a11afJi [= (-I)iE1] are given in Eq. (2). From Eq. 
(3), it is clear that alI our bounds are more accurate 
at higher temperatures. These bounds have been useful 
in determining the properties of Heisenberg ferro
magnets.s 
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from the Research Foundation of State University of New York. 
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We obtain instead e-P (op/ H' /op)., Z ('1'1 e-PH 1'1'), with H' == H - Eo 
and a' == exp [-fl ('1'1 H'"I'I')/('I'I H' 1'1')]. Also, 

F Z -fl-1ln ~ e-P ('1'/ H' /'1'>". 
op 

7 Better upper bounds can be obtained by iteration, e.g., 

e-Pb ~ exp (-(Jbe+Pb) Z <'1'1 e-PH 1'1'), 

where b = ('1'1 H 1'1') a. 
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A formalism is. devel?ped for solving.a c1assof.electrom~gnetic d~ffraction problems involving hetero
geneous planar dlelectnc structures. Usmg analytiC properties of finite Fourier transforms we show that 
the el.ectromagntic field ~istributions ~an be obtained by solving a single-variable Fredholm integral 
e9uahon. of th~ s.econd.km.d. The special ~ase of TE-wa~e propagation through a finite metallic guide 
Wlt~ a dlelectn~ ms«~t I~ dls.cussed m detail. Our nu~encal approa~h sp~ns the Rayleigh to geometric 
optics range. Field dlstnbutIons are presented for typical configurations mvolving positively and nega
tively absorbing media. Excitation of bound-mode resonances is discussed. 

I. INTRODUCTION 

The pu!pose of this paper is to present a formalism 
for solving a class of electromagnetic diffraction 
problems for which the scattering structure is a plane 
dielectric slab of infinite extent, inside of which the 
dielectric properties are allowed to vary along direc
tions parallel to the slab boundaries (cf. Fig. 1). 
Propagation of electromagnetic waves through multi
layered dielectric media has received considerable 
attention in the literature.1 On the other hand, the 
excitation of bound electromagnetic modes propagat
ing parallel to the layer structure involves a vacuum
dielectric interface or some dielectric inhomogeneity 
in order to couple with the external field. No previous 
exact theoretical treatment has been given of this very 
important class of diffraction problems. The class of 
exactly solvable problems in diffraction theory, which 
exploit Wiener-Hopf or similar techniques, are mainly 
restricted to one or more parallel b-function discon
tinuities of the Sommerfeld half-plane type.2 

y 

- - - - - ~ - ~!!) 

Incident 

+ Reflected Field 
Region 

--------- --+z 

Transmitted Field 
Region 

FIG. 1. Geometry of heterogeneous-slab-diffraction problem. 
Electric field polarized in x direction perpendicular to paper. 
Propagation constants are denoted by k n • 1m k n > 0 for n = 
I, 2. Geometry and incident field infinite in x direction. 

The mathematical approach taken in this paper is 
based on quite elementary ideas involving analytical 
properties of finite Fourier transforms. For our initial 
exposition, the electric field vector E will be taken as 
polarized parallel to the axis of translational invari
ance of the scattering structure (cf. Fig. 1). This mode 
is commonly referred to as TE (transverse electric). 

In Sec. II of this paper, a procedure will be de
veloped which allows one to determine field distri
butions from a single-variable Fredholm integral 
equation of the second kind. The utility of our 
approach is established in Sec. IV by studying diffrac
tion of a TE wave from an infinitely conducting 
screen of finite thickness with a dielectric insert, for 
the entire wavelength range from the Rayleigh to 
geometric optics limit. 

Numerical results are presented in Sec. V for a 
variety of slab geometries. The special case of the 
aperture L = 0 is discussed and contact is made with 
previous work.3- 8 

II. THEORETICAL FORMALISM 

The geometry for our diffraction problem is given 
in Fig. 1. An external, monochromatic field of angular 
frequency wand of finite extent in the y direction is 
incident on the entrance surface z = O. The dielectric 
regions are characterized by complex propagation 
constants kl and k2 whose imaginary parts 1m k" > 0 
refer to an absorptive medium. The region charac
terized by k3(y) may have a positive or negative region 
of absorption. 

Maxwell's equations describing the x component 
E", of the electric field vector E for a TE mode, for a 
harmonic time-varying field e-iwt , reduce to 

{ 
02 02 

} 
oy2 + OZ2 + [k(y, zW E",(y, z) = 0, (1) 

with the magnetic field components Hit and Hz being 
proportional to oE",/oz and oE",/oy, respectively. 

1522 
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Continuity of the tangential components of the 
electric field-vector E and magnetic field vector H, at 
the entrance surface z = 0, y = ai' and y = a2 and 
the exit surface z = L, requires that 

E",(y, -0) = E.,(y, +0), 

(] (] 
(]Z E",(y, z)/z~o = (]Z E.,(y, z)/z=+o 

at z = 0, with an identical equation for z = L. 
Similarly, at the y = an and n = 1, 2 surfaces, 

E",(an - 0, z) = E.,(an + 0, z), 

(] (] 
oy E",(y, z)/1I'=a .. -o = oy E",(y, z)/1I'=a .. +o' (3) 

A. Reflected Wave Field z ~ 0 and Transmitted 
Wave Field z ~ L 

If Eo.,(y, z) represents the incident wave field falling 
on the medium z> 0, then the solution of Eq. (1) 
for z < 0 can be written as 

E ( ) = E ( ) - _1 1ro 
dk -ik.y -i«u C(ky) '" y, z 0", y, z . ye e , 

41T1 -ro IXI 

(4) 
where 

(5) 

for n = 1 and 2, will be used throughout this paper. 
The second term in Eq. (4) refers to the reflected wave 
field at the entrance surface z = 0. 

The wave field for z > L of Fig. 1, characterized by 
kl' is given by 

where IXI is defined by Eq. (5). 

B. Procedure for Fixing C and D 

In order to obtain E",(y, z) for ° < z < L, we 
employ a finite Fourier transform representation9 

defining 

E+(y, k) = 1L dzeikzE",(y, z), (7) 

so that, by MacRobert's theorem ,9 

(8) 

for 0 < z < L. We note, in particular, that E+(y, k) is 
an entire function which tends to zero in the upper 
half-k-plane. 

We now multiply Eq. (1) by eikz , integrate over z 
from ° to L, and make use of Eq. (2) and the boundary 
conditions at the entrance and exist surfaces. One 
obtains an inhomogeneous differential equation for 
E+(y, k) containing C and D which can be written, for 
the nth region, as 

In Eq. (9), 

Jo(y, k) = OE0"'o~' z) Lo - ikEo",{y, O) (10) 

is a source term. The second term on the right-hand 
side of Eq. (9) accounts for reflection at the exit and 
entrance surfaces. 

The functions E+(y, k) and eikLE+(y, -k) tend to 
zero as 1m k --'" 00 and exist for all k in the upper 
half-plane. Consequently, it will be possible to deter
mine C and D as a linear combination of the two 
previously mentioned functions at k = 1X2 • 

Let 

and 

B±(y, k) = E+(y, k) ± eikLE+(y, -k), 

Q±(ky) = C(ky) ± D(ky), 

(11) 

(12) 

J±(y, k) = Jo(y, k) ± eikLfo(y, -k); 

then, from Eq. (9), one has 

(13) 

X e-ikoY[k + IXl ± eikL(lXl - k)]Q±(ky)' (14) 

One should note that the B±(y, k) functions are also 
entire functions which tend to zero as 1m k --'" + 00. 

Since!o(y, k) is assumed to vanish outside the range 
Iyl > C, we can Fourier-transform Eq. (14) with respect 
to - 00 < y < 00 and obtain 

where 

- -.!. [k + IXI ± eikL(lXl - k)]Q±(ky ) 

21X1 

+ i:2dyeik.YU(y)B±(y, k)}, (15) 

U(y) = [k3(y)]2 - k~ (16) 
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and B±(ky , k) and J±(ky , k) denote the respective 
Fourier transforms of B±(y, k) andf±(kll, k). 

The last term in Eq. (15) arises from the fact that a 
term k~B±(y, k) was added and subtracted from the 
left side of Eq. (14) prior to taking the Fourier trans
form ony. 

As previously noted, the B±(y, k) functions are 
entire functions [cf. Eqs. (7) and (11)J which tend to 
zero as 1m k - 00.. According to Eq. (5), OC2 = 
(ki - k;)t, - 00 < ky < 00, 1m OC2 > 0, lies in the 
upper right half of the complex plane since 1m (k2) > 
O. In particular, OC2 = k2 for kll = 0 and rl2 - ioo as 
kll - ± 00. In order for Eq. (15) to hold for all k such 
that 1m k > -ko and ko > 0, the function in the 
braces must vanish at k = OC2, 1m OC2 > 0, so that 

Q (k) = 2rll 
± 1I OCI + rl2 ± (rll - oc2)eia2L 

X {-J±(ky , OC2) + 'P'±(ky )}, (17) 
where 

(18) 

The function B±(y, rl2), 1m OC2 > 0, can be obtained by 
solving Eq. (14), subject to the boundary condition 
(3) for k = " -00 < , < 00, and by using Cauchy's 
integral formula, i.e., 

1 fOCl 1 B±(y, OC2) = -. d, -y - B±(y, ,). (19) 
211"1 -0Cl \, - OC2 

Equation (14) for B±, with k = " - 00 < ~ < 00, 

subject to the boundary condition (3), can be solved 
in terms of elementary functions if the inset in Fig. 1 
consists of dielectric layers running parallel to the 
z axis so that ks(y) is piecewise constant. After 
B±(y. ') has been constructed, one can obtain an 
integral equation for'P' ±(kll), using Eqs. (18) and (19). 
In general, the integrals involving' in Eq. (19) cannot 
be carried out explicitly, and one must resort to nu
merical evaluation. If aI' a2, k2' and ka(y) are finite, 
'P' ±(ky ) will obey a Fredholm equation of the second 
kind whose kernel is Hilbert-Schmidt type. When 
a2 = 00, one has an exceptional case. If our dielectric 
structure is characterized by the parameters al = ° 
and a2 = 00, with ka(y) = kT(y) for ° =:;; y =:;; a and 
ka(y) = ks (const) for a =:;; y < 00, the integral equa
tion for'P' ± is singular. It can, however, be converted 
to Fredholm by the well-known Carleman technique. 
On the other hand, if ka = kl (vacuum), a l = 0, and a2 
and L = 00. i.e., a dielectric overlay on a right-angle 
prism, one still obtains a Fredholm integral equation 
with a Hilbert-Schmidt kernel. 

The case k3(y) = ks (const) and a2 = -al = b is 
investigated in Sec. III of this paper, where B±(y, ~) is 

explicitly exhibited [Eq. (40)]. In Sec. IV, we derive an 
integral equation for (k2)-I'P' ±(ky) for the limiting case 
of a dielectric insert imbedded in a medium having 
infinite conductivity, i.e., k2 - ioo. The field distri
butions for this case are considered in complete detail. 

At this point, it appears worthwhile to summarize 
our formal procedure for finding B±(y, '), B±(y, oc2), 

'P'±(kll), C(kll), D(kll). and E.,(y, z). 

C. Summary of Formal Expressions 

In general, one is interested in physical situations 
where a beam of finite width is used. For this case, 

E (y z) = 1- fOCl dk e-ik.lIeiaUE (k ) (20) 
0." 211" -0Cl 11 ] 11' 

Equation (13) becomes, by means of Eq. (10), 

f±(y, k) = J.- fOCl dklle-ik·lIM!}/(kll' k)E](kll), (21) 
211" -0Cl 

where 

M~;;>(kll' k) = rll - k ± eikL(rll + k). (22) 

From Eqs. (17) and (21), one can write Eq. (14) for 

k = " - 00 < ~ < 00, as 

{:;2 - ,2 + [knCy)]2}B±(Y, '> 

= H±(y,~) + ...!.. fOCl dklle-ik.IIM!;)(kll' ,)'P' ±(kll), (23) 
211" -0Cl 

where 

H±(y, n = J.- fOCl dklle-ik.IIEikll)[M21(kll'~) 
211" -00 

- M!;I(kll' ,)M2)(ky , rl2)] (24) 
and 

i~L Y 
M~'<kll' ') = ,+ OCI ± e (OCI - \,) (25) 

OC2 + OCI ± e,azL( rll - OC2) 

It is also instructive to convert Eq. (23) to an integral 
equation. The simplest way to do this is to add the 
term (k2)2B±(y, ') to both sides of Eq. (23), take the 
Fourier transform on y, solve for B±(kll' ~), as was 
done in constructing Eq. (15), and then re-invert. 
[Inversion 9f Eq. (15) with k = , leads to the same 
result when the appropriate substitutions are made.] 
One finds that 

B±(y, ~) 

= 2i fOCl dkye-iTr.IIE](kll)[M21(kll' ~) 
11" -0Cl 
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and 
y = a2 

- k~)!, Re y > O. (27) 

Finally, one fixes'Y ±(k'll) by using Eqs. (18) and (19), 
i.e., 

'Y ±(ky) = _1 . foo d, _1_ ra2dyeikVYU(y)B±(y, ,). 
2m -00 ,- OC2 Jal 

(28) 

The field distribution for z > L is given by Eq. (6) 
via Eqs. (12) and 

E",(y, z > L) 

= ~ foo dkye-ik·lIeilZlZ 
71' -00 

where 
N± = a1 + OC2 ± eilZ2L(ocl - OCt). (30) 

The field distril,lUtions for 0 < z < L are obtained 
from 

(31) 

One should note that Eqs. (29) and (31) give the field 
distributions in analytic form for an infinite slab of 
thickness L, with propagation constant k2 imbedded 
in vacuum [k1] since al = a2 = 'Y ± = 0 for this case. 

III. DIFFRACTION BY A HOMOGENEOUS 
SLAB IMBEDDED IN AN INFINITE SLAB 

In this section, the diffraction of a TE wave by a 
homogeneous dielectric slab, which has ka(y) = ka, 
thickness 2b, and length L, imbedded in an infinite 
slab of width L (shown in Fig. 1), with a2 = -al = b, 
will be discussed. If k2 = kl' one has the isolated slab 
problem. If L = 00, one has a semi-infinite diffraction 
problem. If 1m k 2b » 1, one has a dielectric slab, 
characterized by ka(y) imbedded in a highly absorbing 
medium. In the limit of infinite conductivity, k2 ---+ ioo, 
our diffraction problem takes its simplest form. Even 
this latter problem cannot be solved in closed form, 
but our technique leads to a tractable procedure for 
obtaining the field distributions, as will be shown 
below. 

It is of interest to consider the case where 1m ka < 0, 
corresponding to negative absorption as well as the 

-- -- - -- --. 

o L 

FIG. 2. Metal-dielectric-guide diffraction geometry [cf. Fig. IJ. 
Incident wave field is taken to be symmetric with respect to reflection 
in (x, z) plane. 1m ks > 0 corresponds to passive absorbing dielectric 
material. 1m ks < 0 corresponds to active (optically pumped) 
material. 

normal 1m ks > O. For this reason, quantity OCs 
appearing below will be defined as 

OCa = sgn (1m ka)(k~ - k;)!, 1m OCa > 0, (32) 

for -00 ~ kll ~ 00. 

The solutions of Eq. (23) for B±(y, ') can be decom
posed into even and odd parts, with respect to reflec
tion in the y = 0 plane of Fig. 2. The letters g (gerade) 
and u (ungerade) will be used to denote evenness and 
oddness. The quantities al and a2 are given by -b and 
b, respectively. One can write 

B±(y, ') = B!(y, 0 + iB~(y, O. (33) 

In the remainder of this paper, we assume that the 
excitation field is an even function of y. Experimen
tally, one can easily achieve this situation by using a 
beam splitter and adjusting the phases to give a sym
metric transmission pattern. For example, a symmetry 
plane wave excitation corresponds to 

E~rCkll) = 271'[f5(ky - kl sin 0) + f5(ky + kl sin 0)], 

(34) 

where 0 is the angle of incidence measured from the 
z axis and ~ is the Dirac ~ function. 

A. Gerade Field Distributions B~(y, ~) 

Equation (23), subject to the boundary conditions 
at y = b, must be solved for B~(y, ,). Standard pro
cedures exist for doing this. For our purposes, a 
particularly compact result can be obtained. Since 
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B1 (y, 0 = B1 ( - y, ~), one can show that Y -l- 00; oc~ and OC2 -l- k2 and 

B!(y, ~) = Ga(y) + cos (Ky){y[G2(b) - Ga(b)] 

+ G2(b) - G~(b)}/tl (35) 

for -b 5: y 5: b. The primes on G", denote differenti
ation with respect to y and 

where 

W(ky, n = M~)(kll' ~)'¥!(kll) + iE~(kll)[M~)(ky, ~) 
- M~)(ky, ~)M2)(ky, OC2)], (37) 

tl = Y cos Kb - K sin Kb, K = (k; - ~2)!. (38) 

For y ~ b, 

B!(y, n 
= G

2
(y) + e-y(Y-b) (bdy' cos (Ky')G2(y')(k; - ki) . 

Jo tl 
(39) 

In order to construct the field distribution for 0 < 
z < L from B1(Y, 0, one must invert Eq. (35) with 
respect to ~ after '¥1 has been obtained. For this rea
son, it is convenient to rewrite Eq. 35 as 

where the primes on oc'" denote k; rather than kll . 
An integral equation for '¥1 (ky ) is now obtained by 

inserting Eq. (40) into Eq. (28). The kernel for this 
integral equation can be shown to be Hilbert-Schmidt 
for finite kl' k2' and ka• This ends our general dis
cussion showing the existence of an integral equation 
for '¥~. Further discussion on this general problem 
will be deferred to a future publication. A detailed 
discussion of the case k2 -l- -ioo is presented in the 
next section. 

IV. DIFFRACTION BY A DIELECTRIC SLAB 
BOUNDED BY STRONGLY 

ABSORBING MEDIA 

From an experimental as well as theoretical point 
of view, it is of considerable interest to examine a 
special, but simple,diffraction problem employing the 
geometry of Fig. 2. Here we take k2 --+ ioo. The factor 

W(k;, ~)-l- g + ocf ± ei'L(oc~ - mI!(k;) 

where 
+ 2ioc~E~(k;)[1 ± eieL], (41) 

I!(k;) = lim k;l'¥!(k;). (42) 
k2-+ioo 

The quantity in the large brackets of Eq. (40) 
reduces to cos (k~b) sec (Kb) cos (KY) = cos (k;y), 
which vanishes for ~ = ±oc; and has poles at Kb = 
(r + t)17', r = 0, ±l,"', 00. When this bracket 
expression is divided by (OC~2 - {2), one has a mero
morphic function of ~ which can be expanded in 
partial fractions, with the result that 

b2(1'2' - a'2rl(cos (d) sec (1') cos (1'~) - cos (a'~)] 

= 2~>r(-1)r+1cos (TrY)(1'; _ a,2r1 

r=l b 

x cos (a')a2 
- {;r\ (43) 

where 

~ = ylb, a' = k;b, T = (k; - ~2)tb, 
1'r = (r - t)17', (44) 

and 

~r = sgn (lm ka)[k~ - (7r/b)21t, Im~. > O. (45) 

The first term in Eq. (40) drops out as k2 -l- ioo and 
one is left with 

B!(y, {) = I(-IYTr cos (7rY)a2 
- {;r1 

r=l b 

where 

x [(1 ± eitL)(Sr + Pl.) + (1 T ei'L){P2r]' 

(46) 

Sr = ~ L: dk;oc{ cos (a')E~(k;)(1'; - a'2r1 (47) 

and 

Pm = 1. (00 dk;(oc~)2-nI!(k;)(T; _ a,2r1 cos (0"). (48) 
17' 1-00 

Field Expansions in the Slab 

The field distribution in the slab is obtained by 
inverting Eq. (46). [Eq. (31) relates E~ and the inverse 
of B±.J One finds that 

B!(y, z) 

1 f"" . = - d{e-"ZB!(y, ~) 
217' -00 

= i~l( -lrT,(2~rrl cos c~Y) [eiCrZ ± ei'r(L-z)]g±(Tr), 

(49) 
where 
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Equation (49) shows that one can determine g±(Tr), 

rather than Plr and P2r separately, to fix the field distri
bution in the slab. Using Eqs. (42), (28), and (46), one 
further finds that 

00 

1!(kll) = -b~T;(T; - a2rl 
r=1 

where a = kllb. 
From Eqs. (48), (50), and (51), the g±'s are fixed by 

g±(T,,) = s" - .! foo dk;(~" - IX~)(T! - a,2r1 
1T -00 

X cos (a')1!(k~). (52) 

In the remainder of this paper, it will be assumed 
that the incident field corresponds to a symmetric 
plane wave excitation given by exp (ik1z cos 0) 
X cos (k1y sin 0) so that Eq. (47) reduces to 

bSr = 4ia1 cos (a1 sin O)[T; - (a1 sin O)2r\ (53) 

where 0 is the angle of incident measured frl)m the z 
axis. 

The field in the guide at (y~ z) is· obtained from Eq. 
(49), where g±(Tr) is determined by solving Eqs. (51) 
and (52). Similarly, to determine the transmitted or 
reflected wave fields, one needs 11(kll ), fixed by Eq. 
(51). 

A. Transformed Equations 

From a numerical standpoint, it is judicious to 
eliminate the cos a factors in our equations. To do this, 
one makes use of the identity 

to rewrite Eq. (53) in the form 

g±(T,,) = bS" 

+ l.. f'" da (1 + e2i17
)[(a;;- T!): - (a; - (

2
)!] ([;±(a), 

21T -00 Tn - a 
(55) 

where 2 cos2 a is replaced by 1 + e2i17 and b( ,,, - IXD 
is rewritten as 

b~" - (a~ - T~)! + (a~ - T!)! - (ai - ( 2)! 

since /1 (kll) is an even function of kllb = a. In Eq. (55), 

(56) 

with 

g±(Tr) = (2'rr1g±(Tr){b'r + (a~ - T;)* 

and 
± ei~rL[ - b'r + (ai :- T;)*J) (57) 

f3±(Tr) = 2T;(1 ± ei~rL){b'r + (ai - T;)* 

± ei~rL[_b'r + (ai - T;)!]}-l. (58) 

The relationship between 11 (k ll) [Eq. (51)] and $±(a) is 
simply 

1!(kll) = -b cos (a)$±(a). (59) 

The function $±(a) defined by Eq. (56) has poles at 
a = ±Tr , r = 1, 2, .. '. Equation (55), relating 
g±( T ,,) to the other g±( T r)'s, was designed to cancel out 
the pole of second order associated with the diagonal 
term r = n; i.e., the numerator of the integrand in Eq. 
(55) vanishes like (a - T ,,)2 for a ->- T". 

Next, it is convenient to transform Eq. (55) into a 
more useful one by putting a = -al cosh 11 and 
(a~ - ( 2)! = -ial sinh 11, where 11 runs from - 00 to 
o to i1T to i1T + 00 in straight-line segments. As 
previously mentioned, the poles in Eq. (55) were 
eliminated. Now, we shift the entire contour upward 
by ti1T, i.e., we let I~ = ti1T + tl and then 

a = - ial sinh t~ 

for the segment - 00 < 11 < O. Similar remarks hold 
for the other two parts of the contour. The terms 
involving the factor (ai - T~)! cancel out. Finally, 
setting v = al sinh (t'), we can rewrite Eqs. (55) and 
(56) as 

g±(T,,) = bS" +foo dv(a~ + v
2

)! (1 + e-21)CP±(v) 
-i171 T! + v2 

(60) 
and 

(61) 

Equations (56) and (61) show the relationship between 
CP±(v) and $±(a). The contour in Eq. (60) runs from 
v = -ial to 00, avoiding the poles at v ~ ±iT". On 
the other hand, the factor (ai + v2)!(1 + r 21) assures 
the existence of the integrals in the limiting case 
al ->- T" for off-diagonal as well as diagonal terms, in 
case Eq. (61) is substituted into Eq. (60), and the 
resulting system solved for g±( T ,,). 

B. Asymptotic Behavior of <P±(v) and g±(Tr) for L > 0 

For cases of physical interest S" = 0(n-2) as n ---+-

00. Similarly, any finite portion of the line inte
gral in Eq. (60) leads to the same result, i.e., 0(n-2). 
These conclusions also hold for CP±(v) with respect to 
any finite portion of the Tr spectrum in Eq. (61). Hence, 
one readily sees that the behavior of CP±(v) for v---+- 00 

is controlled by g±(Tr), for r» 1, since (3±(Tr)->
-iTr + O(r-l) as r ---+- 00, 

Using the Euler summation formula10 and the above 
remarks, one can write Eq. (61), for L > 0, as 

CP±(v) = O(v-2
) + -\ i"'dT ~ g±(T), (62) 

1T 1)0 T+V 
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where t' = 0.) Noting that 

(63) 1 + e-2
" = 0[(1 + t)2J, Cf1 == (N - t)1T == TN, 

for 1 « Vo ~ v < 00. These equations are identical in 
structure except for the multiplying factor 1T-2• This 
structure suggests that 

rp±(v) -+ Alv-P , g±(v) -+ 1TAlv-P , v -+ 00. (64) 

The factor 1T simply scales rp± and g± properly. If one 
multiplies Eq. (62) by 21TV P and takes the limit as 
v -+ 00, using Eq. (64), then the constant p is fixed by 

21TAl = 2 [00 dx x
1

-

p 

2 Al == 1T CSC (!1Tp)A1 • (65) 
Jo 1 + x 

Similarly, one obtains the same equation for p from 
Eq. (63). In deriving Eq. (65), the term involving 
0(v-2) drops out provided that p < 2. In fact, the only 
permisSible solution of Eq. (65) for Al ::;l= 0 is P = t, 
consistent with the above assumption, p < 2. These 
arguments indicate that the series defining B±(y, z) in 
Eq. (49) are absolutely convergent. 

When L = 0, we have g_ = I! == ° and f3+(Tr)-+ 
- 2iTr , as r -+ 00. One can show that PI = P2 = i in 
the previous L > ° analysis so that rp+(v) -+ O(v-i) 
andg+(Tr ) -+ T;:-i as Ivl or r -+ 00. This latter result is in 
agreement with the well-known result that 

E.,(y, 0) -+ 0[(1 - (y/b)2)!] 

as Iyl-+ b, established by Sommerfeld and others 
(see Ref. 3, p. 73, for a discussion). 

C. Integral Equation for <P±(v) 

In this section, an integral equation will be con
structed for rp.j:Jv) by substituting Eq. (60) into Eq. 
(61). To achieve a compact notation, it is convenient 
to specify the precise contour for v in Eq. (60) so that 
a single continuous kernel can be used for the entire 
path. To do this, let Vo be a real change of scale 
parameterll and define 

v =. -iCf1 + vo(1 + 2t'), ° ~ t' < 00, 

= -iCf1 + voO + (')2, -1 ~ t' ~ 0, (66) 

for the path of integration in Eq. (60). Then, for 
-l~/'~O, 

dv = 2vo(1 + t'), 
dt' 

(Cfi + v~! = (1 + t')v!(v + iCf1)!, (67) 

where the real part of the square-root factor is to be 
taken as positive. (We note that dv/dt' is continuous at 

(68) 

when (' "" -1, one sees that 1 + e-2" cancels out the 
pole in Eq. (61) at r = N exactly. Similarly, the factor 
(Cfi + v2)!(dv/dt') in the integrand of Eq. (60) in t f 

space cancels out the pole at n = N. When (fl ::;l= TN, 

N = 1,2,'" ,no pole occurs along the -1 ~ t f ~ 0 
path. 

Now, we put 

u = -iCf1 + vo(1 + 2t), t ;;::: 0, 

= -iCf1 + vo(1 + t)2, -I ~ t ~ 0, (69) 

covering the same path as v. Next, we let 

A(t) = 1 + (U/(fl)2, t ~ 0, 

= 1 + (Va/(fl)2, t;;::: 0, (70) 

B( t') = Cf~( Cfi + v2)! ~;, , t' ~ 0, 

= 2(Cfr + v2)!vo[1 + (Va/Cf1)2r\ t';;::: 0, (71) 
where 

va = Vo - j(fl • (72) 

Similarly, we define a new function 

X±(t) = rp±(u)A(t) (73) 
and find that 

X±(t) = S±(t) + L: dt'r ±(t, t')X±(t'), (74) 

where 

S±(t) = 4i0'1 cos «(fl sin O)A±(u, i(fl sin O)A(t), (75) 

and 
r ±(t, t') = A(t)B(t')(1 + r 2")A±(u, v). (76) 

In Eqs. (23) and (24), use was made of the function 

A±(u, v) = !.. I f3±(Tr)(T; + u2r1(T; + v2r1. (77) 
1Tr=1 

Again, in case (f1 = TN, the pole at r = N in the source 
function S±(t) is canceled out by the factor A(t). 

Our stated goal of transforming out the oscillatory 
behavior in the integral equation caused by cos kyb has 
been achieved. In terms of X±(t'), one finds from Eq. 
(60) that 

foo (1 + e-2
,,) 

g±( 7' n) = bS .. + dt' 2 2 B(t')X±(t'). (78) 
-1 Tn + V 

Similarly, one finds, from Eqs. (57), (59), (61), and 
(78), that 

I~'<kll) = i7Tb cos (kllb)rp±(ikllb), (79) 
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with 

cP±(u) = 4ich cos (0"1 sin O)A±(u, iO"l sin 0) 

+ L: dt'A±(u, v)(1 + e-2")B(t')X±(t'), (80) 

defining cP±(u) at all points in the complex u plane. 
The simple poles at u = ±iTr are canceled out in 
11(ky) by the cos (kyb) factor. 

D. Evaluation of A±(u, v) 

For fixed (u, v), the terms in Eq. (77) decrease like 
r-3 as r -+ 00. For large lui and Ivllying on the contour 
of integration, A±(u, v) approaches 

A~(u, v) = L~ (u2 _ v2r1ln (U
2 

+ U~\, (81) 
21T2 v2 + UJ 

where 
L~ = 1, L >0, 

= 1 ± 1, L = 0, (82) 

owing to the fact that {J± -+ -(1 ± l)iTr or -iTr for 
L = 0 or L > 0, respectively. The constant Ub > 
Re O"~ is introduced for numerical convenience. 

One can now write 

remainder terms can be evaluated to any desired degree 
of accuracy. The results of this operation are listed 
below and depend upon 0"1 = 0"3 or :F 0"3: 

(1) 0"1 = 0"3: vacuum insert: 

where 
~GN(U) = 2(TNYI1Tr2C1(C, u); (90) 

(2) 0"1 :F 0"3: 

GN(u) = [7T2(O"i - 0"i)]-1[Q1(U) - Q3(U)] + ~GN' 
(91) 

where 

Qr = 2u
2

ln [(1 + Yr)!21 + uTr{ln [ 1 + (T:n 
+ 2 In ( u + Tt )}" (92) 

YIU + T1 
and 

~GN(U) = U2(0"~ - O"~)-l[Cl(C, u) - C3(C, u)]. (93) 

A±(u, v) = A~(u, v) + A!(u, v), (83) In the above equations, 
where 

A!(u, v) = i (J±(Tp)(T; + u2rl(T; + v2rl 
1T 

and 
• 2 N-l 

G±(u) = ~ I/{J±(Tr)[T~(T; + u2)r1 

1T 1'=1 

+ L~{GN(U) - 2~21n [1 + (;) ]}. (85) 

In Eq. (85), the prime denotes exclusion of the term 
r = p corresponding to the first term of Eq. (84) and 
deals effectively with the situation where 0"1 "-' l' p' 

The integer N is chosen so that max (10"11, 10"31) « TN 
simultaneous with 

lei'NLI «1, L > 0, 

unless L == 0, in which case 

(86) 

(J±(Tr ) = (1 ± 1)T;(O"i - T~rt. (87) 
Finally, 

GN(u) = (2U 2/1T) }: [(1'; - O"i)t + (1'; - 0";)tr1 
r=N 

X (1'; + u2rl. (88) 

If L == 0, we take 0"1 = 0"3 in Eq. (88) for the aperture 
problem. 

The last step is to evaluate GN(u) and the most 
efficient way to do this is to use the Euler summation 
formula,lO since the integration is elementary and the 

Yr = [1 - (O"rITN)2]t, 1',. = (0"; + u2)t. (94) 

The functions C,.{C, u) in Eqs. (90) and (93) arise 
from the Euler-summation remainder terms given by 

C (C u) = FIr _ F2r 3Fsr + 2F4r 

r' N1 3Ni + 90N~ 
_ 15F4r + 20Fsr + 4Fsr + O(N-B) (95) 

1920N~ 1 , 

with 
(96) 

and 

Fsr = :± CsiYri+2(V-S) [1 + (.!!..)~-v. (97) 
.=1 TN I J 

The coefficients C$V appearing in Eq. (93) are given in 
Table I for the two cases 0"1 = 0"3 and 0"1 :F 0"3' 

TAIJLE I. Coefficients Cs• appearing in Eq. (97). 

CTl "" CTa Cll = 1; COl = t, CO2 = -1; Cal = -1, 
Cu = -1; Caa = 2; Cn = t, CO2 = i. 
C'3 = 3, C .. = -6; Cn = -H, C52 = -i, 
Cs. = -3, Cst = -12, Cu = 24; Cn = W, 
C •• = ~:, C •• = 2l·, C •• = 15, C.s = 60, 
C •• = -120. 

al = CT. Cll = 1; COl = -t, Cu = -1; Cal =!. 
CO2 = 1, Caa = 2; Cn = -t, CO2 = -t, 
C43 = -3, C .. = -6; COl = \0l-, Cn = 2l·, 
Cu = 9, C" = 12, C66 = 24; COl = _\\r>, 
Cu = -','l-, Csa = -',", Ca4 = -45, 
C66 = -60, Cao = -120. 



                                                                                                                                    

1530 G. W. LEHMAN 

E. Behavior of r ±(t, t') 

The kernel r ± in our integral equation for X±(t) [Eq. 
(74)] can now be examined from the analytic repre
sentations given in the preceding section. With the 
behavior for lui» TN in mind, one can rewrite 

r± = r~ + r~, (98) 

Similarly, from Eqs. (79), (80), (29), and (42), one 
can evaluate the transmitted field 

Ea:(Y, z;;:: L) 

= - _1_ f'" dk e-ikvllei"'l(~L)[Ig(k ) - Ig(k)] (110) 
417i -00 11 + II - II • 

where 

r~(t, t') = n(t')~(u, v), 
Finally, it is also possible to show that the field for 

(99) z < 0 is given by 

r~(t, t') = [A(t)8(t')(1 + e-2
,,) - n(t')]~(u, v) 

+ A(t)8(t')(1 + e-2")A~(u, v), (teO) 
and 

net') = 2vo(u~ + v!)t, t' ~ 0, 

= 2vo(ui + V2)t, t';;:: O. (101) 

From Eqs. (85), (89), and (91), one notes that 

G±(u) = G~ - L~[TNI(217u)r2In [1 + (ujTN)2] 

+ O(u-2
), lui» TN' (102) 

where G~ is some constant. For (t, t') ;;:: 0, A (t)B(t') = 
net') and it follows from Eqs. (84), (lOO), and (102) 
that rf(t, t') is a Hilbert-Schmidt kernel, i.e., 

L: dt L: dt' jr~(t, t')12 < 00. (103) 

On' the other hand, r±(t, t') is not Hilbert-Schmidt, 
but possesses an Ll norm ' 

L: dt' jr~(t, t')1 < *L~, (104) 

a result substantiated by numerical studies. Our pro
cedure for solving Eq. (74) numerically is discussed 
in the Appendix. 

F. Field Distributions and Conservation Laws 

Using g±(Tn) determined by using the previously 
described Gaussian quadrature to evaluate the integral 
in Eq. (78), one obtains the field distribution in the 
guide from Eqs. (49) and (57), i.e., 

Eiy, z) = H.B~(y, z) + .B~(y, z)], (105) 
where 

B!. = ~J±(Tr) cos (TrY)(ei'r~ ± ei'r(L-z», (106) 
r=1 b 

with 

J±(Tr) = ig±(Tr)(-l)'Tr{b'r + (ui - T!)! 

and 

so that 

± ei(L[-Hr + (ui - T~)!]}-l (107) 

(108) 

(109) 

Ea:(Y, z ~ 0) 

= [exp(iklZCOSO) - exp (-iklZ cos 0)] cos (k1y sin 0) 

-~ 100 

dklle-ikvlle-ialZ[I~(kll) + I~(kll)]' (111) 
41Tl -00 

The first term in Eq. (111) is the incident field, the 
second- term arises from specular reflection from the 
infinitely conducting surface at z = 0, and the last 
term is a cylindrically diffracted wave, propagating 
away from the entrance surface in the negative z 
direction. 

One should note that Eqs. (110Land (111) give 
expressions for the fields at the entrance and exit 
surfaces z = 0 and L, respectively, that are identical to 
the ones we obtain from Eqs. (105) and (106). (This 
feature was built in the original formalism.) Moreover, 
Eqs. (110) and (111) give Ea:0', 0) = E.,0', L) == 0, for 
Iyl ;;:: b, since 11(kll) is analytic and one can close the 
contours in the lower half kll plane since exp (-ik"y) 
dominates cos k"b and I cfo±(v) I [cf. Eqs. (56), (59), and 
(61)] falls off at least as Ivl-! for large v. 

1. Conservation of Flux 

The total electromagnetic flux crossing any plane 
z < 0 per unit incident flux (at the entrance surface) 
is given, following Levine and Schwinger,' by 

!F _ = -(2uI r l Imfoo dyEiY, z): EiY, z). (112) 
-00 uZ 

Using Eq. (111), one can show that 

o I . [I!(k1 sin 0) + I~(ki sin 0)] 
!F _ = cos ( ) m 4b 

_ k~ r!" dO' cos2 (0') 
87TUl Jo 

X II!(k1 sin 0') + I~(kl sin 0')12
• (113) 

Similarly, from Eq. (110), the total flux crossing any 
plane z > L per unit incident flux is 

k2 ih !F+ = _1 dO' cos2 (0') 
817Ul 0 

X II!(kl sin 8') - I!!.(kl sin ( 1)12, (114) 
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From Maxwell's equation [Eq. (1)], it follows that 

:F+ -:F_ == -1m (k~)O'llfdY SoL dz IE:I:(Y' z)12
, 

(115) 

that is, the total flux balance must be compensated by 
absorption or generation of flux (photons) in the 
dielectric insert ifIm ka > or < 0, respectively. Using 
Eqs. (106) and (107), one can also show that 

:F + - :F _ = - 1m (0'~)40'1I 

X !: ie-cr ± [I J vCT r)1 2 (Sinh Cr + y sin dr)J, 
b r=l v=-l Cr dr 

(116) 
where 

Equation (116) provides an excellent check on our 
numerical calculation and will be used as such. The 
series in Eq. (116) converges fairly rapidly since 

dr = O(r-l), IJ±12 = 0(,-':), and Cr = OCr) as r ---+ 00. 

2. Far Field Radiation Pattern 

(klP)-i n , n = 1,2, .. '. The first term gives good 
approximation for the far field limit 

E:I:(Y, z > L) r-.J -(kl/27Tp)ieiklPeli"fT«()O), (122) 

where 

fT«()o) = -t cos «()o)[I!(kl sin ()o) - I~(kl sin ()o)] 

(123) 

will be referred to as the forward scattering amplitude 
from the exit surface. Our definition of IT «()O) coincides 
with Keller's· for the case L = O. For this case, 
:F + == ImIT«()o)/2b according to Eqs. (112)-(115) in 
agreement with the well-known cross-section theorem 
of Levine and Schwinger.a-. 

Similarly, the field distribution reflected from the 
extrance surface at a point 

y = P sin (), Z = -P cos (), (124) 

far from the entrance surface, is given by 

E:I: (y, z < 0) r-.J -(kl/27Tp )teiklPeh"fR«() 

- exp (- jklz cos () cos (kly sin (), (125) 
where 

To evaluate Eq. (110), it is convenient to use fR«() = -t cos «()[I!(kl sin () + 1~(kl sin ()]. (126) 
cylindrical coordinates 

y = p sin ()O, Z = p cos ()o + L, (118) 

make use of the analyticity of 11 (k,) , and deform thek" 
contour by introducing12 

k" = -kl[sin ()o(1 + jex2
) 

- 2!ex cos 8oe-h1T(1 + tiex2i], (119) 

with - 00 < ex < 00. When -t7T < ()o < t7T, this 
contour avoids the branch cuts in ex l . In fact, 

exl = kl[cos ()o(1 + jex2
) + 2tex sin ()oe-hu(1 + tjex2)i], 

(120) 

since k~ - k; is a perfect square and Eq. (110) be
comes 

Equation (121) is valid for all p > 2b sin ()o > 0, 
since 11 (k,,) possesses exponential growth for large ex 
like exp (2k l b sin ()oex2). 

If one desires to evaluate the field near the exit 
surface (with p > 2b in ()o), a Hermite quadrature can 
be employed. On the other hand, for kIP» 1, an 
appeal can be made to Watson's lemma,13.14 allowing 
one to obtain an asymptotic expansion in powers of 

V. NUMERICAL FIELD DISTRmUTIONS 

The equations in the previous section and the pro
cedure outlined in the Appendix for solving Eq. (74) 
gives X±(t) numerically. These results allow us, in 
turn, to compute E:I:(Y, z) in the dielectric insert [Eqs. 
(105), (106), (107), and (78)]. The reflected and 
transmitted field amplitudes far from the entrance 
and exit surfaces are also found in a relatively simple 
manner using Eqs. (122), (123), (125), (126), (79), 
and (80). 

A. L = 0: Aperture 

A comparison of E:I:(Y, 0) for the aperture is made in 
Table II when 0'1 = 2i. Our results are listed under 
present work obtained by replacing Eq. (74) with an 
18 x 18 matrix as discussed in Appendix A. The 
analytic result for the field in the aperture, calculated 
by Hsu6 using the Mathieu function expansion, is 
given in the 4th and 5th columns. An approximate 
field distribution derived by Tan7 for this case is quite 
good, but the approximation introduced by Karp and 
Russek8 is rather poor near the aperture y = b for 
long wavelengths. 

When 0'1 » I, our numerical calculation for the far 
field IT«() reinforc;e Keller's estimateS of the validity 
of his approximate approach. For example, the IT'S 
calculated by both methods disagree in the third 
significant figure for 0'1 = 107T. 
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TABLE II. Comparison of Eiy, 0) fot L = 0 [aperture] with other results w~en at = 2t. Equation (74) replaced by 18 X 18 
matrix. [Re and 1m Ez listed as a pair below.] 

ylb Present work Hsu (Mathieu)6 Tan's Eq. 197 Karp and Russek8 

0 1.5222 -0.9367 1.522 -0.938 1.524 -0.947 1.825 0.861 
0.1736 1.4886 -0.9196 1.489 -0.921 1.490 -0.929 1.791 -0.863 
0.3417 1.3918 -0.8696 1.392 -0.871 1.392 -0.878 1.691 -0.870 
0.5 1.2425 -0.7901 1.243 -0.790 1.242 -0.798 1.533 -0.890 
0.6431 1.0562 -0.6866 1.057 ~0.688 1.054 -0.693 1.319 -0.940 
0.7667 0.8486 -0.5652 0.850 -0.566 0.845 -0.569 1.045 -1.048 
0.8667 0.6334 -0.4318 0.635 -0.433 0.627 -0.433 0.675 -1.282 
0.9028 0.5374 -0.3697 
0.9847 0.2107 -0.1483 0.209 -0.146 0.199 -0.136 -1.490 -3.680 

B. L > 0: Vacuum Guide 

When 0"1 = 0"3 and L > 0, one has an extenqed slit. 
For purposes of illustration, we tabulate IE",(y,0)12 

for 0"1 = a3 ' = 1 07T, with b = SA, A being the wave
length, for L = 0, 0.09327b, and lOb in ~able. ~II. 
Equation (74) is replaced by a 30 x 30 matnx, g~v~ng 
the results shown in the second column. The remammg 
three cases were obtained by replacing Eq. (74) with 
an 18 x 18 matrix. A comparison of the 2nd and 
3rd columns shows a difference appearing in the 4th 
decimal place. The last two columns indicate that 
1 E",(y , 0)12 is nearly independent of L for the cases 
under consideration. 

c. L > 0: Dielectric Insert 

Unlike the vacuum guide, a guide with a dielectric 
insert can be made to exhibit a variety of phenomena 
depending upon the values of k3b = 0"3 as well as 0"1 

and L. In Fig. 3, IE"" (y, Z)12 is plotted for z = 0 and 
L as a function of ylb when 0"1 = 7T, 0"3 = 27T + O.OOli, 
and L = 20b, with b = tAvac' The angle ~f inciden<;,e 
for the symmetrized incoming plane wave IS OJ = 31 . 
When the vacuum wavelength is halved, one notes a 
striking increase and localization of IE",(y, L)12 near 

TABLE III. Comparison of 1 Ez(Y, 0)1 2 for at = as = lOrr, b = 
5A, for L = 0 (aperture), 0.09327b. and lOb. 

ylb L = 0& L=O L = 0.09327b L = lOb 

0 0.7499 0.7502 0.7488 0.7338 
0.1 1.3269 1.3269 1.3568 1.3519 
0.2 0.1464 0.7467 0.7454 0.7292 
0.3 1.3392 1.3392 1.3702 1.3643 
0.4 0.7344 0.7348 0.7340 0.7138 
0.5 1.3699 1.3699 1.4035 1.4022 
0.6 0.7078 0.7083 0.7083 0.6875 
0.7 1.4425 1.4425 1.4824 1.4697 
0.8 0.6406 0.6413 0.6398 0.6205 
0.9 1.7195 1.7187 1.7985 1.8139 

a Gaussian quadrature of order M = 10, i.e., Eq. (74) replaced by 30 X 30 
matrix. M = 6 for the other three cases. 

y = 0.8b as shown in Fig. 4. The presence of two 
nodes corresponds to the fact that the propagating 
eigenfunctions exp (i~,.z) ± exp [i~r(L - z)J in Eq. 
(106) are strongly damped for 0 < z < L when 
r ~ 3. 

The far field intensities for the above-mentioned 
cases are given in terms of IRI2 = 12fR(O)/7TW [Eqs. 
(125) and (126)] and 1 TI2 = 12fT(O)/7TbI2 [Eqs. (122) 
and (123»). If one considers the case of a negatively 
absorbing media with 0"3 = 47T - O.Oli, then a striking 
increase in both IRI2 and ITI2 are found, as Fig. 5 
indicates. The peaks in IRI2 and I TI2 near 0 = 39° 
corresponds to a slightly shifted maximum expected 
on the basis of geometric optics since OJ = 30° here. 
The maximum in the transmitted field at 0 = 0 is 
anomalous from a geometric optics point of view and 
results from two overlapping sidelobes. A very small 
value of IRI2 obtains near 0 = go, When the wave
length is again halved, more nodes result in IRI2 and 
I T12, as Fig. 6 indicates. 

1.0 ~-----------------, 

N 

>. 
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0.6 

LLJ 0.4 

0.2 

o 0.2 

CTI =." 

CT3=2 ... + 0.001 i 

81= 31· 

L = 20b 

y/b 

--
1.0 

FIG. 3. Electric field intensity IEz(y, z>I", for z = O~ L as a function 
of ylb for parameters indicated on figure. Symmetrized-plane-wave 
input, with angle of incidence given by (h. 
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Z=L 

y/b 

FIG.4. Electric field intensity JEz(y, z)J', for z = 0, L as a function 
of ylb for parameters indicated on figure. Symmetrized-plane-wave 
input with angle of incidence given by (h. 

Figures 7 and 8 depict the field distributions for a 
case where the denominator of Eq. (107) is small for 
r = 1, i.e., , 

b'l + (O'~ - TDi - ei~lL[(O'~ - TDi - b'l] '"'-' O. 

(127) 

If Eq. (127) above is identically zero, then g_(Tl) == 0 
in Eq. (107) and one has an exact resonant excitation. 
As Fig. 8 shows, the transmitted-beam spectral in
tensity for a material characterized by a homogeneous 
negative absorbtion, 1m 0'3 = -0.1, is only 2 % of 
that corresponding to a nonabsorbing media. This 
situation is in marked contrast to that depicted in Fig. 
5 where an enhancement in J TJ2 was found for 1m 0'3 = 
-0.01. 

VI. DISCUSSION AND CONCLUSIONS 

A theoretical formalism has been developed in this 
paper for solving a class of electromagnetic diffraction 
problems involving heterogeneous planar dielectric 
structures shown in Figs. 1 and 2. From a numerical 
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FIG. 5. Spectral-reflection- and transmission-intensity coeffi
cients. IAI" = I2fA(O)I1Tbl', where A = R or T for reflection or 
transmission; cf. Eqs. (125) and (126) or (122) and (123) of text. 
Symmetrized-plane-wave input with angle of incidence given by (h. 
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FIG. 6. Spectral-reflect ion- and transmission-intensity coeffi
cients. IAI' = 12jA(O)I1Tbl', where A = R or T for reflection or 
transmission; cf. Eqs. (125) and (126) or (122) and (123) of text. 
Symmetrized-plane-wave input with angle of incidence given by e J • 
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FIG.7. Electric field intensity IEz(Y, zW, for z = 0, L as a function 
of ylb for parameters indicated on figure. Symmetrized-plane-wave 
input with angle of incidence given by fh. 
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FIG. 8. Spectral-reflection-and transmission-intensity coefficients. 

viewpoint, it was possible to calculate field distri
butions in a metal-dielectric guide assembly covering 
the Rayleigh to geometric optics limit when the ex
citing electric field was polarized in a transverse 
fashion [£",0', z)]. Typical numerical results were 
presented for several geometries. 

It appears possible to extend the approach used here 
to treat a variety of metal-dielectric guide problems. 
In particular, when ka corresponds to a layered rather 
than a homogeneous medium as shown in Fig. 2, one 
may find radiating eigenmodes, provided that a portion 
of the dielectric media is optically pumped to provide 
a negatively absorbing media. At this writing, it is 
unclear whether a negatively absorbing homogeneous 
ka region will give such eigenmodes. These points are 
currently being investigated. 
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APPENDIX: NUMERICAL SOLUTION FOR x±(t) 

The results of the analysis in Sec. IV establish a 
procedure to follow in solving Eq. (74). For numerical 
convenience, one can divide -1 ~ t < 00 into three 
parts: 

t = H,u - 1), -1 ~ t ~ 0, 

= lUa(1 + ,u), 0 ~ t ~ Ua , 

= 2Ua(1 - ,u)-l, Ua ~ t < 00, (AI) 
with 

(A2) 

The above division of the t interval allows us to use a 
single Gaussian quadrature for each of three regions. 
Hence, Eq. (74) is approximated by a set of algebraic 
equations 

Xi = Si + L wj>(qj> + r!)Xj> , (A3) 
j> 

where Xi = X±(ti), etc. The wj> are standard Gaussian 
weight factors times (dt/d,u)I'P and ti are defined by 
Eq. (AI) in terms of the ,ui' the zeros of the Mth-order 
Legendre polynomial. If 

Xi= OJi'YJi' 

OJ i = (wiOi, 

(A4) 

(AS) 

(A6) 

(A7) 

IAI" = 12/A(9)hrbl', where A = R orT for reflection or trans- and 
mission; cf. Eqs. (125) and (126) or (122) and (123) of text. Sym
metrized-plane-wave input with angle of incidence given by 8I • 

(A8) 
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then. in matrix notation, 3M-1 

~o = I + 2 dr, (AI9) 
r=1 

(A9) 
D1 = _GF , 

where Y) and f are column vectors whose 3M com
p'onents are 'YJ; and!;, respectively. The elements of the and 
GS and GF matrices are listed in Eq. (A6) and (A7). 

Dr+! = GFDr - drGF, 

(A20) 

(A21) 

(A22) 
Equation (104) guarantees the existence of 

:R,' = (I - G'r1G" (AlO) 

so that 
Y) = f + :R.'f + (iFY), (All) 

where 
(iF = GF + :R.'GF . (AI2) 

Since the norm of G8 is less than 0.5, one can construct 

:R, S = lim :R.:, 
r .... oo 

where 

Starting with 
:R.~ = GS + [G']2, 

one readily sees that 
2' 

:R.; == 2[G"r 
v=l 

(AB) 

(AI4) 

(AI5) 

(AI6) 

which is the same as the power series expansion of Eq. 
(AlO) in the limit r -+ 00. The error in generating 
an approximation to :R.' by :R.~ as measured by its 
norm is of the order of or less than (16)-16. Obviously, 
in less than 6 cycles, one has an excellent approxima
tion to :R.8 with trivial rounded off errors. To achieve 
this, one must, of course, replace [G8]2' by its square 
[GS]2'+1 at each step. 

Our final numerical step is to solve Eq. (All) by use 
of the Fredholm construction15 which is equivalent to 
the so-called Frame's method16 of matrix inversion. 
One finds that 

(AI7) 

where 
3M-l 

D = 2 Dr' (AI8) 
r=l 

In Eq. (A22), Tr means trace or diagonal sum. 
Numerous machine calculations using the CDC 

6600 have been carried out for 0'1 = k 1b ranging from 
0.1 to 107T for L = 0, 0.0935b, b, lOb, and 20b. In all 
cases investigated to date, for M = 6 and 10, i.e., 
Gaussian quadratures in each of the three regions of 
order 6 and 10, we find that Idsl < 10-9 with similar 
bounds on the elements of Ds. This means that the 
Fredholm construction converges extremely rapidly, 
living up to its theoretical expectations. 

In our machine calculations, we took the solution 
for Y) of Eq. (All) obtained by using Eq. (A17) and 
substituted it into the right side of Eq. (A9). With an 
8-place floating-point output, the equality in Eq. (A9) 
held exactly, attesting to the accuracy of our :R,S and 
(I - GF)-l construction and, of course, the high 
single precision accuracy of the CDC 6600. 
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Application is made to space groups of a theorem by Mackey on the symmetrized and antisymmetrized 
squares of induced representations. A new and constructive proof is given of Mackey's theorem which 
enables the representations appearing in the decomposition of the symmetrized squares to be easily 
identified. The method is used to extend Birman's tables for T~, the zinc-blende structure, to include 
products involving its double-valued representations 

1. INTRODUCTION 

This paper is a development of work by one of the 
authors,! and has similar aims in mind: to make more 
accessible to theoretical physicists the results of 
Mackey2.3 on induced representations, and to show 
how to adapt his results so that they can be developed 
constructively in application to the theory of the 
crystallographic space groups. 

The previous paper,! referred to hereafter as I, 
covered the problem of the Clebsch-Gordan decom
position of the Kronecker products of irreducible 
representations of space groups, and in so doing made 
considerable use of results in the first of the above 
papers by Mackey.2 The present paper is devoted 
mainly to the problem of separating the decomposition 
of the Kronecker square of an irreducible representa
tion of a space group into its symmetrized and anti
symmetrized parts, and the theorem for solving this, 
for which we give a new and simplified proof, origi
nated from the second of the above papers by Mackey.3 

As in I, the style of presentation and mode of proof is 
organized so as to be easily understood by theoretical 
physicists who have attended nothing more advanced 
than an introductory course on the representation 
theory of finite groups. However, it is advisable for the 
reader who wishes to follow in detail the mathematics 
of Secs. 3 and 4 to assimilate first of all the results 
contained in I. Someone who is interested only in the 
tabulations for zinc-blende and not in how they have 
been obtained mathematically will wish to turn imme
diately to Sec. 5. In Sec. 2, we show briefly how the 
physical problem we are treating leads inevitably to the 
mathematical problems described above, and we give 
a short review of the background work which it is 
necessary to know before tackling the main problem. 
The following section contains a new and simplified 
proof of Mackey's theorem on the symmetrized and 
antisymmetrized squares of induced representations. 

This part of the work is framed in terms of abstract 
finite groups, and it is hoped thereby to provide 
useful results for physicists working in areas other 
than in the dynamics of crystals. The advantage of the 
proof we present in Sec. 3 is its constructive nature: 
in particular, a precise formula is obtained for the 
matrix P of a certain unitary transformation and, 
whereas the main theorem rests for its validity only on 
the existence of this transformation, any calculation 
using the theorem requires its precise form, which we 
obtain. The application to the crystallographic space 
groups is covered in Sec. 4. Finally, after giving an 
example, we tabulate in Sec. 5 the results for the zinc
blende structure. For completeness we include ex
pansions for the Kronecker products of distinct 
irreducible representations as well as those for the 
symmetrized squares. We include previous results 
obtained by Birman4.5 (with whose results we agree, 
except for some minor discrepancies involving an 
ambiguity over the labeling of the representations 
associated with the point M, and we extend his results 
to cover products involving the double-valued repre
sentations. Our reason for including previous results 
is that in making a complete tabulation we can present 
the results in a highly abbreviated form which would 
not be open to us in a partial tabulation. It should also 
be mentioned that Karavaev6 has obtained certain 
of our results; but his paper is untranslated and appears 
to us to contain too many misprints to be safe to use as 
an accurate reference. 

The method used by Birman4•5 is very different in 
approach from the one we employ, being essentially 
a full-group rather than a little-group procedure. 
The two methods, since both are correct, lead to 
identical results, and it seems to be very much a matter 
of taste which method to use as far as space groups 
are concerned. However, induced representations now 
appear in a variety of physical contexts, and it is 

1536 
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because of this possible wide range of application that 
we are prompted to present this alternative method of 
solution. 

2. BACKGROUND THEORY 

Let G be a finite group and ~ a DR (unitary repre
sentation) of G with basis ("PI = ("PH "P2 • ..• ,"PII, so 
that for all g E G, 

I 

g"Pi = L "Pi~(g)ii' 
1=1 

(2.1) 

Denoting the carrier space of ~ by V, we can consider 
the tensor product of V with itself, V ® V, to be the 
vector space spanned by linear combinations of 
ordered pairs of functions ("Pi' "Pi)' i = 1 tof,j = 1 
to f The space V ® V is of dimension f2 and is invariant 
under the outer direct-product group G ® G. The diag
onal subgroup of G ® G, which we call the inner direct
product G ~ G, IS isomorphic with G under the natural 
mapping (g, g) <H- g, and by virtue of this we may 
regard V ® V as being invariant under G itself; and 
the DR of G so defined is called the Kronecker 
square of ~, which we denote by (~ ® ~).With respect 
to the basis ("Pi' "Pi)' the explicit form for (~ ® ~) is 
given by the Kronecker square of the matrix ~, 

(~® ~)(g)kl.ii = ~(g)ki~(g)lj' (2.2) 

The character of (~ ® ~) in terms of the character of 
~ is given by 

(2.3) 

When f > 1, the UR (~ ® ~) is reducible over G, 
but a partial reduction can be achieved immediately 
by separating V ® V into its symmetric and anti
symmetric parts. These subspaces of V ® V, which we 
denote by [V ® V] and {V ® V} respectively, are de
fined as follows: [V ® V] is the vector space of 
dimension tf(f + 1) spanned by linear combinations 
of the symmetrized pairs ("Pi' "Pi) + ("Pi' "Pi), and 
{V ® V} is the vector space of dimension U(f - 1) 
spanned by linear combinations of the antisym
metrized pairs ("Pi' "Pi) - ("Pi' "Pi)' These spaces are 
invariant under G, and the DR's defined on these 
spaces we denote by [~®~] and {~ ® ~}, respec
tively. Expressions analogous to Eqs. (2.2) and (2.3) 
for the UR [~ @ ~] are 

[~ @ ~](g)kl.ij = !(~(g)kA(g)l.i + ~(g)kj~(g)li) (2.4) 

and 
X[.MM)(g) = !(X!(g) + XA(g2». (2.5) 

Expressions for {~@~} are obtained by replacing the 
plus signs on the right of Eqs. (2.4) and (2.5) oy minus 
signs, as, of course, must be the case since 

(~ ® A) == [A ® A] + {A ® A}. (2.6) 

For proofs of the assertions so far made in this section, 
we refer to Hamermesh,1 Chap. 5. The UR's [A ® A] 
and {A ®~} are commonly referred to as the sym
metrized and antisymmetrized squares of ~. 

Now let K be a subgroup of G and D a UR of K of 
dimension d, with basis «(jbl = «(jbl' (jb2"", (jbdl. The 
carrier space of D we denote by VI' We are using the 
same notation as in I, and reproduce the following 
equations, definitions, and theorems from that paper 
which are relevant to the present discussion. 

The left coset decomposition of G relative to K is 
written as 

(2.7) 

Here we take PI to be the identity, and the sum over 
(J runs from I to IGI/IKI, where IGI is the order G and 
IKI is the order of K. 

The vector space spanned by the linear combination 
of functions Pa(jbi' (J = I to IGIlIKI, i = 1 to d, is 
invariant under G, and defines the induced repre
sentation of D in G. We denote this induced repre· 
sentation by ~ = DiG. Its precise matrix form is 
given by Eq. (2.4) of 1. For fixed (J, we denote the 
vector space spanned by the d functions P"o/i' i = 1 
to d, by V,,; the carrier space V of ~ of dimension 
f = d IGI/IK/ may be written symbolically as 

V = 2 Va' 
" 

The mathematical problem considered in this paper 
is the simplification of the expressions for [~ ® ~] and 
{~®~} in the case when ~ = DiG. The problem 
of the simplification of (~ ® ~) was dealt with in I, 
and the results are now given in summary form. 

The double coset decomposition of G relative to K 
is written as 

G = LKdaK. (2.8) 

" 
Here we take d1 to be the identity, and in the complex 
Kd"K we count any element that appears only once. 
We define the subgroups K" = d,.Kd-;l and L" = 
K n K". We write 

K = L q"yL,. . (2.9) 
y 

We also define the DR D,. of K,. by the equation 

D,ld,.kd;1) = D(k), for all k E K, (2.10) 

and we note the important fact that this is the DR ofK" 
determined by the vector space V". This follows since 

(d"kd;l)(jb"i = d"k(jbi 
d 

= d"L (jbjD(k);i 
1=1 

d 

= L (jb"1D(k)u' (2.11) 
;=1 
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Since D,. is defined on K,. and D on K, it is clear that 
the Kronecker product (D,. ® D) is defined on La. 
Bearing this in mind, we can now state one of the 
main results of I : 

(D i G) ® (D i G) == ~ «D", ® D) ! L",) i G. (2.12) 
'" 

In Eq. (2.12) the downward arrow denotes the 
restriction of (D,. ® D) to elements of La, and the 
sum over ex runs over the same suffices as the sum 
in Eq. (2.8). 

We turn briefly now to the physical application of 
these ideas to the study of quantum-mechanical 
selection rules. Suppose that the Schrodinger group 
of the system under consideration is a group G and 
that its UIR's (unitary irreducible representations) are 
denoted by /J,.i. Let 1p; denote a wavefunction belonging 
to row r of the UIR /J,. i, and suppose that W is a self
adjoint operator belonging to the UR /J,.. The transition 
between an initial state ~ and a final state 1p; under 
the operation W is governed by the absolute value of 
the matrix element 

(2.13) 

The transition is said to be forbidden by symmetry if 
the triple Kronecker product (/J,.i· ® /J,.k ® /J..) does not 
contain the identity representation of G, for then 
W;~ vanishes identically. Here the asterisk denotes 
complex conjugation. For proof of this result see 
Hamermesh,7 Chap. 6. 

If the group G is augmented by the operation 0 of 
time reversal as a symmetry element of the system, 
it is sometimes possible to sharpen the above criterion. 
This happens when the final state is related to the 
initial state by time reversal, and the effect is that 
additional selection rules may result. The original 
papers8•9 demonstrating this were on the subject of 
the Jahn-Teller effect, but the following piece of 
theory due to LaxlO seems to be all that is really 
necessary. We consider the matrix element 

W;t = (01p;, W1p~) 
. 2' = (OW1p;, 0 1p;), 

(2.14) 

(2.15) 

since () is antiunitary. Now ()2 = W = ± 1, and making 
the not very restrictive assumption on W that 
(0 WO-l) t = fJ w, fJ = ± 1, where the dagger denotes 
the adjoint operator, we find that Eq. (2.15) reduces to 

(2.16) 

Since both 1p~ and 4>: = «()1p;) * belong to /J,. i, we 
conclude from Eq. (2.16) that the existence of a selec
tion rule depends in this case on the behavior of the 

integral 

Jc 4>: W 1p~ ± 4>: W 1p;) dr 

under the operations of G. The invariance under G of 
the subspaces spanned by the functions (4);1p: ± 4>:1p;), 
taken together with the usual theory on selection 
rules, shows that in this case the transition is forbidden 
if the product ([/J,.i ® /J,.i] ® /J,.), in the case of the plus 
sign in Eq. (2.16), or if the product ({/J,.i ® /J,.i} ® !J,.), 
in the case of the minus sign, does not contain the 
identity representation of G. An equivalent criterion is 
whether the symmetrized (plus sign) or antisym
metrized (minus sign) square of /J,.i contains any of the 
irreducible components of /J,. *. 

Another physical application which requires for its 
analysis the symmetrized powers of a given UR is the 
Landau and Lifshitz theory of second-order phase 
transitions-see, for example, Lyubarskii,ll Chap. 
VII. 

3. SYMMETRIZED SQUARES OF INDUCED 
REPRESENTATIONS 

The task ahead is to rearrange or to modify the 
right-hand side of Eq. (2.12) so that one part can be 
identified with the symmetrized square [(D i G) ® 
(D i G)] and the other part with the antisymmetrized 
square {(D i G) ® (D i G)}. In order to do this, we 
need to study the underlying carrier spaces of the 
various UR's under consideration. 

Since D has as basis the set of functions 4>i' i = 1 to 
d, the induced UR (D i G) has as basis the set Pa4>i' 
i = I to d, (J = 1 to IGI/IKI, where the Pa are the coset 
representatives in Eq. (2.7). From this coset decom
position and that of Eq. (2.9), we also have the result 
that, for fixed ex, the basis for [(D,. ® D) i La] i G is 
the set of functions Paqay(4)ai' 4>;), i = I to d, j = I to 
d, y = I to IKIIILal, (J = I to IGIIIKI. By virtue of the 
theorem embodied by Eq. (2.12), we know that the 
vector space Q a spanned by these d2 IGlllLal functions 
is invariant under G [8J G. We may write symbolically 

Q", = 1 PaQaY(4)a;, 4>j), (3.1) 
a,y,i,j 

where the right-hand side means the set of all linear 
combinations of the functions PaQa/4>ai' 4>j)' The 
space Qa is independent of the particular double coset 
representative chosen, in the sense that, if instead of 
da we use dp = kadakb ,ka , kb E K , then Qp coincides 
with 0,.. This fact was tacitly assumed in I, but is 
important, since we must be sure before proceeding 
that decompositions of the sort that appear in Eq. 
(2.12) and later again in this section are, term by term, 
unique up to equivalence. We prove this by showing 
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that the basis functions of Oa are obtained by a non
singular transformation from those of Op . 

Theorem 1: If KdaK = KdpK, then Oa = Op. 

Proo!, 

Lp = K n Kp = K n dpKdj/ 

= K n kadakbKkl/d;lk;;l = K n kaKak;;l 

and, hence, 

Thus, if 

then we also have 

K = Kk;l = 1 qayk;lLp , 
y 

and so, f9r each y we may choose, qpy = qal;;l and 

K = 1qpyLp. 
y 

Then, from Eq. (3.1) and the expressions just obtained, 
we have 

Op = 1 Paqp/ c/>/li' c/>i) 
a,y,":,; 

= 1 Paqayk;;\dPc/>i' c/>j) 
a,y,i,j 

= 1 Paqa/dakbc/>i' k;;lc/>i) 
a,,/,i,; 

= 1 Paqa/ c/>ak' c/>I) = Oa· (3.2) 
a,y,k,l 

The vector space n = V ® V, which is the carrier 
space for the UR (D i G) ® (D 1 G) is, of course, 
already proved in I to be the direct sum 1a Oa' where 
the sum over oc is taken over the distinct double cosets 
of Eq. (2.8). Together with Theorem 1 this implies that 
no two vector spaces Oa and Op coincide unless da and 
dp belong to the same double coset. 

For reasons which will soon emerge, given a partic
ular double coset representative da , we find it useful 
to define c/>iii = d;lc/>i and to write 

Lii = K n Kii = K n J;l Kda • 

Note that Lii = d;lL"d" and that, from Eqs. (2.7) and 
(2.9), we may write 

G = Gd" = 1 Paq"yL"d" = 1 Paq"ydaLii • a,y a,y 

Hence, as (J and y run over all possible values, the set 
P aq"yd" forms a complete set of coset representatives of 
Lii in G. Thus, if we define the vector space <Pii as the 
carrier space of «D ® Dii) ! LJ i G, we find 

<Pii = 1 Paqayda(c/>i, c/>iij) 
a,y,i,j 

(3.3) 

Hence, the vector spaces <Pii and Oa coincide. Similarly, 
<Pa and 0ii coincide. Now the character of 

is clearly the same as that of «Da ® D) ! La) i G, and 
since the first of these is defined on <P" = 0ii and the 
second is defined on Oa, it follows that the UR's 
defined on Oa and 0ii are equivalent, There are now 
two cases that can occur: either Oa and nii coincide 
(and trivially define equivalent UR's by some unitary 
transformation of the space onto itself), or Oa and 
0ii are distinct (but, nevertheless, define equivalent 
UR's). Now, from what has gone previously we know 
that Oa and 0ii coincide if and only if Kd"K = Kd;lK, 
so that which of the two cases occurs depends critically 
upon whether the double coset is self-inverse or not 
[for, of course, (Kd"K)-l = Kd;lK, since K = K-l)]. 
We have proved the following theorem. 

Theorem 2: Oa and 0ii coincide if and only if oc is a 
self-inverse double coset. If oc is not self-inverse, 
Oa and 0ii are distinct, but define equivalent repre
sentations in the expansion (2.12). 

Consider first the case in which 0" and 0ii are 
distinct. Now, 

0" = 1 Paqa/ c/>,,;. c/>i) 

and 
(1,y,i,j 

Oii = <P a = 1 Paqa/ c/>i' c/>"i)' 
a,,/,1,; 

These are distinct spaces and from Theorem (3.2) 
define equivalent UR's. Clearly, it is possible to form 
the direct sum (Oa + 0ii) and to decompose this direct 
sum into an alternative one (ot + 0;), in which 
0;= are given by 

0;: = 1 Paqay« c/>ai' c/>i) ± (c/>i' c/>ai», (3.4) 
a,,,!,i,; 

with upper and lower signs corresponding. From the 
form of the right-hand side of Eq. (3.4), it is also clear 
that ot is a subspace of 0+ and 0; is a subspace of 
0-, where n+ and 0- are the symmetrized and anti
symmetrized subs paces of 0 itself. Moreover, the 
UR's on ot, 0;, Oa' and 0ii are all equivalent, the 
first two being derived from the last two by the simple 
equivalence transformation expressed by Eq. (3.4). 
We have proved the next theorem. 

Theorem 3: If Oa and 0ii are distinct, that is, if da 
and d;l belong to different double cosets, then 
[(D i G) (2) (D i G)] and {(D i G) ® (D i G)} will 
both contain a representation equivalent to 

«Da ® D) ! La) i G. 
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Next, consider the case 0" = 0iX' There are two 
possibilities which require separate treatment, since 
the decomposition depends upon whether the carrier 
spaces of Da and D are identical or distinct. These 
spaces are identical if and only if d" E K, in which case 
da can be chosen to be the identity d1 • Then, K1 = K 
and L1 = K (J K1 = K. The term in Eq. (2.12) now 
under consideration is just (D @ D) i G and 

0 1 = 2. Pa( CPi' CPt)· 
a,i,; 

It is immediately clear that 0 1 decomposes into the 
direct sum (0: + 0;), where 

12t = 2. pi( CPi' cp,) ± (cp" CPi» , (3.5) 
a.i,; 

and that 0: is'a subspace of 12+ and 12; is a subspace 
of 12-. From Eq. (3.5), we see that 0: defines the 
UR [D @ D] i G and O~ defines the UR {D @ D} i 
G, the dimensions of these UR's being td(d + I)h 
and td(d - I)h, respectively, where h = ·IGI/IKI. The 
difference in dimension between these two UR's is, 
therefore, equal to dh. Since 12+ and 12- are of dimen
sion ldh(dh + 1) and tdh(dh - 1), respectively, and 
therefore have a difference of dimension also equal to 
dh, it follows that this difference is entirely accounted 
for by the decomposition of 121 , Taken with Theorem 
3, this makes it reasonable to suppose that any other 
space Oa for which Oa = 0iX will somehow yield spaces 
of equal dimensionality in the final decomposition of 
12. We now embark upon some fairly elaborate 
analysis to show how this, in fact, occurs. 

We consider, therefore, the case in which 

KdaK = Kd;lK ¢ K. 

There must exist elements ka' kb' kc' and kd such 
that kad"kb = kcd;lkd; that is, dakbk;;l = k;lkcd;l. 
Thus, daK (J Kd;l is nonempty. Let a be any element 
of this intersection; then, a is not in K, and we may 
write a = dak = k:d;l, where k, k: E K. Now 

a2 = dakk:d;l = kk E daKd;l (J K = La 

and, furthermore, aKa-1 = dakKk-1d;1 = Ka, and 

aKaa-1 = kd;lKadak-1 = K. 

Thus, we may construct the group 

(3.6) 

and then La is an invariant subgroup of Ma of index 2. 
Starting from the UR (Da @ D) on La with basis 
<CPa 1 <cfol [i.e., the set of functions (CPai' cfo,)], we can 
construct the induced representation C .. = CD" @ D) t 
Ma with basis «cp .. 1 <cfol, a <CPal <cpl). The analysis follows 
Sec. 2 of I and the result is that, if / E La, then the 

induced representation Ca is given In block-matrix 
form by the expressions 

C,,(l) 

= (D(d;11d~ @ D(I) D(d;la-11ada~ @ D(a-11a») 

(3.7) 
and 

(3.8) 

For convenience, we write 

(3.9) 
and 

so that 
(3.10) 

C (I) = (Na(l) 0) (3.11) 
a 0 aNa(l) 

and 

(3.12) 

A short analysis shows that, if we can find a unitary 
matrix P such that 

(3.13) 
and 

(3.14) 

for all I E La' then aNa and Na are equivalent; and with 
respect to the transformed basis «CPa 1 <cpl, a <CPal <cpl P-l) , 
the UR Ca becomes transformed into the equivalent 
UR C~ given by 

C'(l) = (Na(l) 0) (3.15) 
.. 0 Na(l) 

and 

C~(a) = (~ ~). (3.16) 

A matrix P which satisfies Eqs. (3.13) and (3.14) can, 
in fact, be found and is given by 

p ts .uv = D(k:)8UD(k)tv = D(k:) @ D(k)8t,U'IJ' (3.17) 

For example, with this choice of P, we can soon check 
that Eq. (3.13) holds: 

P!b,ca = 2. Pab",P".Cd 
'.' = 2. D(k:)b.D(k)atD(k:),cD(k)'d 

'.' = D(kk)bdD(kk:)ac 

= D(a2)bdD(d;la 2da)ac 

= D(d;la2da) @ D(a2)ab.cd 

= Nia2)ab,cd' 
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A similar straightforward calculation soon verifies Eq. 
(3.14)in the form (paN,,(l»ab.ca = (Na(l)P)ab.ca, and we 
omit the details. 

The motivation for the above analysis is that the 
basis for C~ now takes on a particularly simple form. 
To see this, let us compute the (kl) element of the 
second member of the basis 

(a <1>al <1>1 p-l)kZ = ~ a( 1>ai' 1>i)Pij\1 
i,i 

i,i 

= ~ (1)., 1>lJt)D(k)siD(k)tiPij\z 
i,j,t,B 

= L (1)s, 1>lJt)Pts.iiP0\1 
i,i, f,S 

(3.18) 
Also, 

«1>al (1)I)kl = (1)ak' 1>z). (3.19) 

Hence, combining Eqs. (3.18) and (3.19), we obtain 

«1>al <1>1 ± a <1>al <1>1 P-1h, = (1)ak' 1>,) ± (1)1' 1>ak)' 
(3.20) 

Using as a new basis the two functions on the left
hand side of Eq. (3.20), we find that the UR C~ 
becomes transformed into the equivalent UR C; given 
by 

elf(l) = (Nil) 0) 
a 0 Na(l) 

(3.21) 

and 

C"=( 0: 0 ~p). (3.22) 

Thus, the symmetrized basis (1)ak' 1>1) + (1)1' 1>ak) 
yields a UR N: of Ma given by 

N~(l) = Na(l), N~(a) = P, (3.23) 

and the antisymmetrized basis (1)ak' 1>1) - (1)1' 1>ak) 
yields a UR N; of Ma given by 

N;(l) = Na(l), N;(a) = -P. (3.24) 

Furthermore, when the UR's N: and N; are induced 
from M" into G, they are clearly defined on the spaces 
D.: and D.;, where D.a = (D.: + D.;) is a direct-sum 
decomposition of Oa and where 0: is a subspace of 
0+ and 0; is a subspace of 0-. Thus, [(D i G) ® 

(D i G)] contains N: i G and {(D i G) ® (D i G)} 
contains N; i G. 

Also, from Eqs. (3.9), (3.17), (3.23), and (3.24), the 
characters of N: and N; are easily calculated and are, 
for all / E La , 

XNo:±(l) = Xn(d;11do:)Xn(l), (3.25) 

XN,,±(al) = ±Xn(alal), (3.26) 

where Xn is the character of D. 

For example, 

XNa+(al) = ~ N~(al)ii,ii 
i ,j 

= ~ Pii.kINilhl.,i 
i,j,k,l 

= ~ (D(k) ® D(k»ji,kl(D(d;11d,,) ® D(l»kl,,-j 
i,i,k,l 

i,j 

= L D(kd;11da)jiD(kl)ij 
i,i 

= Xn(alal). 

We have now proved the following theorems. 

Theorem 4: Corresponding to Oa = D.a = 0 1 , the 
IX = I term in the expansion (2.12), (D ® D) i G, de
composes so that [D ® D] i G appears in the reduc
tion of [(D i G) ® (D i G)] and {D ® D} i G appears 
in the reduction of {(D i G) ® (D i G)}. 

Theorem 5: Corresponding to Oa = Oa ~ 0 1 , the 
IX term in the expansion (2.12), which we write in the 
form N" i G, decomposes so that Nt i G appears in 
the reduction of [(D i G) ® (D i G)] and N; i G 
appears in the reduction of {(D i G) ® (D i G)}. Here 
N~ are defined by Eqs. (3.23) and (3.24). 

Theorems 3-5 are now combined, and presented 
in full detail as 

Theorem 6: Let D be a representation of the sub
group K of the finite group G and suppose that 

is the double coset decomposition of G relative to 
K. Let La = K n daKd;l and denote by Nil) the 
representation of La defined by D(d;l/ dOE) ® D(l), for 
all / EO La. Let A be the set of all self-inverse double 
cosets KdaK = Kd;lK except K itself. For each IX E A, 
daK n Kd;1 is nonempty. Let a be anyone of its 
members, say a = dak = kd;l (k, k E K), and let 
M" be the subgroup generated by La and a. Then, 
La is an invariant subgroup of Ma of index 2. Let P be 
the matrix given by Pab .cd = D(k)bcD(k)aa. Then, there 
exist extensions N: and N; of N" into the group M" , 
such that N:(a) = P and N;(a) = -Po Let B be the 
set of all distinct sets of the form KdpK U Kdi1K, 
where KdpK is not a self-inverse double coset. Then, 
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finally, we have 

[(D j G) ® (D j G)] 

= [D®D]jG+INtjG+ LNpjG 
aeA PEB 

and 

{(D j G) ® (D j G)} 

= {D® D} jG + IN;jG +_LNdG. 
aEA peR 

A closing remark that ought to be made about 
Theorem 6 is that its form as it appears here is not 
quite as general as that established by Mackey, 3 but 
is sufficiently general for all computational needs. 
Finally, since the expansions derived are in the form 
of sums of induced representations, it follows that 
repeated application of the main theorem in I allows 
computation of triple products of the form 

[(D j G) ® (D j G)] ® (C j G) 

and {(DjG)®(DjG)}®(CjG), where C is a 
representation of H, another subgroup of K. This is 
important in view of the criterion established at the 
end of Sec. 2 for the existence of extra selection rules. 

4. APPLICATION TO SPACE GROUPS 

In the case of the crystallographic space groups, G 
is to be identified with the space group, K with the little 
group Gk of a wave vector k from the Brillouin zone, 
D with a small UR (or allowed UR) D: of Gk, and 
both D~ and ~: = D: j G are irreducible. Indeed, 
every UIR of a space group arises by inducing a small 
UR of some little group: see Sec. 3 of I for a review of 
the representation theory of space groups. 

The calculation to be performed is the evaluation of 
the coefficients C::, [C::], and {C::} in the expansions: 

(D: j G) ® (D: j G) == I C::(D: j G), (4.1) 
b,a 

[(D: i G) ® (D: i G)] = I [C::](D: j G), (4.2) 
b,a 

{(D: j G) ® (D: i G)} = L {C:: }(D: j G). (4.3) 
b,a 

In Eqs. (4.1):(4.3), the sum over h is over all wave 
vectors in the basic zone (see Sec. 3 of I for definition), 
and the sum over q is over all the small UR's ofGb, the 
little group of h. From Eq. (2.6), it is clear that 

(4.4) 

so that it is sufficient to evaluate just two of these 
coefficients (there is probably least labor involved in 
evaluating C:: and then {c::n. 

The first step is the use of the completeness and 
orthogonality of the characters, whereby C:: is seen 

to be equal to the frequency of the identity repre
sentation in the triple product (D: i G) ® (D: i G) ® 
(D~* j G). Similarly, [C::] is the frequency of the 
identity representation in the triple product 

[(D: j G) ® (D: j G)] ® (D:' i G) 

and, similarly, for {C::}. The evaluation of the first of 
these triple products is covered by the analysis of Sec. 
4 of I. Following the prescription there, we form the 
double-coset decomposition 

G = I Gk{Ra I va}Gk, (4.5) 
a 

write G~ = {Ra I va}Gk{Ra I Va}-I (the little group of 
ka = Rak), and define L~ = Gk n G~. D: is a small 
UR of Gk, and D~p is the small UR of G~ for which, if 
{R I v} E Gk, 

D~p({Ra I v<t}{R I v}{R<t I Va}-I) = D~({R I v}). (4.6) 

We next form the decomposition 

G = I L~{Ry I vy}Gb
, 

and write 
y 

G~ = {Ryl vy}Gh{Ryl Vy}-l 

(the little group of hy = Ryh) and define 

N~ = L~ n G~ = Gk n G~ n G~. 

(4.7) 

The UR D~a is defined in terms of D~ by an equation 
analogous to (4.6). 

The results of Sec. 4 of I show that C:: is equal to the 
sum over allowed pairs of values of a. and y of the 
frequency of the identity representation of N!h in 
the triple product (D: ® D!p ® D~;) ! N!~; th; al
lowed pairs of rJ. and yare determined from Eqs. 
(4.5) and (4.7). For a particular (a., y) pair, this 
frequency is zero because of a sum over the transla
tions, unless 

k + ka == hy, (4.8) 

and, when Eq. (4.8) holds, the value of this frequency 
is 

ill I x:({S I w})X:({Ra I varl{S I w}{Ra I Va}) 
INI lSI,.} 

X X:*({Ry I Vy}-l{S I w}{Ry IVy}), (4.9) 

where INUITI is the index of the translational sub
group T in the group N:: and the {S I w}, over which 
the summation is taken, are the coset representatives 
of N!~ with respect to T. Sums of the form (4.9) are 
over very few elements and are, therefore, quite easy 
to evaluate. It is important to realize that, for a partic
ular (a., y) pair allowed by Eqs. (4.5) and (4.7), Eq. 
(4.8) may lead to no solution for h-in fact, it leads to 
a solution only if R;l(k + R(lk) is equivalent to a 
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vector in the basic zone (the symmetrically chosen 
part of the Brillouin zone being used to label the space 
group VR's). This means that out of all possible 
(oc, y) pairs very few survive, so that the number of 
summations of the form (4.9) to be carried out is also 
very few. In our opinion, the advantage of the method 
lies in the strictly limited amount of numerical com
putation required to obtain the results and in the 
exact specification of just which computations have 
to be performed. 

We now look again at Eq. (2.12) which read~, when 
translated into the language of this section, 

(D: i G) ® (D: i G) == I«D~v ® D:)! L~) i G. 
a (4.10) 

We see from Eq. (4.1) that what we have done so far 
in this section is to analyze the right-hand side of Eq. 
(4.10) into a sum of irreducibles 

I C::(D: i G). (4.11) 
b,q 

But, more than this, we are in a position to say which 
terms in the sum (4.11) arise from each particular 
value of oc on the right-hand side of Eq. (4.10). For 
a fixed oc, they are just those arising from the nonzero 
frequencies calculated from Eqs. (4.8) and (4.9) for 
that particular oc. For reasons which will soon emerge 
it is an important labor-saving device to keep a record 
of the terms that appear in (4.11) for each value of oc. 

The next step is to use Theorem 6 to distribute the 
UIR's that appear in the sum (4.11), some of them to 
the expansion for the symmetrized square and the 
remainder to the expansion for the antisymmetrized 
square. The task will then be complete because only 
those VIR's which appear in the expansion for the 
square can possibly appear in the expansions for the 
symmetrized or antisymmetrized square. Furthermore, 
the strong link between the three expansions means 
that this distribution must take place, term by term, 
separately for each value of oc. Hence, the importance 
of keeping a record of the terms that appear in (4.11) 
for each value of oc is that it provides us with a short 
list of suitable candidates for each term in the ex
pansions resulting from Theorem 6. Vsing an obvious 
notation adapted for the purposes of this section, we 
find that these expansions are 

[(D~ i G) 0 (D~ i G)] 

== [D: ® D~] i G + IN~t i G + lN~v i G (4.12) 
.e.d PeB 

and 

{(D~ i G) ® (D~ i G)} 

== {D~®D:} i G + lN~; i G + lN~p jG. (4.13) 
ae.d peB 

In Eqs. (4.12) and (4.13), the first term corresponds to 
oc = 1 [that is, {Ra I va} = {E I O} in Eq. (4.5)], the 
second term to self-inverse double cosets, oc ¢ 1, and 
the third term to the remaining double co sets grouped 
in pairs, members of each pair being inverse to each 
other. Also, N}", = (D~", ® D~) and N!i- derive from 
N!", by the processes described in Sec. 3. It is, there
fore, appropriate at this stage to allocate the double 
cosets appearing in Eq. (4.5) accordingly. Having done 
this, we can immediately dispose of the set B. Take 
any P E B. We are required to evaluate N}", i G. But 
this has already been evaluated in dealing with the 
square [see Eq. (4.10)]. A record having been kept of 
the VIR's that appear for this value of p, they can then 
be marked down as belonging to both the symme
trized and antisymmetrized square (this, of course, uses 
up not only the set of VIR's that appear for the square 
corresponding to the double coset Gk{Rp I vp}Gk, 
but also its replica corresponding to the inverse 
double coset Gk{Rp I Vp}-IGk). 

Consider next oc = 1. For the square we have al
ready evaluated the corresponding term (D~ ® D~) i G, 
using Eq. (4.9) with {Ra I va} = {E I O}. Inspection of 
Eqs. (2.5), (4.12), and (4.13) shows that all that is 
necessary is the additional computation of the fol
lowing expressions: 

J!.L l (X:
2

({S I w}) ± X:({S I W}2» 
21NI {Slw} 

X X:*({Ry I Vytl{S I w}{Ry IVy}). (4.14) 

A nonzero value of the sum (4.14) with the plus sign 
contributes to the value of [C::], and similarly a 
nonzero value with the minus sign contributes to the 
value of {C::}. Note that, if D~ is a I-dimensional 
small VR, there is zero contribution to the antisym
metrized square, since in this case {D~ ® D!} vanishes 
identically. 

Finally, we consider the self-inverse double cosets 
Gk{Ra I va}Gk in the set A. Following the prescription 
of Theorem 6 we choose an element {A I a} E 

{Ra I va}Gk n Gk{Ra I va}-l. The group generated by 
L~ and {A I a} we denote by M~. Then, the VR's 
N:i- of M~ have the following characters [see Eqs. 
(3.25) and (3.36)]: for all {S I w} E L!, 

X~;({S I w}) = X~({Ra I vatl{S I w}{Ra I va}) 

X X~({S I w}), (4.15) 

X!;({A I a}{S I w}) 

= ±X:({A I a}{S I w}{A I a}{S I w}). (4.16) 

Since for these oc we are inducing from M! rather than 
L! , comparison with the case of the Kronecker square 
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indicates that we now have to modify the analysis 
somewhat. We have to form the decomposition 

G = I M~{Ra I va}Gh (4.17) 
a 

and write G~ = {Ra I va}Gh{Ra I Va}-I. We also define 
p!: = M! n G~. For the fixed rx under consideration, 
the allowed (J must satisfy Eq. (4.17) and 

(4.18) 

and contriQutions to the frequency of [C~:] and {C~:} 
follow from evaluation of the sums 

tD I x~;({Q I x})X~·({Ra I V~}-I{Q I x}{R~ I Va}), 
IPI {Qlx} 

(4.19) 

where IPI/ITI is the index of the subgroup T in the 
group P!: and the {Q I x}, over which the summation 
is taken, are the coset representatives of p!: with 
respect to T. If {Q I x} belongs to L!, the character 
X~; is calculated from Eq. (4.15); if not, from Eq. 
(4.16). Once again, only those values of hand q, for 
which (D~ i G) has already appeared in the evaluation 
(N:

1J 
i G) for the Kronecker square, need be tested by 

means of Eqs. (4.18) and (4.19). 
Finally we relate some of our results in this section 

with those of Lax,IO Sec. 6. The identification is made 
by noting that our k, k .. , and hy correspond to his k, 
k', and k". Also our {A I a} corresponds to his Q: 
this can be seen by remembering that {A I a} E 

{Ral V .. }Gk n Gk{R .. 1 v .. }-I, so that both Ak == k .. and 
Aka == k. Hence {A I a}2 E Gk n G~ = L!. Also, 
there is no case ever to be considered for which {A I a} 
does not belong to G~. For it follows from Eq. (4.8) 
that 

Ahy == A(k + k .. ) == k .. + k == hy, (4.20) 

that is, {A I a} E G~. We have proved the statement 
leading to Lax's Eq. (6.2), that only such Q need to be 
considered, whereas in Lax's paper this statement 
rested only on certain typical examples given earlier. 
Note further from Eqs. (4.8) and (4.18) that hy == hd 
and, hence, {A I a} belong to both M! and G:. It 
follows that 

P~~ = N~ + {A I a}N~. (4.21) 

This corresponds to Lax's considering not the triple 
intersection group Gs but the group (Gs + QGs ). 
Finally, after some more identification of symbols, it 
can be seen that our formula (4.19) corresponds to 
Lax's formula (6.18). Of course, Lax was only con
sidering transitions involving one particular triple of 
vectors k, k', and k" and not the evaluation of the 
Clebsch-Gordan coefficients; but it is instructive to see 

how our work incorporates his as a by-product and, 
furthermore, fills in the slight gap noted above in the 
subgroup argument, by obtaining the relevant for
mulas, starting from considerations involving the 
representations of the full space group. 

5. EXAMPLE AND APPLICATION TO ZINC
BLENDE 

In dealing with the zinc-blende structure T: we have 
taken care to conform as much as possible with the 
notation and conventions of previous authors who 
have treated face-centered-cubic space groups: Bouck
aert, Smoluchowski, and Wigner,12 Parmenter,13 
Dimmock and Wheeler,14 and Altmann and Crack
nell.15 Since Birman4 himself used the tables of 
Parmenter13 in presenting results for the products of 
the single-valued UR's of T:, our results coincide 
with his wherever comparison is possible (Birman 
uses superscripts rather than suffixes, but this does 
not prevent comparison). However, Parmenter13 does 
not distinguish between the two reflection planes in the 
group of ~, leaving an ambiguity between the two 
UR's ~3 and ~4' Although it is true that these repre
sentations are time-reversal degenerate, this does not 
mean that they can be interchanged at will (every 
product has a unique decomposition). Similar ambi
guities will always occur, unless authors give a label 
with a definite meaning to each of the symmetry 
elements under consideration and state explicitly 
whether they use an active or a passive convention for 
the action of the group elements (active operators 
move the field and leave the axes fixed; passive 
operators move the axes and leave the field fixed). 
In order to avoid such ambiguities, we adopt the 
notation for rotations and reflections defined by Alt
mann and Cracknell,15 and like them we use the active 
convention. It is also necessary to distinguish carefully 
between the two elements in the double groups that 
correspond to each rotation or reflection; otherwise, 
similar ambiguities occur in the labeling of the double
valued UR's. This we do below by means of Eqs. 
(5.4)-(5.6). 

We now give a summary of the meaning of the 
various notations we use. 

Direct Lattice 

This is the face-centered-cubic lattice based on the 
following lattice translations with coordinates referred 
to the x, y, z axes, a being the length of a cube edge: 

t1 = taCO, 1, 1), 

t2 = ta(1, 0, 1), 

ts = ta(1, 1,0). 

(5.1) 
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Reciprocal Lattice 

We use the convention 

gi • tj = 27T15ij , i,j = I, 2, 3, (5.2) 

so that, with coordinates referred to the k." kll , k. 
axes, the reciprocal lattice vectors are 

gl = (27T/a) ( -I, 1, 1), 

g2 = (27T/a) (1 , -1, I), (5.3) 

g3 = (27T/a)(I, I, -1). 

Brillouin Zone 

If we denote the vector k = Agl + ftg2 + vg3 by 
triple (A.ftv), then the points and lines of symmetry r, 
X, L, W, A, 11, and ~ of the Brillouin zone (which are 
the only points and lines we treat) are as follows: 
r(ooo) , X(! 0 t), L(t t t), wet t 1), A(p P p) 0 < 
p < t, l1(p 0 p) 0 < p < t, and ~(p p 2p) 0 < p ~ t. 
See Fig. 4 of Bouckaert, Smoluchowski, and Wigner12 

with 11 on r X, A on r L, and ~ on r K (the point Khas 
no more symmetry than ~ and corresponds to ~ with 
P = I); however, we use right-handed axes k." kll , k. , 
so that X is on the kll axis (rather than on the k., axis, 
as in the figure). 

Point Group Elements 

We use the same notation for the elements of the 
cubic group as Altmann and Cracknell. IS We also use 
the active convention whereby the group elements 
move the field and leave the axes fixed. 

Little Groups 

The little groups (or groups ofk) are the products of 
the translations with the following point groups (little 
cogroups): for f, Ta(43m); for X, D 2i42m); for Land 
A, C3v(3m); for W, S4(4); for 11, C2v(mm2); and for 
~, C.(m). The elements appearing for the segment of 
the Brillouin zone defined above are as follows: for r, 
all elements of Ta; for X, E, C2(J), C211 , C2 .. stu,S;, 
(Jdc' (JdB; for L and A, E, C;ri , C;;: , (Jdb' (JdB' (Jdl; for 
W, E, C2." St." S;"; for 11, E, C211 , (Jac, (Ja.; and for 
~, E, (Jdb. 

Double Group Elements 

If R is the proper rotation through a positive angle 
o about an axis with direction cosines (I, m, n) (we 
use the right-hand-screw convention so that positive 
rotations are anticlockwise; for example, a unit vector 
along the x axis is moved into a position along the 
y axis by the operator C:.' a positive rotation of !7T 
about the z axis), then we write 

(
COS to + in sin to 

M(R) = (m + if) sin to 
( - m + if) sin to ) 
cos !O - in sin to 

(5.4) 

and define 
M(R) = - M(R). (5.5) 

It has become customary to abbreviate M(R) by R, 
and M(R) by R, and we conform to this custom. 

As an example, C~ has 0 = i7T and I = m = n = 
(i)l and is, therefore, represented by the matrix 

~ (I + i -I + i). 
21+i l-i 

C;ri is represented by the negative of this matrix. 
If Q is an improper notation Q = JR, where J 

is the inversion, so that R is a proper rotation, then we 
define 

M(Q) = -M(R), 

M(Q) = M(R), (5.6) 

where M(R) is given by Eq. (5.4). M(Q) is abbreviated 
by Q and M(Q) by Q. All the double point groups can 
be constructed from the ordinary point groups in this 
way, and, of course, the elements of the matrices 
M(R) are chosen to preserve the 2-to-1 homomorphism 
between the groups SU(2) and SO(3). In dealing with 
the double-valued UR's of T~, we need to use double
valued operators, so that, for example, the little 
cogroup of ~ contains E, E, (Jdb' Bdb • 

Character Tables 

We need character tables for the double groups of 
T a, D2d , C3v , S" C2v , and C •. These are given by 
Dimmock and Wheeler, 14 and we use their notation 
with the following elaborations to avoid the sort of 
ambiguities referred to above: For C., their (J is our 
(Jab; for C2v , their (Jv is our (Jac, and their (J~ is our (Jd. 

(this removes the ambiguity for 11 between the UR's 
113 and 11,); for S" their S4 is our St., and their S~1 is 
our S;"; for D2a , their C2 is our C211 and their 2C~ 
corresponds to our C2z and C2.,. Their unbarred 
operators correspond to our unbarred operators in all 
cases, and similarly for the barred operators. As far 
as the labeling of the UR's is concerned we use the 
appropriate Brillouin zone point (instead of the arbi
trary label r), together with the same distinguishing 
suffix as Dimmock and Wheeler14 : thus, 111 , 112 , l1a, 
11" 115 is our labeling for the UR's of the little group 
of 11, and these correspond respectively to the UR's 
fl' f2' fa, f" fs for C2v listed by Dimmock and 
Wheeler.14 To enable a speedy comparison with the 
work of Birman4.5 we list in Table I the correspond
ence between our labeling as taken from Dimmock 
and Wheeler14 and that used by Parmenter.13 

As an example, we give intermediate results for the 
evaluation of the symmetrized and antisymmetrized 
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TABLE I. Comparison of notations for the labeling of the 
representations of the little groups of 1', X, W, and L.a,b,c 

pd OW· pd OW· p. OW· pd OW· 

1'1 1'1 Xl Xl Wl Wl Ll Ll 
l' • 1'a X. Xa Wa Wa La La 
r la 1'. X. X. W. W. L. L. 
1'26 1'. X. X. W. W. L, L. 
1'16 r. X. x. W. W. L. L. 
1', 1', X6 Xe W7 We L. Le 
r. 1'7 X. X. We W. 
1'8 r. W. W. 

~ Th." notations of ~h. autho.rs coincide for ~ and ~. 
A IS not hsted. SIRce the httle group of A coincides with that of L corre

s~ndina analog.ou~ ~itrerences in labeling occur for A exactly as for L: 
Wher~ amblgU~tJ.e~ .occur In Parmenter's labeling we have listed only one 

of the varIOUS possibilities. . 
d The first ~olumn in each block indicates the notation used by Parmenter13 

and also by Blrman.4,6 
• The second column in each block indicates the notation used by Dimmock 

and Wheeleru and also by us. 

squares of the UR's XdT~, i= 1,2,3,4,5. We 
restrict consideration to the single-valued UR's 
belonging to the point X, because an example in
volving the double-valued UR's would give no further 
insight into the methods involved, while at the same 
time being more complicated to present in the sense 
that all the groups involved would have twice as many 
elements. We use the notation of Sec. 4 without further 
introduction. k = X = (t 0 !) and GX is the group 
consisting of the translations and their products with 
the eight elements E, S~, C21/' C2x ' C2z , (fac, (fde· The 
character table of its single-valued small UR's is 
shown in Table II. 

The star of X consists of three vectors: X = (t 0 i), 
c;;;.x = G ! 0) and C~X = (O! i)· 

The expansion (4.5) ?as two terms with OCI = {E I O} 
and OC2 = {Ca'i I OJ. G~ = GX and G~ +, being the 
little group of Ca'iX, is the group co~~isting of the 
translations and their products with the eight elements 
E, Sf'., C2z , C2J:' C21/' (fda' (fdb. Thus, L~ = GX and 
LG\l + is the group consisting of the translations and 
their products with the four elements E, C2J:' C21/' C2z • 

Consider first OCI = {E I O}. From Eq (4.8), we see 
that there can be no contribution unless by = X + 
X = (101) == r. Since Gl' = T~, the expansion (4.7) 
has only one term with YI = {E I O} corresponding to 
an allowed solution h = r. Also N:: = GX

• 

Consider next OC2·= {C:ril OJ. We must now have 
by = X + C;t;.X = (l ! !) == C;;'X, so we hope for an 
allowed solution h = X. The expansion (4.7) now has 
three terms with Yl = {£ I OJ, Y2 = {C;;.I O}, and 
Ya = {Ci;.1 OJ. From Eq. (4.8), the only allowed 
contribution arises from Y2 = {C;;.I OJ, and 

NX~ __ LX + n GX + - LX 
C3l C3l - C3l C3l - C31+· 

Using the sum (4.9) with the allowed pair (Oll' Yl) and 
b = r, we find that for p = 1,2, 3,4 we get contri-

bution 1 for q = 1, 3, and 0 for q = 2,4, 5, and for 
p = 5 we get contribution 1 for q = 1,2,4, 5 and 2 for 
q = 3. Then, with the allowed pair 

(OC2 ,Y2) = ({ctll OJ, {cal OJ), 

the sum (4.9) becomes 

t I X;(R)X;(C;;'RC~I)X:(C~IRC;I)' 
R 

(5.7) 

in which the sum is over R = E C2 C C For , x' 21/" 2z· 

P = 5, for example, the sum (5.7) reduces to XX(E) 
thereby yielding contribution 1 for q = I, 2, 3, l, and 
2 for q = 5. Similarly, for p = 1, 3 there is contribu
tiqn 1 for q = 1, 3, and 0 for q = 2,4, 5, and for 
p = 2, 4 there is contribution 1 for q = 2,4, and 0 for 
q = 1,3,5. . 

Putting all these results together, we obtain for the 
Kronecker squares (writing for brevity Xi i G as Xi' 
etc.) 

Xl ® Xl = rl + r3 + Xl + X3 = Xa ® Xa, (5.8) 

X 2 ® X 2 = r l + ra + X 2 + X 4 = X 4 ® X 4 , (5.9) 

Xs ® Xs = r l + r 2 + 2r3 + r 4 + rs 

+ Xl + X2 + Xa + X4 + 2Xs · (5.l0) 

Turning now to the symmetrized and antisym
metrized squares, we first note that OCI corresponds to 
the identity double coset and that OC2 corresponds to a 
self-inverse double coset and, therefore, belongs to the 
set A. For OCI we must, therefore, evaJuate the sum 
(4.l4), with Y = YI = {E I O} and b = r. Also, we can 
restrict ourselves to the values of q appearing as 
subscripts to r in Eqs. (5.8)-(5.10). We find that there 
is a contribution to the antisymmetrized square only 
for p = 5 and q = 4, so that all other r terms in Eqs. 
(5.8)-(5.10) must belong to the symmetrized squares. 
In this example, the set B is void (double cosets 
belonging to B are so straightforward to deal with that 
the instructiveness of the example is not lost). It 
remains to deal with OC2 = {C;;;.I O} E A. We form the 
intersection C:riGx n GX C;;.. It contains products of 

TABLE II. The small UR's of x.a.b 

• 
X E sf. C., C.x , C •• Gdc, (Ide 

X, 1 1 1 1 1 
X. 1 1 1 -1 -1 
X. 1 -1 1 1 -1 
X. 1 -1 1 -1 1 
X. 2 0 -2 0 0 

~ {E I t , } and {E I ta} are represented by -1 and {E I t.} by + 1. 
The symmetry elements are to be identified from Fig. 4 of AUmann and 

Cracknell.16 
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the translations with the four elements St." S~, add' 

ad!' We fix on add for the element {A I a}. Then, 

x x x 
M cat+ = (Lcat+ + addL C31+) 

consists of the translations and their products with the 
eight elements E, C2:l:' C211 ' C2%, St;., S~, add' ad!' 

The UR's Nt.~+., p = 1 to 5, of the grou{> M(\~ a~e 
found from Eqs. (4.15) and (4.16) and are shown 10 

Table Ill. 
The decomposition (4.17) yields two double cosets 

151 = {E I O} and 152 = {C;;: IO} [note that the corre
sponding decomposition (4.7) had three terms] .. Of 
these only 152 = {C;;: I O} is compatible with the solutIOn 
h = X of Eq. (4.18). We must, therefore, evaluate the 
sum (4.19), which reduces to 

I x~7+,,(Q)X;(C~lQC;1)' (5.11) 
Q 

where the sum is over Q = E, S4;' C2x , C211 ' C2%, add' 

ad!' Using Tables 11 and II I, we find that we obtain 
from (5.11) a contribution 1 for the following pairs of 
values: p = 1, q = 1; P = 2, q = 4; p = 3, q = 1; 
P = 4, q = 4;p = 5, q = 1,4,5; and zero otherwise. 
Other pairs of values ,of p and q appearing as subscripts 
to X in Eqs. (5.8)-(5.10) must belong to the antisym
metrized squares. 

Finally (using once more the abbreviation Xi for 
Xi i G, etc.) we obtain, for the symmetrized squares, 

[Xl ® Xl] = r1 + ra + Xl = [Xa ® X3], (5.12) 

[X2 ® X2] = r1 + r3 + X4 = [X4 ® X4], (5.13) 

[Xli ® Xs] = r 1 + r 2 + 2r 3 + r Ii + Xl 

+ X4 + Xs, (5.14) 

and, for the antisymmetrized squares, 

{Xl ® Xl} = Xs = {X3 ® Xs}, (5.15) 

{X2 ® X2 } = X2 = {X4 ® X4 }, (5.16) 

{X5 ® Xli} = r 4 + X2 + X3 + Xli' (5.17) 

TABLE III. The DR's of M~ + .8 
31 

P E st:Z:t s~x C"" C.x , C •• add, ad! 

1 1 1 1 1 1 
2 1 -1 1 -1 1 
3 1 1 1 1 1 
4 1 -1 1 -1 1 
5 4 0 0 0 2 

8 {E It.) and {E It.) are represenled by-I and {E 111) by I.S •• al.ofoolnol. 
b 10 Table II. 

We have derived expansions for all the important 
Kronecker products and for all the symmetrized and 
antisymmetrized squares of the VIR's of the zinc
blende structure associated with the Brillouin zone 
points r, X, L, W, A, and Il, and these results are 
presented in Appendix A in coded form. Before the 
table is used, reference should be made to the para
graphs at the beginning of Sec. 5 headed direct lattice, 
reciprocal lattice, Brillouin zone, point group ele
ments, little groups, double group elements, and 
character tables. These paragraphs permit a com
pletely unambiguous identification of the VIR's appear
ing in the table. The notes preceding the table should 
also be consulted, as they contain the rules for decoding 
the entries that appear in the table. 
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APPENDIX: KRONECKER PRODUCTS, 
SYMMETRIZED SQUARES AND ANTI
SYMMETRIZED SQUARES FOR THE 

ZINC-BLENDE STRUCTURE T~ 

(i) The entries ai, xi, wi, hi, pi, di, si stand, respec
tively, for (1\ i G), (Xi i G), (Wi i G), (Li i G), 
(Ai i G), (Il i i G), (~i i G), where G is the space 
group T~ and r i' Xi' ... , etc., are the labels of small 
VR's of the Brillouin zone points, r, X,'" , etc. 
An entry such as 3d5 will, therefore, mean 3(lls i G), 
the direct sum of three copies of (Ils i G). 

(ii) The table is to be read as if in 'one continuous 
column, though for typographical reasons it is printed 
in several columns over a number of pages. On each 
page the left-hand column comes first and is to be read 
from top to bottom before proceeding to the next 
column. The right-hand column on a page is followed 
by the left-hand column on the next page. 

(iii) The table is separated into 19 sections each 
section headed by symbols such as X ® X, [X ® X], 
X ® L. In the section headed X ® X, we list the 28 
expansions of the inner Kronecker products (Xi i G) ® 
(X,- i G), 1 S i 5. j 5. 7. In the section headed [X® Xl, 
we list the seven expansions of the symmetrized 
squares [(Xi i G) ® (Xi i G)], i = 1 to 7. And in the 
section headed X ® L, we list the 42 expansions of the 
inner Kronecker products of (Xi i G) ® (L j i G), 
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r0r x4 x7 b2 b4 w6 
al x3 xS 2b3 bS w8 

al a3 x6 b6 
a4 x4 x3 x7 2b4 wS 

a2 as xS bS 3b4 w7 
xS 2x6 b6 bS 

a3 a7 x2 2x7 b6 w6 
a8 x6 xS b4 w8 

a4 xl b6 bl 
a6 x7 xl x2 b2 wI 

as a8 xS x3 b4 3b3 w3 
x3 x4 bS w4 

a6 a6 xl 2xS bl 
a7 x4 x2 bl b2 w2 

a7 2a8 x3 xl b3 b3 w3 
xl x4 x2 w4 

a8 al xS x3 b2 bl 
a4 x2 x4 b3 b2 wI 

al x6 2xS b3 w2 
a2 xS 2x7 bl w3 

a3 as r0L b2 r0W 
x7 2x6 2b3 wI 

as a3 x7 bl wI w2 
a4 x6 2b4 w4 

a4 as x6 b2 bS w2 
xl b6 wS 

a7 al x3 x6 b3 w3 w6 
a4 b4 w8 

a6 x2 x7 b4 bS w4 
a3 x4 wS 

a8 a4 x7 bS b4 wS w6 
as xl b6 w7 

al x3 x6 b6 w6 
a2 al x7 b4 w6 
a3 a2 x2 b2 w7 w7 

a3 x4 xl b4 w8 
a4 204 x2 bl w8 
as 2aS 2xS xS b4 wS 

b3 bS w2 w7 
a4 [r 0 r] x6 x3 b6 w8 
as x7 x4 b4 wI 

al xS bl w2 
a8 x6 b6 b2 w4 w3 

al x7 x7 b3 w4 
a8 bS w3 

al x2 x7 b3 wI 
a6 a3 xS b3 w7 w3 
a7 x6 b3 w4 
a8 al xl b3 w8 

a3 xS x6 b4 wI 
al as bl wS w2 
a3 x4 x6 b2 b4 w4 
a4 al xS x7 b3 w6 
as a3 b4 wI 

as x3 x3 b4 bS wI w2 
02 xS x4 b5 b6 w2 w3 
a3 a4 x5 b6 
a4 xl bl wI w6 
as a4 x2 xl b4 b2 w2 w7 

x3 x2 b3 w8 
a6 a2 x4 xS b4 w3 
a8 2a4 xS b3 w4 wS 

as x6 b2 w7 
a7 2x6 x7 b3 b3 w3 w8 
a8 r0X x7 w4 

x6 bl b4 wS 
a6 xl x6 x7 b3 b5 w5 w6 
a7 2x7 b6 w7 w8 

2a8 x2 x6 bl 

(continued) 
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w5 w7 d4 xl x2 a3 2b4 
w6 w8 ------ x3 x4 a4 b5 bi 
w7 dl x5 2aS b6 b2 

wI d2 a4 ----- xl 2b3 
wS w2 d3 xS a7 x2 b4 
w6 w3 a8 x3 b6 bl 

w4 3d5 a2 x6 x4 'b2 
w7 a3 x7 2x5 b4 2b3 
w8 wI d1 xl b5 

w2 d3 x3 a6 a1 2bl 
w5 w3 d4 a8 a3 b2 2b2 
w8 w4 ---- a5 x6 2a4 b3 4b3 

d2 x5 x7 as 
w6 wI d3 xl b1 4b4 
w7 w2 d4 a4 a1 x2 b3 2b5 

w3 a5 a3 x3 2b6 
wI w4 d1 x2 x2 x4 bl -----
w3 d2 x4 x4 2x5 b2 2b4 

wI d3 xS 2b3 b5 
wI w2 a4 [X®Xj b6 
w4 w3 d1 a6 a5 2b4 

w4 d2 a8 xl al b5 2b4 
w2 d4 x6 x3 a3 b6 b5 
w4 r®/l x7 x5 xl b6 

3d5 b4 
w2 dl a7 a7 a1 b5 2b4 
w3 d5 a8 a8 a3 b5 

d2 x6 x6 x4 b4 b6 
w7 d5 x7 x7 b6 
w8 d3 a1 2b4 

d5 a1 a6 a3 b2 b5 
wS d4 a3 a8 xl b3 b6 
w6 d5 x2 x6 

d5 x4 x7 al bl 4b4 
w6 d1 a3 b3 2b5 
w7 d2 d2 a5 a1 x4 2b6 

d3 x5 a2 bl 
w5 d1 d4 2a3 a1 b2 2bl 
w8 a2 a4 a2 2b3 2b2 

d4 dS a3 a5 2a3 4b3 
w2 x2 xl as 2b4 
w4 d3 dS x4 x2 xl b5 bl 

x3 x4 b6 b2 
w2 d5 d5 a4 x4 x5 2b3 
w3 as 2xS b4 

d1 d5 xl 2a4 b5 b1 
wI d2 x3 a6 a5 b2 
w3 dl xS a7 x2 b4 2b3 

dl d2 2a8 x3 b6 
wI d2 d3 a6 2x6 x5 2b4 
w4 d4 a8 2x7 bl b5 

d3 x6 2a4 b3 b6 
wS d4 2dS x7 a6 a5 
w6 a7 x2 b2 2b4 
w7 d3 ldS a7 2a8 x3 b3 b5 
w8 d4 a8 2x6 x5 b6 

ld5 x6 2x7 bl 
wS ldS x7 X®L b2 4b4 
w6 ld5 a1 2b3 2b5 
w7 d2 al a3 bl 2b6 
w8 d3 2d1 a3 2a4 b3 2b4 

d4 ld2 xl a5 b5 2b1 
w5 2d3 x3 xl b2 b6 2b2 
w6 dl ld4 x2 b3 4b3 
w7 d3 a4 x3 b4 
w8 d4 X®X x5 x4 bl b6 bI 

2x5 b2 b2 
w5 dl al a4 2b3 b4 2b3 
w6 d2 a3 as a2 b5 

(continued) 
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bl w8 2x6 al a2 2s1 
b2 w3 wi 2d5 2x7 a2 a3 2s2 

2b3 d3 w2 a3 2a4 
d4 dl w5 a8 2a4 a5 2s1 

X®W d2 w6 x6 2a5 x2 2s2 
w4 d3 2d5 x7 2xl x3 

wi d3 d4 2x2 3x5 2s1 
dl d4 w5 a8 2x3 2s2 
d2 w5 w8 x6 2x4 a2 

w8 w7 2d5 x7 4x5 a4 2s3 
w2 d5 2d5 x5 2s4 
dl w6 al a3 
d2 w7 w6 w7 a5 a4 a2 2s3 

d5 w8 2d5 xl a5 a4 2s4 
w4 2d5 x4 xl x5 
d3 w6 w2 x5 x2 2s3 
d4 d5 w5 w3 x3 L®W 2s4 

w7 dl a3 x4 
w3 w5 2d5 d2 a4 2x5 sl 2s3 
d3 dS d3 as s2 2s4 
d4 w6 d4 xl a3 

w2 w8 x2 a4 sl 2s3 
w6 d3 2dS w2 x3 as s2 2s4 
dS d4 w4 x4 xl 

wS dl 2xS x2 sl 2s3 
wS wI w6 d2 x3 s2 2s4 
d5 d3 2dS d3 a6 x4 

d4 d4 a7 2xS sl 2s3 
w8 w7 ---- as s2 2s4 
dS w3 wS wI 2x6 a2 

dl 2d5 w4 2x7 a4 s3 2s3 
w7 d2 dl xl s4 2s4 
d5 w6 d2 as x4 

w4 w7 d3 x6 x5 s3 2s1 
wi dl 2d5 d4 x7 s4 2s2 
d3 d2 al 
d4 w5 wi as a5 s3 2s1 

wS wS w3 x6 x2 s4 2s2 
w2 d5 2d5 dl x7 x3 
d3 d2 x5 s3 2s1 

d4 w7 wI d3 al s4 2s2 
d5 w4 d4 a2 a2 

w4 dl a3 a4 sl 2s1 
dl w6 d2 L®L 2a4 xl s2 2s2 
d2 d5 d3 2a5 x4 

d4 al 2xl x5 sl s3 
w3 w5 a5 2x2 s2 s4 
dl d5 wI xl 2x3 [L ®LJ 
d2 w3 x4 2x4 sl s3 

w3 dl x5 4x5 al s2 s4 
w6 w4 d2 a5 
d5 dl d3 a2 a6 xl sl s3 

d2 d4 a4 a7 x4 s2 s4 
w5 d3 x2 3aS 
d5 d4 w2 x3 4x6 al s3 s3 

w3 x5 4x7 a5 s4 s4 
w8 w3 dl xl 

d5 w4 d2 a3 06 x4 s3 sl 
dl d3 a4 a7 s4 s2 

w7 d2 d4 a5 as al 
d5 d3 xl 2x6 a3 s3 sl 

d4 w2 x2 2x7 a4 s4 s2 
w2 w4 x3 2a5 
dl wI dl x4 a6 2xl s3 sl 
d2 w2 d2 2x5 a7 x2 s4 s2 

dl d3 as x3 
wi d2 d4 a6 2x6 2x4 2s1 sl 
dl d3 07 2x7 x5 2s2 s2 
d2 d4 w7 a8 

(continued) 
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s3 s3 sl 2d2 d4 al 
s4 a7 s4 s2 al 2d3 a3 

a8 a3 2d4 A®A a5 
s3 x7 a7 a4 x3 sl 
s4 s3 a8 a5 x4 p4 dl s2 

s4 x6 x3 sl p5 al 
s3 s3 x4 p6 a3 d5 
s4 al s4 sl a4 4d5 a5 a6 

a3 s2 x5 ---- sl a7 
s3 a4 a7 s2 p4 s2 2a8 
s4 xl a8 al 2d5 2s3 

x2 x6 a3 a4 ---- d2 2s4 
sl sl s3 a4 x5 p4 a2 
s2 s2 s4 x5 s2 2d5 a3 dl 

sl a4 a2 
sl a4 a6 s2 a4 pI sl a3 
s2 a5 a8 x5 p2 s2 a4 

x5 x7 a4 s2 p3 sl 
sl sl s3 a5 2dl d3 s2 
s2 s2 s4 x3 a4 2d2 a4 

x4 x5 2d3 a5 d5 
sl a4 al sl s2 2d4 sl a6 
s2 a5 a3 s2 s2 a7 

x5 a4 A®A p3 2a8 
W®W sl x3 a2 dl d4 2s3 

s2 x4 a3 pI d2 a4 2s4 
al sl a5 dl d3 a5 
a3 a7 s2 x5 d4 d4 sl dl 
a4 a8 sl s2 d2 
xl x7 a7 s2 p2 p3 d3 
x2 s3 a8 d2 dl d5 d4 
sl s4 x6 al d3 d2 a6 al 
s2 s3 a3 d3 a7 a2 

a7 s4 a4 p3 d4 2a8 2a3 
a2 a8 x5 dl 2s3 3a4 
a3 x7 a6 sl d2 p2 2s4 3a5 
a5 s3 a8 s2 d3 dl 4s1 
x3 s4 x7 d4 d4 dl 4s1 
x4 s3 a4 al 
sl s4 a5 p4 pI a3 [A®A] 
s2 a6 xl 2d5 d2 a5 a8 a6 x2 ---- d3 sl al 
a4 x6 a8 sl p5 s2 a3 
a5 s3 x7 s2 d5 p2 dl 
x5 s4 s3 dl d4 sl 
sl s4 al p6 d4 a4 -----
s2 a6 a3 d5 a5 al 

a8 a7 a4 [A®A] sl a3 
a4 x6 a8 x5 pI s2 dl 
a5 s3 x6 sl dl pI sl 
x5 s4 s3 s2 d4 dl d3 
sl s4 a4 a2 
s2 al [W®W] p3 pI a5 a3 

a3 al dl dl sl dl 
a6 a4 a3 al d2 s2 sl 
a8 x3 a4 a3 d3 pI 
x6 x4 x5 xl d4 p3 d5 a2 
s3 sl sl x2 2dl a6 a3 
s4 s2 s2 sl p4 d2 a7 dl 

2d5 d3 2a8 sl 
a6 a2 a4 al 2s3 
a8 a3 a5 a3 p6 p2 2s4 2a4 
x6 a5 xl xl d5 p3 2a5 
s3 xl x2 x2 d2 dl d2 
s4 x2 sl sl p5 d3 a2 d3 

sl s2 d5 2d4 a3 d4 
a7 s2 al a4 sl 
a8 a2 a3 pI p2 sl 3s2 
x7 a6 a3 x3 p2 d4 s2 
s3 a8 a5 x4 p3 
s4 x7 x5 sl 2dl p2 d2 
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1 ~ i ~ 7, 1 ~ j ~ 6. And similarly for each other 
section according to its heading. 

(iv) Each expansion has a block to itself bounded 
by horizontal lines. Extra horizontal lines have been 
inserted if the end of an expansion occurs at the foot 
of a column. Some horizontal lines are thicker than 
others; this is for ease of reference-see (v), below. 

(v) The expansions are given within ~ach section in 
dictionary order. For the section headed X ® X the 
28 expansions, therefore, occur in the following order: 
(ij) = (11), (12), ... , (17), (22), ... , (27), ... , (77). 
And similarly for each section with a heading of the 
form P ® P, P = r, X, L, W, A, and ~. A horizontal 
line occurs whenever j changes its value by a unit. A 
bold horizontal line occurs whenever i changes its 
value by a unit. For the section headed [X ® X], the 
seven expansions occur in the following order: (ii) = 
(11), (22),· .. , (77). And similarly for each section 
with a heading of the form [P ® P], P = r, X, L, W, 
A, and ~. A horizontal line occurs whenever i changes 
by a unit. For the section headed X ® L, the 42 
expansions appear in the following order: (ij) = (11), 
(12), ... , (16), (21), (22), ... , (26), (31),· .. , (76). 
And similarly for each section with a heading of the 
formP® Q (P, Q = r, X; r, L; r, W; r,~; X, L; 
X, W; and L, W). A horizontal line occurs whenever j 
changes its value by a unit. A bold horizontal line 
occurs whenever i changes its value by a unit. 

(vi) The expansions that would have fallen under 
the heading r ® A can be obtained from the section 
headed by r ® L by readingp for b whenever b occurs 
in that section. 

(vii) For each expansion required, one or more 
entries appear in the block appropriate to that ex-

pansion, the rule being that the product required has 
as its expansion the direct sum of all the entries 
appearing in that block. 

(viii) Examples: 

(Xd G) ® (Ld G) = (Ld G) + (La i G), 

(L2 i G) ® (La i G) = (r 8 i G) + (Xa i G) 

+ (X7 i G), 

[(Ld G) ® (Ld G)] = (rd G) + (r4 i G) 

+ (X5 i G). 

(ix) Antisymmetrized squares can be obtained by 
subtraction and are not separately tabulated. Thus, 
from Table IV and Eq. (4.4), 

{(L5 i G) ® (L5 i G)} = (Xl i G) + (X4 i G). 
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We prove the existence and the uniqueness of the solution of the initial-value problem for neutron 
transport in a nonuniform slab with generalized boundary conditions, which include the vacuum and 
the perfect reflection boundary conditions as particular cases. Moreover, we show that the position
dependent transport operator has at le~t one real eigenvalue and we indicate the asymptotic behavior 
of the neutron density as t -.. + 00. 

1. INTRODUCTION 

In a recent paper ,1 Mika considered the initial
value problem for mono-energetic neutron transport in 
a nonuniform slab surrounded either by vacuum or 
by a perfect absorber. By using the theory of semi
groups of linear bounded transformations, he was 
able to prove the existence and the uniqueness of the 
solution. The problem of the point spectrum of the 
position-dependent transport operator was not con
sidered in Mika's paper. Moreover, as pointed out 
elsewhere,2 the vacuum boundary condition is not 
the only one that needs investigation. In many cases 
conditions may be of interest which express that each 
neutron suffers a perfect reflection at the boundary.3 

In this paper we extend Mika's investigations to the 
case of a nonuniform slab with generalized boundary 
conditions, which include the vacuum and the perfect 
reflection boundary conditions as particular cases, i.e., 
we study a fairly general mono-energetic neutron
transpqrt problem with plane symmetry. By using 
some results of perturbation theory for linear opera
tors, we are able to avoid long and tedious calculations 
and at the same time display some spectral properties 
of the position-dependent transport operator. Finally, 
we prove the existence of at least one real eigenvalue 
and we indicate the asymptotic behavior of the 
neutron density as t ~ + 00. 

2. PRELIMINARY REMARKS 

The neutron-transport equation, the initial and 
generalized boundary conditions have the form 

aN at = AN, Ixl < a, 11'1::5: 1, t> 0, (1) 

N(x, 1', 0) = No(x, 1'), Ixl < a, 11'1::5: 1, (2) 

(j(p,)N( - a, fl, t) = 'YJ(fl)N(a, fl, t), Ifll::5: 1, t > 0, 

(3) 

where N = N(x, 1', t) is the neutron distribution 

function within the nonuniform slab of thickness 2a 
and A is the transport operator4 

a 
A = B + vy(x)J, B = -vfl- - v~(x), ax 

f
+1 

J = t ... dfl'· 
-1 

(4) 

Moreover, v is the neutron speed,~(x) is the total 
cross section, y(x) = c(x)~(x) where c(x) is the 
mean number of secondaries per collision,4 and (l = 
(l(fl) and 'YJ = 'YJ(fl) are piecewise-continuous functions 
such that 

o ~ 'YJo S 'YJ{fl) ~ (l(fl) ~ 'YJ1 ~ 1, fl E (0,1], 

o ~ 'YJo S (l(fl) ~ 'YJ(fl) ~ 'YJ1 ~ 1, fl E [-1, 0). (5) 

We note that, in particular, if (l{,u) = 'YJ(fl) = 1, 
Eq. (3) becomes a perfect reflection boundary con
dition.2 Furthermore, if r;(p) == 0 and o(p) == 1 at 
any fl E (0,1] and 'YJ(fl) == 1 and O(fl) == 0 at any 
fl E [-1,0), Eq. (3) becomes the usual va<;uum 
boundary condition.1.S-7 

Finally, we assume that ~(x) and y(x) are con
tinuous a.e. in [-a, aJ such that 

o < ~m = {inf(~(x)], Ixl ~ a} 
~~(x) ~~M = {sup[~(x)], Ixl ~ a}, 

0< Ym = {inf [y(x)], Ixl ~ a} 
~ y(x) ~ YM = {sup [y(x)], Ixl ~ a}. (6) 

The existence and the uniqueness of the solution 
of the system (1)-(3) are related to the property of A 
of being the generator of a semi group of linear 
bounded transformations {SCt), t ~ O} E Co .8,9 In 
turn, such a property depends on the nature of the 
spectrum of the transport operator A over a certain 
Hilbert space X. 

Let X be the space of all functions 1= I(x, fl) 
defined and square integrable over the rectangle 
R == {(x, fl):lxl ::5: a, Lui S;; I} with scalar product 

1553 
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and norm given by the relations 

(f, g) = II/(X, ,u)g(x,,u) dx d,u, II/II = {(f,/)}f, 
R 

where g(x, ,u) denotes the complex conjugate. 
The domain D(A) of A is the linear manifold of 

all functions / E X, such that A/ E X and condition (3) 
is satisfied. Following Jorgens,7 it can be proved that 

D(A) is dense in X, i.e., D(A) == X. 
We now recall that the property of being the gener

ator of a (Co) semigroup is stable under bounded 
perturbations.s Hence, it will be sufficient to prove 
that B is the generator of a semigroup {T(/), I ;;:: O} E 

Co. In fact, from (4) we see that A may be regarded 
as a perturbation of B by means of the bounded 
operator vy(x)J whose norm is smaller than vy M' 

3. SPECTRAL PROPERTIES OF B 

In order to prove that B is the infinitesimal genera
tor of a Co semigroup we will consider the following 
equation: 

(U - B)f = g, /E D(A) = D(B), g E X, (7) 

where A. = fJ + iT. We prove the following theorem. 

Theorem 1: The region {kfJ = Re A. > -v~m} of 
the complex A. plane belongs to the resolvent set pCB) 
of operator B and the following inequality is valid: 

IIR(A., B)II = II(U - B)-lll ~ (fJ + v:Em)-l, 

fJ = Re A> -v:Em. (8) 

Proof' If we put 

~(x, y) = ~(y, x) = -- ~(s) ds, 1 LX 
x - Y 11 

~m ~ :E(x, y) ~ ~M' 

1 fa ~(a, -a) = ~o = 2a -a (s) ds, ~m ~ ~o ~ :EM' 

(9) 
we obtain, after some manipulations from (7), 

f(x,,u) = !J(,u) 
/J(,u) - 1j(,u) exp (-2aAo/,u) 

x fa: exp [-A(X, y) x - y]g(y, ,u) dy 
J-a ,u v,u 

+ 1)(,u) 
/J(,u) exp (2aAo/,u) - 1)(,u) 

x ra

exp [-A(X, y) x - Y] g(y, ,u) dy, (10) 
Ja: ,u vp 

where A(x,y) = ~(x,y) + Nv, Ao = :Eo + Nv. 

By taking into account that 

lexp [-A(x, y)(x - y)I.u]1 

~ exp [-(~m + fJ/v)(x - y)/p], 

y < x, .u > 0, fJ > ;-v:Em, 

1!J(.u) - 1j(,u) exp (-2aAo/,u)1 

;;:: /J(.u){1 - exp [-(:Eo + fJ/v)2a/pJ), 

.u > 0, fJ > -v:Em 

and proceeding just as in Ref. 2, we have, from (10), 

II/(x, p)11 ~ 2[Po(fJ + v~m)]-l IIgll, 
fJ> -v:Em , g E X, 

where Po = I - exp [-2a(:Eo + fJlv)]. Hence, we 
have 

IIR(A., B)II ~ 2[Po(fJ + v:Em)]-l, fJ > -v~m' (11) .. 
Thus, we have that the region {A:fJ = Re A > -v~m} 
belongs to the resolvent set of operator B. 

Inequality (11) may now be improved. In fact, we 
have 

owing to conditions (3) and (5). Now let (AI - B)"P = 
g, "P = R(A, B)g. From the preceding inequality we 
obtain 

II"PII IIgll ;;:: l(g, "P)I ;;:: Re (g, "P) ;;:: (fJ + v:Em) lI"PlI2, 
111JI1I ~ (fJ + v~m)-l IIgll, 

and finally 

Theorem I is thus completely proved. 

4. THE INITIAL-VALUE PROBLEM 

By the Hille-Y osida theorem, 8. 9 B generates a 
semigroup {T(t), I ;;:: O} E (Co) provided that (a) B is 
a closed operator, (b) D(B) is dense in X, and (c) 
IIR(A., B)II ~ (fJ - flo)-l, fJ > flo, for some real flo. 
Conditions (b) and (c) have already been proved. 
As far as (a) is concerned, we observe that if 
Re A. > -v:Em , then (U - B)-l is bounded and its 
domain is the whole X. Thus, (U - B)-I, AI - B, 
and also B are closed operators.s We conclude that B 
is the generator of a semigroup {T(t), I ;;:: O} E Co, 
such that IIT(/)II ~ exp (-v:Emt) at any t;;:: O. 
Moreover, because of some results of perturbation 
theory for linear operators,S we may state the 
following theorem. 
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Theorem 2: The region {A: Re A > v(y M - ~m)} 
belongs to the resolvent set peA) of A, IIR()., A)II ~ 
[P - v(y.M - ~m)]-l, and A is the generator of a 
semigroup {Set), t ~ O} E Co, such that IIS(t)1I ~ 
exp [v(y M - ~m)t] at any t ~ O. 

From the preceding theorem it follows that the 
unique solution of the initial-value problem (1)-(3) 
has the forms.9 

N(x, f-l, t) = S(t)No, No E D(A), t ~ O. (12) 

Our next task will be to transform the right-hand 
side of (12) in order to obtain a more explicit form of 
the neutron density. 

5. THE INTEGRAL EQUATION 

Let us indicate by r the following region of the A 
plane: 

r == {A: -v~m < Re A < V(YM - ~m)' A ¢P.,.{A)}, 

where 

cP = cp(x) = 2J'P = L:1'P(X,f-l') df-l', IIcpli $'; 211'1'11, 
(ISa) 

O(x) = oc(x)cp(x), oc(x) = [y(x)]!. (ISb) 

From (14) we now obtain 

'I' = / + ivReA, B)[ycp] = f + ivReA, B)[odJ] , 

Re A > -v~m' (16) 

where/is given by (10), provided Re A > -v~m and 
hence A E pCB). Conversely, we get (14) from (16) by 
applying operator )./ - B to both sides of (16). 
Finally, by applying the operator 2oc(x)J to both 
sides of (I6),we have 

0= G + K),O, (17) 

where Pu(A) is the point spectrum of A. We will prove where 
that r belongs to the resolvent set peA) of operator A. G = 2oc(x)J/= 2oc(x)[JR(A, B)]g, 

Kl) = V[JR(A, B)][oc(x)oc(y)O(y)] 

(18) 
With this aim in mind, we observe that the equation 

(AI - A}'P = g, g E X, (13) 

may be written in the form 

(AI - B)'P = g + vy(x)J'P = g + ivy(x)cp f
+a 

= -a K(A, x, y)O(y) dy, (19) 

= g + tvoc(x)O, (14) where the kernel K(A, x,y) is given by the relation 

K(A, x, y) = K(A, y, x) = !oc(x)oc(y) 

X 1+00 ~(l/t) exp [-A(X, y) Ix - yl t] + 1](1/t) exp [-2aAot + A(x, y) Ix - yl t] dt , 

1 6(1/t) - fJ(l/t) exp ( - 2aAot) t 
(20) 

provided that 1](-f-l) = 6(f-l). 
If, in particular, 1](f-l) == 0 at any f-l E (0, 1], then 

K(A, x, y) becomes the kernel used by Mika,1 whereas, 
if 1](f-l) = 6{J-l) == 1, then K(A,x,y) is similar to the 
kernel used in Ref. 2. 

With a procedure similar to that used in Ref. 2, 
let us now introduce the Hilbert space L2 of all 
functions cp = cp(x) defined and square integrable 
over [-a, a], with scalar product and norm given by 
the relations 

(cp, cp')o = L:a cp(x)cp'(x) dx, IIcpllo = [(cp, cp)o]l, 

IItpll=(2)llltpllo, tpEL2 • (21) 

From (15) and (18) we have 

IIGlio = (2)-IIlGII $'; (2YM)IIIR(A, B)llllgll 
$'; [(2YM)I/(.B + v~m)] IIgll, 

110110 = (2)-11101l :s;; (iYM)lllcpll :s;; (2YM)ill'Pll, (22) 

where we used (21). Hence, () E L2 and G E L2 

provided that 'I' E X, g E X, and P > -v~m' This 
justifies the introduction of the Hilbert space L 2 • 

Moreover, it may be easily proved that the kernel 
K(A, x, y) is square integrable over the square 

{(x,y):lxl ~ a, Iyl ~ a}, 

provided that .B > -v~m' Hence, if .B > -v~m' K;. 
is a compact operator whose norm satisfies the follow
ing relation: 

IIKAllo:S;; {L:adX L:ady IK(A, x, Y) 12t; (23) 

KA is also self-adjoint if A = .B is a real number. 
We summarize the relationships between the 

integro-differential equation (13) and the integral 
equation (17) by means of the following two theorems. 

Theorem 3: If Re A > -v~m' then any solution 
'I' E D(A) of Eq. (13) is such that () = 2ocJ'P is a solu
tion of (17) belonging to L 2 • Conversely, if a solution 
() E L2 of Eq. (17) is known, then the corresponding 
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solution 1p E D(A) of (13) may be found by means of 
(16). 

Theorem 4: If Re A > -vl:m , if Ilgll = ° (hence 
IIGllo = 0), and if A is an eigenvalue of A, then I is an 
eigenvalue of K;., and conversely. Moreover, the 
corresponding eigenfunctions are such that 1p = 
lvR(A, B)ocO. 

Let us now return to the region r defined at the 
beginning of this section. From (16) we have 

11v>1I ~ IIR(A, B)II [llgll + V (2YM)1 110110] 
~ «(J + vl:m)-l 

x [llgll + V(2YlIl)! 11(1 - K;.)-lilo Wllo] 

~ C(A)«(J + Vl:m)-l Ilgll, A E r, g E X, 

where, because of (22), 

We took into account that (I - K;.)-l is a bounded 
operator provided I.E r because of Theorem 4. We 
conclude that 

Hence, we have the following theorem. 

Theorem 5: The region r == {A: -vl:m < Re A < 
V(YM -l:m), A q,P,,(A)} belongs to the resolvent set 
peA) of operator A. 

6. EXISTENCE OF AT LEAST ONE 
EIGENVALUE OF A 

The remaining question is the nature of Pa.r(A) == 
P,,(A) n {A: -vl:m < Re A < V(YM - l:m)}. Because 
of Theorem 4, if I.E P",r(A), then 1 E P(K).) and con
versely. Hence, we may look for those A's, such that 
1 is an eigenvalue of the compact operator K). . 

Let us first limit ourselves to the case in which A 
is real, A = (J. Then K;. = Kp has all the properties 
listed in the Appendix. Consequently, if VI «(J) is the 
largest positive eigenvalue of Kp and 81(x) is the corre
sponding eigenfunction 

VI (P)OI = KpOl' 1101 110 = I, (26) 

we have that Vl(P) is a simple eigenvalue, 01(X) > 0, 
at any x E [-a, a]. Then the following relation IS 

valid: 
vl(P) = {sup [(KA 0)0], ilOilo = I} 

= (Kpfll' ( 1)0 = IIKplio. (27) 

By using (27), we can prove the following theorem. 

Theorem 6: (a) Vl«(J) is a continuous function of P; 
(b) vl ({3) is a decreasing function of (3; (c) lim v1«(3) = ° as P -+ 00; (d) lim vl(P) = + 00, as (3 -+ -vl:m + 0, 
provided an interval of positive measure [XO, Xl] S; 

[-a, a] exists, such that l:(x) = l:m at any X E 

[Xo, Xl]' 

Proof' Part (a) is a straightforward consequence of 
the continuity of IIKpllo with respect to {3, whereas 
Part (b) follows from the fact that 

VI (P) = (KpOI' ( 1)0 < (Kp'Ol , ( 1)0 ~ VI ({3'), 

provided (3 > (3'. As far as Part (c) is concerned, 
from (8), (19), (21), and (27) we have 

IIKpOllo = (2)-! IIKflOl1 ~ vYM(2)-~ IIRCA, B)II 11011 
~ VYM«(J + vl:m)-l IlOilo, 

Finally, let us consider Part (d), From (27) with 
() = (2a)-!, it follows that 

v1«(3) = (2a)-1 L:adX l:a K«(3, x, y) dy 

~ (Ym/4a) ("'ldx ("'lE[(l:m + (3/v) Ix - ylJ dy 
Jxo Jxo 

~ (Ym/4a)(xI - xo)2E[(l:m + (3/v)(x1 - xo)], 
(28) 

where E is the exponential integral function. Hence, 
(d) is proved because lim E[(l:m + P/v)(x1 - xo)] = 

+ 00, as (3 --+ -vl:m + O. 

From Theorem 6 we infer the existence of one and 
only one value of p, say PI' such that VI «(Jl) = l. 
Thus we may state the following theorem. 

Theorem 7: (31 is the greatest real eigenvalue of A, 
it is simple and satisfies the relation 

I = IIKptllo. 

Proof' That (31 is a simple eigenvalue of A follows 
from the fact that I = V1«(3l) is a simple eigenvalue of 
KfJ

1 
and from Theorem 4. 

Finally, by means of procedure similar to those used 
in Ref. 2, the following properties can be proved 
without difficulty. 

Theorem 8: PI is not an accumulation point of P,,(A); 
any other eigenvalue of A has its real part smaller than 
PI; if AV>1 = AV>I' IIV>lll ¥= 0, and if v>i(x, fl) = 
V>l(X, -fl), then (V>l' v>;) = l. 

We note that Theorem 8 also indicates a relation
ship between PI and the other real or complex eigen
values of A, if any. 
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7. ASYMPTOTIC FORM OF THE 
NEUTRON DENSITY 

We will now transform the right-hand side of (12) by 
using the results of the preceding section. With this 
aim in mind, we observe that if we put Xl = exp (PIt), 
then Xl is an eigenvalue of the semi group Set) with 
eigenfunction 'lP1. 8 Moreover, 'lP1 is the only eigen
function corresponding to Xl since no eig~nvalues 
A ¥: PI of A exist, such that exp (At) = Xl (see 
Theorem 8). 

If we now indicate by P the projection operator into 
the linear manifold ger.erated by 'lP1 , then the operator 
(I - P)S(t) does not possess the eigenvalue exp (PIt) 
and, as a consequence, its spectral radius is smaller 
than exp (bIt), where b1 < PI' and is greater than the 
real part of any other eigenvalue of A. This last con
dition may be fulfilled because of Theorem 8. It follows 
that, given any " > 0, a positive integer n. can be 
found, such that 

IIS(t)(l- P)II ~ c(,,) exp (bIt), t ~ n., (29) 

where, by using a method similar to that of Ref. 7, 
we have 

c(,,) = max {exp [v(YJ! - ~m}T - bT + "n. 
O::;T::;l 

From (12), we now have 

N = S(t)No = S(t)PNo + N1 

= S(t)[(No, 'lPt)'lP1] + N1, 

where we took into account that PNo = (No, 'lP7)'lP1 
because ('lP1' 1J17) = 1, (see Theorem 8), and where 

N1 = S(t)(I - P)No. (30) 
Hence, 

N = (No, 'lPt)'lP1 exp (PIt) + N1, (31) 

because S(t)'lPl = exp (Plt)1J11. As far as N1 is con
cerned, we have 

IIN111 ~ c(,,) exp (bIt) IINoll, 

provided t is large enough, because of (29). 
Relation (31) is an asymptotic expression of the 

neutron density N, solution of system (1)-(3). We 
note that the second term on the right-hand side of 
(31) becomes negligible in norm with respect to the 
first as t -+ + 00. 

APPENDIX 

In Sec. 6 we need the folIo wing lemma. 

Lemma: Let H be an integral operator in L2 whose 
kernel hex, y) has the following properties: (a) 
h(x, y) is square integrable over the square Ixl ~ a, 
Iyl ~ a; (b) h(x,y) is real and such that h(x,y) = 
hCy, x); (c) h(x,y) > 0. Then H is a compact self-

adjoint operator, its eigenfunctions may be taken real, 
and IIHllo = VI' where 'JI1 is the greatest positive 
eigenvalue. Moreover, 'JI1 is simple and the corre
sponding eigenfunction 911(X) is such that 911(X) > 0 
at any x E [-a, a]. 

Proof: The compactness and the self-adjointness of 
H follow from the general theory of integral operators 
with kernels which are real, symmetric, and square 
integrable.lo Moreover, let 91 = 91r + i91i be an 
eigenfunction of H corresponding to the eigenvalue 'JI, 
where 91r and 91i are real functions and 'JI is a real 
number because H is self-adjoint. We have 

H(91r + i91;) = H91r + iH91i = 'JI91r + i'JI91i 

and also 

H91r = 'JI91r, H91i = 'JI91i' 

because H is a real operator. From the preceding 
relations it readily follows that all the eigenfunctions 
may be taken real. 

We now observe that H must have at least one 
positive eigenvalue; otherwise it would be a negative 
operator. lO This is obviously false since the kernel 
of H is positive and (H91, 91)0 > ° if, for instance, 
91 =: I. Let us then indicate by VI the largest positive 
eigenvalue of H and by 911(X) a corresponding real 
eigenfunction 

H911 = 'JI1911, 11911110 = l. 

From the theory of compact selfadjoint operators,10 
it is known that VI is given by the following relation: 

'JI1 = {sup [(H91, 91)0], 1191110 = I} = (H911' 911)0· 

(AI) 

Assume now that 911(X) is positive on a set S+ c 
[-a, a] and negative on a set S- c [-a, a], where 
S+ and S- are both of positive measure. We have 

'JI1 = (H91l, 911)0 < (HI9111, 19111)0· 

Since 19111 has also norm I, this contradicts (AI) and 
hence we may state that 911 (x) ~ 0. Moreover, since 
911 =1= 0, from the relation 'JI1911 = H911, it follows that 
911 > ° a.e. on [-a, a]. 

We now prove that 'JI1 is simple. Suppose in fact 
that there is another eigenfunction rFl (x) corresponding 
to 'JI1; we can always assume that rFl is real and orthog
onal to 911' (fP1' T1)0 = O. Therefore, T1 is negative on 
a set S- c [-a, a] and positive on a set S+ c [-a, aJ, 
where S- and S+ are both of positive measure. Assum
ing IIT1110 = 1, we have 

'JI1 = (Hrp1' rp1)0 < (Hlrp11, Irpl\)o, 

which contradicts (A I). Hence 'JI1 is a simple eigenvalue. 
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FinalIy, let '11- be the smalIest (negative) eigenvalue 
of H with eigenfunction IP-(x) which may be assumed 
real and normalized: 

We have 

1'11-1 = I(HIP-, IP-)ol < (H lIP-I, IIP-I)o 

:::;; (H IPl' IPl)O = 'Ill' 

where we used (AI) and we took into account that IP
cannot be always positive because of (A2r Since 
IIHllo = max {'Ill; I'll-I}, we conclude that IIHllo = 'Ill' 
This completes the proof of the lemma. 
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The localized states of Newton and Wigner are reconstructed as a superposition of the canonical 
states of Foldy, and these states are then generalized to an arbitrary hyperplane via a procedure. similar 
to that used in a previous work for the hyperplane generalization of helicity states. The corresponding 
hyperplane position operator, with mutually commuting components, is constructed and is seen to be 
equivalent to that local position operator given by Fleming. 

1. INTRODUCTION 
In 1949, Newton and Wigner1 provided an elegant 

treatment of a position representation for elementary 
systems; such systems defined therein are describ
able by states which are invariant under a given 
irreducible representation of the Poincare group. 
Starting from a set of postulates, Newton and Wignerl 
were able to construct basis states for such a position 
representation for the m2 > 0 irreducible representa
tions, which corresponded to a unique position 
operator with mutually commuting components, 
previously discussed by Pryce.2 Unlike such momen
tum representation basis states as the canonical states 
due to Foldy3 and the Jacob and Wick helicity states,4 
however, the localized states and position operator 
constructed by Newton and Wigner do not transform 
covariantly under the action of the Lorentz group. 
This, of course, is seen as a consequence of the frame
dependent localization criterion postulated by Newton 
and Wigner,l and is sometimes noted as an undesirable 
feature of their development. 

On the other hand, several other nonequivalent 
position operators studied by Pryce2 and M0ller5 'are 
defined in a covariant way, but as a consequence do 
not have mutually commuting components. Hence, 
such operators do not immediately provide for a 
corresponding position representation of relativ
istic quantum mechanics, although, as Fleming6 has 
pointed out, may nonetheless be interpreted so as to 
constitute "position" observables. The purpose of 
this paper is to develop a manifestly covariant 
realization of the Newton-Wigner1 localized states, 
by means of the hyperplane formalism recently 
introduced by Fleming.6•7 As such, this paper may be 
regarded as a sequel to an earlier work,S herein 
referred to as J, in which the helicity states of Jacob 
and Wick4 are generalized to an arbitrary spacelike 
hyperplane. 

Toward this end, Sec. 2 consists of a review of the 
hyperplane formalism as given by Fleming6•7 and in 
1,8 with special emphasis being given the hyperplane 
helicity states developed in J.8 The hyperplane 
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The localized states of Newton and Wigner are reconstructed as a superposition of the canonical 
states of Foldy, and these states are then generalized to an arbitrary hyperplane via a procedure. similar 
to that used in a previous work for the hyperplane generalization of helicity states. The corresponding 
hyperplane position operator, with mutually commuting components, is constructed and is seen to be 
equivalent to that local position operator given by Fleming. 

1. INTRODUCTION 
In 1949, Newton and Wigner1 provided an elegant 

treatment of a position representation for elementary 
systems; such systems defined therein are describ
able by states which are invariant under a given 
irreducible representation of the Poincare group. 
Starting from a set of postulates, Newton and Wignerl 
were able to construct basis states for such a position 
representation for the m2 > 0 irreducible representa
tions, which corresponded to a unique position 
operator with mutually commuting components, 
previously discussed by Pryce.2 Unlike such momen
tum representation basis states as the canonical states 
due to Foldy3 and the Jacob and Wick helicity states,4 
however, the localized states and position operator 
constructed by Newton and Wigner do not transform 
covariantly under the action of the Lorentz group. 
This, of course, is seen as a consequence of the frame
dependent localization criterion postulated by Newton 
and Wigner,l and is sometimes noted as an undesirable 
feature of their development. 

On the other hand, several other nonequivalent 
position operators studied by Pryce2 and M0ller5 'are 
defined in a covariant way, but as a consequence do 
not have mutually commuting components. Hence, 
such operators do not immediately provide for a 
corresponding position representation of relativ
istic quantum mechanics, although, as Fleming6 has 
pointed out, may nonetheless be interpreted so as to 
constitute "position" observables. The purpose of 
this paper is to develop a manifestly covariant 
realization of the Newton-Wigner1 localized states, 
by means of the hyperplane formalism recently 
introduced by Fleming.6•7 As such, this paper may be 
regarded as a sequel to an earlier work,S herein 
referred to as J, in which the helicity states of Jacob 
and Wick4 are generalized to an arbitrary spacelike 
hyperplane. 

Toward this end, Sec. 2 consists of a review of the 
hyperplane formalism as given by Fleming6•7 and in 
1,8 with special emphasis being given the hyperplane 
helicity states developed in J.8 The hyperplane 
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generalization of the essentially equivalent canonical 
representation of Foldy3 is also noted. In Sec. 3, the 
localized states first constructed by Newton and 
Wigner1 are redeveloped in terms of helicity and 
canonical states, and the canonical position operator 
corresponding to that developed by Newton and 
Wigner1 is derived. Although this development 
follows in the spirit of the Newton-Wigner1 treatment, 
it is believed that the use of the canonical formalism 
provides for a less tedious derivation and a more 
convenient representation of the localized states and 
position operator. In Sec. 4 the canonical forms of the 
localized states and corresponding position operator 
are generalized to an arbitrary hyperplane, and the 
relationship between localized states on two different 
hyperplanes are given. 

2. THE HYPERPLANE FORMALISM 

Fleming6 was first led to develop the hyperplane 
formalism by the desire to find a way by which the 
various nonequivalent position operators given by 
Newton and Wigner,1 Pryce,2 and M01ler5 could be 
written in a manifestly covariant way. In his develop
ment, Fleming6 has associated one of the inertial 
observers with the standard basis tetrad {el': It = 0, 1, 
2, 3} in the Minkowski space Mil:, and has (partially) 
specified all other inertial observers by associating 
with each a spacelike hyperplane, defined with 
respect to the standard tetrad by a unit normal 
'I'} = ('I'}0, Y), where 'l'}1''I'}1' = 1, and by its orthogonal 
displacement 'T from the origin. 

Fleming's6 manifestly covariant representations of 
the various position operators are given by 4-com
ponent operators XI'('I'}, 'T), the components being 
labeled with respect to the standard observer's tetrad. 
However, owing to the constraint that the operator 
refers to a "point" on the hyperplane defined by 'I'} 
and'T, 

(2.1) 

only three of the components may be independent. 
The parameter 'T is interpreted by Fleming6 to be the 
"time" as used by a hyperplane observer. The mani
fest covariance of the XI'('I'}, 'T) is seen by the fact that, 
whereas the operator is equivalent to the position 
operator used by an arbitrary hyperplane observer, 
it is written in terms of parameters used by the stand
ard observer. 

As a matter of notation, Hammer, McDonald, and 
Pursey9 have called Fleming's6 standard observer the 
"superobserver," all other observers correspondingly 
being called hyperplane observers. The particular 
family of hyperplanes with normal fj = (1, 0) are 

called by Fleming6 the "instantaneous" hyperplanes, 
the particular member with hyperplane "time" 
f = t = ° being spanned by the spacelike part of the 
superobserver's basis tetrad. 

In a later article, Fleming7 has developed his 
hyperplane formalism to include a discussiofi of the 
Poincare group. The hyperplane concept is first 
extended to the momentum space M p such that, for 
each family of hyperplanes 'I'} in M"" there corresponds 
a unique hyperplane with unit normal 'I'} Which passes 
through the superobserver's origin in Mv' As usual, 
the superobserver's basis tetrad in Mp is taken to be 
"parallel" to his tetrad in Mil: by defining Mil: as the 
parameter space of all possible space-time translations 
acting on the quantum-mechanical Hilbert space. 
Fleming7 has then defined operators which generate 
the infinitesimal transformations of the Poincare 
group as seen by an arbitrary hyperplaJl.e observer. 

In particular, the hyperplane operators which gener
ate infinitesimal translations parallel to and orthogonal 
to the hyperplane with normal 'I'} are defined7 by 

MI'('I'}) = PI' - 'l'}1'('I'}P), 

H('I'}) = ('I'}P), (2.2) 

where ('I'}P) == 'l'}I'PI', with the pI' being the infinitesimal 
generators for 4-translations as used by the super
observer. Also, the operators which generate homo
geneous transformations in the hyperplane 'I'} are 
defined7 by 

(2.3) 

where the MI'V are the superobserver's generators for 
all homogeneous transformations and the completely 
antisymmetric quantities f.l'vpa are defined by 

f.0123 = f.123 = + 1. 

Furthermore, the operators which generate infinitesimal 
"boosts" orthogonal to the hyperplane are given by? 

(2.4) 

The component labels of these operators refer to the 
superobserver's basis tetrad {el'}, Although Fleming's7 
operators do not transform covariantly in the ordinary 
sense of transformations used by the superobserver, 
they are manifestly covariant in the sense that they 
are defined, with the same form, for all hyperplanes. 

In 1,8 a special basis tetrad {~I":It' = 0, 1,2, 3} for 
an observer on an arbitrary hyperplane is defined 
with respect to the super observer tetrad {el'} by 

(~o')Il = [I'.('I'})(eoy = /1'0(1]), 

at) I' = /l'v('I'})(eiy = 11';('Y}), (2.5) 
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the quantities IJl y( 'Yj) being identified with the compo
nents of the Lorentz transformation without rotation 
which takes the instantaneous hyperplane normal if = 
(I, 0) into 'Yj. All other tetrads for a given hyperplane 
may then be related to that tetrad defined by Eq. 
(2.5) through a homogeneous transformation in the 
hyperplane, or "hyperplane rotation." Here, the 
notation of 18 is retained, in which the "primed" 
indices refer to components to the hyperplane tetrad 
of Eq. (2.5), and a vector as seen by the hyperplane 
observer is written as 

(2.6) 

The hyperplane observer's canonical Poincare 
generators PJl', Ji', and N i', which are written with 
respect to the hyperplane tetrad of Eq. (2.5) are seen8 

to be related to the hyperplane operators of Eqs. (2.2)
(2.4) by 

pO' = H('Yj), 

pi' = IJli('Yj)KJl('Yj), 

Ji' = 1/('Yj)JJl('Yj), 

N i' = l/('Yj)NJl('Yj). 

(2.7) 

With the specification Eq. (2.5) of the hyperplane 
tetrad and the hyperplane Poincare generators of 
Eqs. (2.2), (2.4) and (2.7), the translation, rotation, 
and special Lorentz transformation operators which 
act on the quantum-mechanical state space as used by 
the hyperplane observer are given respectively byB 

T['Yj; tea)] = e-iaJl,PJl' = ei(aJlKJl-rH>, 
3' 2' 3' 

R['Yj; r('Yj; ~fJy)] = eiaJ eipJ eiYJ 
. JJl 'p JJl . JJl = e'''Jl e' Jl e'YJl , 

L['Yj; w(u)] = eiui'Ni' = eiVJlNJl . 

The hyperplane observer's helicity states as 
cussed8 are written symbolically as l(ms)€pA)H 
satisfy 

pi'l(ms)€p )H = pi' l(ms)€pA)H' 

pO'I(ms)€p )H = €[pi'pi' + m2]t I(ms)€p )H' 

;('Yj) l(ms)€pA)H = € l(ms)€pA)H, 

7T('fj) l(ms)"pit)H = it l(ms)"pit)H, 

(2.8) 

dis
and 

(2.9) 

where €('Yj) and 7T('Yj) are the hyperplane observer's 
sign of the energy and helicity operators, respectively. 
The usual Lorentz-invariant normalization is taken 
for these states, so that 

('Yj; (ms')€'p'A' I 'Yj; (ms)"pA) 

= 2w(p)<5.,.<5.,.<5;,';.<53(p' - p), (2.10) 

with w(p) = (pi'i' + m2)t. The helicity states of Eq. 
(2.9) are furthermore seen in 18 to be related to the 

helicity states used by the superobserver by the trans
formation which takes the superobserver tetrad {eJl} 
into the tetrad {~Jl'} used by the hyperplane observer. 

Like the Jacob and Wick4 helicity states, the 
canonical states of Foldy3 also form a basis for the 
m2 > 0 irreducible representation carrier spaces of 
the Poincare group, but differ from the helicity states 
in that the spin label A is interpreted as the component 
of angular momentum in the e3 direction, instead of 
the p direction. The superobserver's general canonical 
state l(ms)€pA)c is related to the rest state by 

l(ms)€pA)c = L~(p) l(ms)€pA), 

where Ii = (€m, 0) and 

L~(p) = Hf(p)R(p). 

(2.11) 

(2.12) 

Here, the transformation I~(p) is the Lorentz trans
formation which takes the standard momentum 
Ii = (€m, 0) into p = (€[m2 + p2]t, p). 

Analogous to Eq. (2.9) for the helicity states, the 
canonical states are seen to satisfy 

PJlPJlI(ms)"pA) = m2 1(ms)€pA), 

WJlWJlI(ms)€pA) = -m2s(s + 1) l(ms)€pA), 

pJl l(ms)€pA) = pJl l(ms)€pA), (2.13) 

f: l(ms)€pA) = € l(ms)€pA), 

J 3 1(ms)"pA) = A l(ms)"pA), 

where pO == €[m2 + p. p]t. Following a procedure 
similar to that used for the helicity states,8 the canoni
cal states are seen to transform under a general 
Lorentz transformation I(w) with operator L(w) as 

L(w) IpA)c = I D;;.[l'(l(w»] l(Ip),u), (2.14) 
Jl 

where 

(2.15) 

is an element of the little group R(3). 
One could now proceed in a manner parallel to the 

preceding treatment of helicity states in 18 to generalize 
Foldy's3 canonical representation to a hyperplane. 
However, Macfarlane10 has shown that the canonical 
representation is related to the helicity representation 
by 

Ipoc)c = R~(p) Ip~)H 

= ! D1,,[ro(p)] /pA)H, (2.16) 
;. 

where R~[ro(p)] is the rotation operator corresponding 
to ro(p) which acts only on the spin variables. Thus, 
the hyperplane generalization of canonical states may 
be made directly from the results of the helicity 
representation generalization. 
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In terms of the hyperplane helicity states of 18, the 
hyperplane canonical states are defined by 

11]; pa)c = Rg[1]; pJ 11]; pa)H 

= L D~~[ro(1]; p)JI1J; pA)I[, (2.17) .. 
with ro(1J; p) being the hyperplane rotation which 
takes p = [pI', p2', p3'] into the ~3' direction. From 
Eq. (2.1) and the unitarity of the rotation matrices, 
the normalization is seen to be the same as for 
helicity states: 

(1J; (ms')E'p'a' \1]; (ms)Epa)c 

= 2w(p)bs'i~d~"',1.b3(pli' - pi'), (2.18) 

with w(p) = [m2 + i'i'Jt. 
Corresponding to Eq. (53) of 1,8 the hyperplane 

canonical states may be written in terms of the super
observer momenta k" = l"i(1J)pi' by 

Ii]; k(ofj)a(1J»c == 11J; p(1])A(1J)c 

= L D!a[ro(1]; p)] Ii]; k(1J»),(1J»H' (2.19) 
;. 

Parallel to the treatment given in 1,8 the hyperplane 
canonical states are seen to be related to the super
observer's canonical states by 

Ii]; k(1J)a(1J»c = L~(1J; pf)L(1J)L~(prl Ip),), (2.20) 

where k" = 1"; ('fj)pi , = p" - '1t(1JP) and the L~ are the 
corresponding hyperplane and superobserver opera
tors of Eq. (2.12). Also, L(1J) is that operator which 
corresponds to the Lorentz transformation 1(1J) which 
takes the superobserver tetrad {ell} into the hyper
plane tetrad {~,,} It then follows by the same argu
ment as given in 18 that 

Ii]; k(fj)a(1J)c = L(1J) I(l-lp)a)c 

= I D;,,[l(l(1J))] Ipftc , (2.21) 
p 

where k" = p" - 1J"(1JP) and t is the little group 
element, given by Eq. (2.15), which corresponds to 
the Lorentz transformation I( 1J). It is then easily 
verified that the hyperplane canonical states of f.q. 
(2.20) satisfy 

K" Ii]; ka)c = k" Ii]; ka)., 

J3' Ii]; ka)c = oc Ii]; ka)c. (2.22) 

3. THE NEWTON-WIGNER LOCALIZED 
STATES 

In constructing their localized states, Newton and 
Wignerl have postulated that in order to form a basis 
for a position representation of elementary systems, 
such state must transform within the m2 > ° irreduc
ible representations of the Poincare group. This 

implies that such states may be partially labeled by 
the mass, spin, and sign of the energy. However, 
since the treatment of localized states by Newton and 
Wignerl is done in terms of the Bargmann-Wignerll 

representation, such a simple labeling scheme is not 
available, owing to the fact that the solutions of the 
wave equations 

(3.1) 

are not in fully reduced form. As a consequence, the 
resulting localized states and corresponding position 
operator take relatively complicated forms. 

In this development, the Jacob and Wick4 helicity 
formalism is used, since it provides a more convenient 
labeling scheme for states which transform within 
a given irreducible representation of the Poincare 
group. Indeed, it is seen that in terms of the canonical 
representation of F oldy, 3 which is related to the helicity 
representation by a momentum-dependent rotation of 
the type given in Eq. (2.16), the resulting localized 
states and position operator are of especially simple 
form. Of course, since the Newton-Wigner1 states 
are unique, and there exists a transformation, given 
by Pursey,12 which relates the Bargmann-Wignerll 

representation with the helicity representation, one 
may, in principle, derive the results found herein from 
the Newton-Wigner1 results. Fortunately, though, 
the convenience of the helicity labeling scheme allows 
one to retrace the Newton-Wigner1 development 
with much less difficulty. 

In parallel with the Newton-Wigner1 treatment, 
the set So(msE) of states localized at the'origin of the 
tetrad {e":ft = 0, 1,2, 3} is first written as a super
position of (2s + 1) helicity states 

l(ms)Ex = Oa; Xo = 0) = t J djJ¢~r:s)€(p) I (ms)EpA)H . 

(3.2) 

Here, djJ is the Lorentz-invariant volume element 
[2W(p)]-1 d3p and the functions ¢i';s)€(p) remain to be 
determined, as do the allowable values of the param
eter a. The sets of states S",(msE) over each point 
(XO, x) may now be defined in terms of the set So(s) 
ofEq. (3.2) via the translation t(XO, x):(O, 0)-+ (XO, x) 
with operator T(t): 

I (ms)Exa; XU) = T(t(xO, x» \(ms)EOa; 0). (3.3) 

Since helicity states transform under translations as 

T[t(x , x)J l(ms)ep),)H = e- i"'I'P"I(ms)EpA)H' (3.4) 

the states defined by Eq. (3.4) are given by 

l(ms)Exa; xO) = t J dp¢~':S)E(p)e-i"'"j)" \(ms)Ep),)H, 

(3.5) 
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where pO = e(m2 + p. p)!. Where there is no ambigu
ity, the irreducible representation labels m, s, and e 
will be suppressed. 

In order uniquely to define localized states, Newton 
and Wignerl have postulated that the set So(m, s, e) 
of states defined by Eq. (3.2) satisfies the following 
conditions: 

(a) The set So is a linear set. 
(b) The set So(s) is invariant under rotations about 

the origin and under spatial and temporal inversions. 
(c) A state defined over an arbitrary point (XO = 0, 

x) by Eq. (3.5) is orthogonal to each state of So. 
(d) The states of So satisfy certain continuity con

ditions, so that the infinitesimal generators of the 
Poincare group are applicable. 

Postulate (c) may be called the "locality" condition, 
in that it provides a group~theoretical criterion for 
the spatial localization of relativistic states. One sees 
that postulate (c) and Eqs. (3.2) and (3.4), together 
with the orthogonality Eq. (2.10) for helicity states, 
lead to 

(OCl'; 0 I XCl; 0) = c5""",c53(x) 

= t f dp<l>!",'(P)<I>A",(p)eiP
'
X

, (3.6) 

so that the <l>A"'(P) must satisfy 

! <l>ia,(p)<I>Alp) = (27Tr32w(p)J""",. (3.7) 
A 

Moreover, the rotational invariance of So imposed 
by postulate (b) implies that, for an arbitrary rotation 
r(Clpy) with operator R(r), the states of Eq. (3.2) must 
satisfy 

R(r) 10, Cl; 0) = .2 Ca'll(r) 10Cl'; 0) H, (3.8) 
a' 

where the coefficients Ca ,., may depend only on the 
rotation r and the spin s, with the sum being over the 
entire range of the parameter Cl'. It is assumed at this 
pointthattherange of Cl is, in fact, that of the helicities, 
from -s to s by integral steps, and that at most the 
coefficients CCr) are related to the rotation matrix 
D8(r) by a fixed unitary transformation U: 

CS(r) = U-ID8(r)U. (3.9) 

These assumptions are justified when it is shown that, 
with this choice, the states defined by Eq. (3.2) form 
a basis for So. In particular, there is no loss in 
generality in taking U",p = c5",p, so that 

R(r) 10Cl; 0) = 2 D:,aCr) IOCl'; 0). (3.10) 
a' 

By using the Lorentz transformation property of the 
helicity states together with Eqs. (3.2) and (3.10), it 

follows that 

R(r) IOCl; 0) = 2 fdPDh(r)<I>;.ir-lp) Ip).')H 
A'A 

=! Jdp<l>u(P)D!'a(r) Ip).)H, (3.11) 
a'A 

so that the <I> la must satisfy 

2 D!!l,(r-l)<I>!l'ip)D~p(r) = <I>",p(r-1p). (3.12) 
!l'!l 

Thus, by noting the similarity of Eq. (3.12) with 
the transformation property of the rotation matrix 
D[ro(p»), 

D[ro(rlp») = D(rl)D[ro(p»)D(r), (3.13) 

where ro(p) is the rotation which takes the p direction 
into the e3 direction, one is led to choose 

It is now a simple matter to verify that, with this 
choice of <I> la' both the localization condition of Eq. 
(3.7) and the rotational symmetry condition of Eq. 
(3.12) are satisfied. 

The localized states defined by Eq. (3.2) may now 
be written as 

IOCl; 0) = (27T)-! t f d3p[2w(p)r~ D~Aro(p») Ip).)H· 

(3.15) 

However, by recalling the relationship between the 
helicity representation and the canonical representa
tion given by Eq. (2.16), the localized states of Eq. 
(3.2) may be written in an even simpler form as 

Hence, as with the canonical representation, the 
parameter cl is to be interpreted as the component of 
spin in the e3 direction. 

Foldy3 has shown that, under space inversion P and 
Wigner time reversal,13 the canonical states transform 
according to 

p I€p).)c = eiOp
(€)2S 110 - P).)c, 

T I€p).)c = ei6r(<)( _1)8-l 110 - P - ).)c> (3.17) 

where (Jp and (Jr(€) are fixed phases. Thus the states 
given by Eq. (3.16) are seen to transform as 

P leOCl; 0) = eiO
.(€)28 leOoc; 0), 

T leOoc; 0) = eiOr«)( _1)8-a leO - oc; 0), (3.18) 

so that, with the choice Eq. (3.14) for <P),,.{p), postulate 
(b) is completely satisfied, as are postulates (a) and (d). 
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In order to show that the (2s + 1) states of Eq. 
(3.16) form a basis for So(mse), it is sufficient to show 
that there is no additional state \'F~ms)E) ~ 0, which is 
in So(mse) such that 

(3.19) 

for each -s ::s;; oc ::s;; s. Since the canonical states form 
a basis for the given irreducible representation of the 
Poincare group, any such state \'Ya) may be written as 

\'Fa) = ~ J dp'FaaCp) \plX)c' (3.20) 

where 
'Faa(p) = c(plX I 'Fa)· (3.21) 

Then, from Eqs. (2.10) and (3.16), one sees that 

(OIX; 0 I 'Fa) = (27Tr~J d3p'FaaCp)[2w(pW! = 0, 

(3.22) 

for all -s :::;; oc :::;; s. However, since \'Fa) is assumed 
to be in So, then it must be orthogonal to each 
element of So translated by an arbitrary distance x. 
I n particular, 

(XIX; 0 I 'Fa) = (27T)-~J d3p'FaaCp) [2w(pW l e-;P-X = 0, 

(3.23) 

for x ~ O. Then, by combining Eq. (3.22) with Eq. 
(3.23), 

f d3p'FaaCp)[2w(pWte-iP'X = 0, (3.24) 

for all x. But [w(p)]--~ is well defined, so that any 
such state 'FaaCp) must identically vanish. Hence, the 
set of (2s + I) states given by Eq. (3.16) forms a 
basis for So(mse). By the same argument, the set of 
states defined by Eq. (3.5) over each x = (XO, x) 
forms a basis for the set Sx(mse) over x. It must be 
stressed, however, that from postulate (c), the sets 
Sa; are localized only with respect to other sets Sx' 
over the same instantaneous hyperplane. Owing to 
the extra factor e-ipOxo which would appear in 
(xoc; XO I Ooc; 0), it is clear that sets SxCXO) and 
SO (XO = 0) over two different instantaneous hyper
planes are not orthogonal. Thus, the "time" param
eter XO is seen as a label specifying the particular 
hyperplane over which the sets Sx are defined, instead 
of as an eigenvaluelike parameter as are the Xi. 

The localized states over an arbitrary point x on 
the XO = 0 instantaneous hyperplane are, from Eqs. 
(3.5) and (3.16), 

\xoc; 0) = (27Tri f d3p[2w(p)rieiP'X \poc)c' (3.25) 

Equation (3.25) may be inverted in the usual way to 
yield 

\poc)c = (27T)-l[2w(p)]! f d3xe-ip.X \xoc; 0) (3.26) 

and 

c(poc' I XIX; 0) = (XIX; 0 I pIX'): 

= oa'i27T)-![2w(pn~eiP'X. (3.27) 

The Hermitian position operator, of which the 
localized states of Eq. (3.16) are eigenstates, may now 
be constructed in a manner similar to that used by 
Newton and Wigner. 1 On the X O = 0 instantaneous 
hyperplane, the operators Xi (XO = 0) are defined by 

Xi(O) \xoc; 0) = Xi \xoc; 0). (3.28) 

From Eg. (3.25), this may be written as 

Xi(O) \XIXO) = (27Tr i J d3p[2w(p)r!xiei
P-X \plX)c' 

(3.29) 
One now needs only to note that 

[2w(p)]!x iei
P-X = [2W(p)]t(1 ~. eip-x) 

i op' 

= i (~ + [2W2(p)t1pi) [2w(p)]keiP'X 
°Pi 

(3.30) 

to see that the momentum-space representation of the 
Xi(O) is given by 

Xi(O) = i(~ + [2W2(p)r1pi). (3.31) 
°Pi 

This is exactly the same result as that found by Newton 
and Wigner ,1 but which in their case is applicable only 
to the spin-zero irreducible representations. Owing to 
the choice of the canonical representation in this 
development, however, the position operator of Eq. 
(3.31). may be applied within the irreducible repre
sentatlOns for any spin and for either sign of the 
energy, as has been noted by Berg.14 

The commutation rules satisfied by the Xi(O) are 
readily found from Eq. (3.31) to be 

[Xi, Xi] = 0, 

[Pi, Xi] = _i/jii, (3.32) 

[PO, Xi] = _ipijPO, 

as previously shown by Newton and Wigner.l Here 
po is given by ± (P • P + m2)!, Moreover, since from 
Eqs. (3.10) and (3.28) the Xi are seen to transform 
under rotations like the pi, 
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it then follows that 

(3.34) 

The Newton-Wignerl position operator is given 
at time XO by 

where T[t(xO,O)] is the purely timelike translation 
operator e-iXopO. It then follows from the identity 

eAC)e-A = 19 + [A, C)] + (1/2!)[A, [A, C)]] 

+ {higher order commutators}, (3.36) 

with A = e-iXopo and 19 = Xi(O), together with Eq. 
(3.32), that the Xi(t) take the well-known form 2 

Xi(XO) = Xi(O) + XOPi/PO. (3.37) 

4. THE HYPERPLANE LOCALIZED STATES 

In order to generalize the results of Newton and 
Wignerl to an arbitrary hyperplane, it is first necessary 
to generalize the defining postulates (b) and (c) to an 
arbitrary spacelike hyperplane with tetrad specified 
by Eq. (2.5). Of course, conditions (a) and (d) are 
hyperplane independent and so remain unaltered. As 
was the case with the development of the hyperplane 
helicity states,8 the hyperplane observer will define all 
indexed quantities with respect to the special tetrad 
defined by Eq. (2.5), and all states and functions are 
labeled by n in order to specify the tetrad to which 
the parameters refer. The notation for primed indices 
and brackets instead of parentheses to distinguish 
vector components will also be retained. 

In parallel with Eq. (3.2) the hyperplane localized 
states will first be defined over the origin as a super
position of the hyperplane helicity states of I 8: 

In, 0; (ms)€OIX) == t f dp<l>l,:s)E[n; p] In; (ms)€pA)H' 

( 4.1) 

where dp == [2W(p)]-1 dpl' dp2' dp3' and P = [pl',p2', 
p3'] is the 3-momentum as seen by the hyperplane 
observer. The states over an arbitrary point [XO' = 
7, x] are defined by 

In, 7; (ms)€xlX) = T[n; t[7, x]] In, 0; (ms)€OIX), (4.2) 

where 
t: [0, 0] -- [7, x], (4.3) 

the parameter 7 being the hyperplane observer's 
"time" parameter. The translation operator T[n, t] is 
given by Eq. (2.8) in terms of the hyperplane param-

eters and Poincare generators. In parallel with Eq. 
(3.5), the general state is then given by 

In, 7'; (ms )€XIX) 

= t f dp<l>~S)E[n; p]e-iXI"P.u' In; (ms)€pA)H' (4.4) 

where pO' = €w(p) = €(m2 + pipi')!. As was the case 
in the development for the instantaneous hyperplane, 
the labels m, s, and € = €(n) will be suppressed when 
there is no ambiguity. 

The postulates of Newton and Wignerl may now 
be generalized to an arbitrary hyperplane by the 
following: 

(a/) The set So(n; ms€) is a linear set. 
(b /) The hyperplane set SoC n; ms€) localized at the 

origin is invariant under hyperplane rotations and 
hyperplane spatial and temporal inversions. 

(c/) A state defined over an arbitrary point [0, x] 
by Eq. (4.4) is orthogonal to each state of So(n; ms€). 

(d/) The states of SoC n; ms€) satisfy certain continu
ity conditions, so that the infinitesimal generators of 
the Poincare group are applicable. 

Conditions (a/) and (b /) are identical with conditions 
(a) and (d). The argument leading to the choice of 
satisfactory hyperplane functions <l>i.~[n; pI follows 
in exact parallel with that presented in the preceding 
section, the only difference being the replacement of 
the instantaneous hyperplane parameters €, A, and pI' 
by the corresponding hyperplane parameters €(n), 
A(n), and pI". The hyperplane result corresponding to 
Eq. (3.14) is, in terms of the hyperplane parameters, 

<l>i7:,~~~q)[n; p] = (27Trtt[2w(p)]!Dl(q)~(q)[n; ro(n, p)], 

(4.5) 

where ro(n, p) is the hyperplane rotation which takes 
p = [pI', p2', p3'] into the ~3' direction and 

In terms of the hyperplane helicity states, the 
localized states of Eq. (4.1) take the form 

In, 0; OIX) 

= (27Trtt t Jd3p [2W(p)r!D1a[n; ro(n, p)] In; pA)H 

(4.6) 

or, in terms of the hyperplane observer's canonical 
states, 

In, 0; OIX) = (27Tr i J d3p[2w(p)r! In; pIX).. (4.7) 
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The hyperplane states over arbitrary Xi' are corre
spondingly given by 

11),0; XIX) = (27T)-! f d3p[2w(p)r!e
ipi'"r 11); plX)c, 

(4.8) 

with the hyperplane observer's position operator 
given as 

with 

Xi'(O) = i (~ + [2W2(p)r1l')' . 
api' 

(4.9) 

(4.10) 

In order to now write the hyperplane states of Eq, 
(4,6) in terms of the superobserver's momenta and 
space-time parameters, it is necessary to recall the 
following relations from Sec. 2: 

11j; (ms)€(1))kI"(1))A(1)))c = 11); (ms)€(1)pi'(1)A(1))C' 

(2.19') 
and the invariant volume element 

d I'd 2' d 3' 
dp = P P P 

2w(p) 
where 

kl" = (~i,ypi' = [1";(1)pi' (4.12) 

is the hyperplane 3-momentum as described by the 
superobserver. With the definition 

Eq. (4.7) may thus be written in terms of the super
observer momenta parameters as 

11j, 0; OIX) = (27Tr! f d4kb(1)k) [2w(k)r! 11j; klX)c, 

(4.14) 

where w(k) = [m2 - kl"kl"]!. 
The general states over the point x = [XO', Xi'] = 

(XO, Xi) are then found by applying to Eq. (4.7) the 
hyperplane translation t( 1); xI''), with operator 

where 
yl" = [l"i(1)Xi', r = xO', 

xl" = yl" + rlr. 

(2.8') 

(4.15) 

The hyperplane generalization of Eq. (3.5) is then 
seen to be 

11j, r; y(1)IX(1)) = (27Tr! f d4kb(1)k)[2w(k)r! 

x e-iCl/l"kI"W,,(k)T] 11j; k(1)IX(1))c. (4.16) 

The hyperplane localization condition correspond
ing to that given by Eq. (3.6) is, in terms of the 
hyperplane states, 

(1j, 0; y'IX' i1j, 0; YIX) = 15",,,15 3 [1); y' - y], (4,17) 

where, with Eq. (4.15), the hyperplane Dirac distribu
tion 153[1);y' - y] is given by 

b~[1); y' - y] = (27T)-3fdl' dp2' dp3'ei /(":"-x';') 

= (27Tr3f d4kb(1)k)e-ikl"(l/l"-y'Il). (4.18) 

As is the case with localized states on an instan
taneous hyperplane, the localization criterion of Eq. 
(4.17) applies only to states defined over a given hyper
plane, with normal 1) and hyperplane "time" r. 
Neither do the hyperplane localized states transform 
covariantly under hyperplane Lorentz transforma
tions /( 1); w), as is seen from the noncovariance of the 
localization condition Eq. (4.17). However, the sets 
Sx(1) , for all 1) and all x, do furnish a manifestly 
covariant realization of localized states in the sense 
that the superobserver has, by Eq, (4.16), a basis 
set for the Newton-Wigner1 "position" representation 
for each inertial frame. 

The hyperplane position operator used by the 
superobserver may now be defined by 

yll(1), r) = (~i'YXi'(7") = [lli(1)X i'(r), (4.19) 

where the hyperplane operator Xi' (r) has been given 
by Eqs, (4.9) and (4.10). From Eq. (2.7), KI1(1) = 
/IlJ1)Pi' and H(1) = po', so that Eq. (4.19) becomes 

yll(1),7") = yll(1) , 0) + r KI"(1) , 
H(1) 

(4.20) 

the local hyperplane operator first written in this form 
by Fleming,S Here, 

P(1), 0) =Wi(1)(~ + [2W2(p)r1pi')' (4,21) 
api' 

In terms of the hyperplane momenta kll = /lli1)l', 
it follows immediately that 

P('l'],O) = i(~ + (2W2(k)r1kll). (4.22) 
okl" 

The connection between the hyperplane states 
localized over the origin and the instantaneous hyper
plane localized states may now be demonstrated. 
From Eq. (4.14), with the connection between the 
respective hyperplane and superobserver canonical 
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states given by Eq. (2.19), it follows that 

11j, 0; OtX(1]» = (27Tr! J dk[2w(k)]! 11j; k(1])tX(1]»c 

= (27Tri J dp'[2w(p')]! 11]; p'(1])tX(1]»c, 

(4.23) 

where kit = [ lti1])p'i'. By taking p' = [-I(1])p and 
inserting the result of Eq. (2.21), Eq. (4.23) becomes 

11j, 0; OtX(1]» = (2 7Tr i J d(/-1p)[2w(/-1p)]!L(1]) 1(l-lp)tX)c 

= (27T)-i J dft[2w(l-lp)]!L(1]) 1(/-1p)tX)c, 

(4.24) 

where (I-lp) is the spatial part of the 4-momentum 
[-1( 1])p. By noting that 

w(l-lp) = [m2 
- IltilViPltPvl~ = 1]ltplt (4.25) 

and using Eq. (2.21), Eq. (4.24) becomes 

11j, 0; OtX(1]» = (27Tri t J dp[2(1]p)]! Dpa[r(l(1]»] Ip,B)c' 

(4.26) 

Here l<(I( 1]» is the rotation given by Eq. (2.15), which 
is momentum dependent. By applying the inversion 
Eq. (3.26) to Eq. (4.26), the connection is thus seen 
to be 

11j, 0; OtX(1]» = t J d3X'J!p~(1]; x) Ix,B; 0), (4.27) 

where 

'J!p~(1]; x) = (27Tr3J d3p[(1]p)jw(p)]! Dpa[t(l(1]»]e-iP'X. 

(4.28) 

F or the special case of the instantaneous 
plane, 1;(1]) = 15;, so that 

1'(/(1]» = 11, 

and 
Dpa[l(/(1j»] = bpa , 

(1jp) = w(p) = (m2 + p • p)!. 

Then, Eq. (4.28) reduces to 

'J!M1j; x) = bpi 27T)-3f d3pe-iP'X 

= bpabacx), 

so that Eq. (4.27) becomes the identity 

11j, 0; OtX(1j» = Ix = OtX; 0). 
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The multiplicity of solutions to nonlinear eigenvalue problems is analyzed by a method originally 
proposed by Hammerstein, and the results are given in tables which display the relation between the 
number of solutions for eigenvalues in the neighborhood of a critical eigenvalue and the properties of 
the nonlinear function and its derivatives. Several general types of nonlinear functions are considered, 
and a simple method of estimating the critical eigenvalue for each type is presented. Since these functions 
describe physical phenomena, a stability analysis is given for the cases of multiple solutions in order to 
determine which solution represents the observed physical state. The results are applied to the following 
nonlinear eigenvalue problems: (i) nonlinear heat generation and the temperature distribution in con
ducting solids; (ii) temperature distribution in a heat-conducting gas undergoing chemical reactions, leading 
to a thermal explosion; (iii) nonlinear effects of temperature-dependent viscosity on the temperature 
distribution of a fluid flowing in a pipe; (iv) neutrbn flux distribution in a reactor for temperature
dependent cross sections. 

1. INTRODUCTION 

The current interest in nonlinear eigenvalue prob
lems is devoted to the study of the branching of 
solutions for certain values of the eigenparameter, 
known as "bifurcation points." 1 The investigation of 
these particular characteristics of such problems is 
important since many physical situations can be 
described by boundary-value problems of this kind.1- 6 

Because these physical problems usually involve the 
equilibrium distribution of a certain quantity, it is 
necessary to determine if the solution is multivalued 
for particular circumstances. 

Millman and Keller treat the problem of deter
mining the steady-state temperature distribution due 
to a nonlinear heat source or sink. They use pertur
bation theory to obtain a solution and, in the process, 
make some comments concerning the location of 
bifurcation points and the nature of the solution 
branching. As we show later, however, perturbation 
theory can be used only in a limited way to determine 
the nature of the branching solutions. We use for this 
purpose a different method, first proposed by 
Hammerstein,7 and independent of the inherent 
limitations of perturbation theory. 

We show that, for some functions f(x, u) in Eq. 
(2.1) having characteristics of a practically important 
nature, there are two, one, or no real solutions to the 
eigenvalue problem for certain values of the eigen
parameter. If there is a bifurcation point producing 
multiple solutions for some eigenvalues, it~ numerical 
value can be estimated for certain types of nonlinear 
terms, which include some of practical importance. 
If the solutions to the so-called "steady-state" prob
lem (2.1) and (2.2) are perturbed an infinitesimal 

amount and the related time-dependent problem (4.1) 
is studied, then it is possible to determine the relative 
stability associated with the steady-state solutions. If 
there happen to be two equilibrium solutions of (2.1) 
and (2.2), one can obtain both of. the solutions by the 
method proposed by Shampine.8 This method is 
one of successive approximations by which the suc
cessive iterate converges monotonely and uniformly 
upwards to the lesser solution or downwards to the 
greater solution, depending on the initial trial function. 

We consider four examples of practical importance: 
(i) nonlinear heat generation and the temperature 
distribution in conducting solids; (ii) temperature 
distribution in a heat-conducting gas undergoing 
chemical reaction, leading to a thermal explosion; 
(iii) nonlinear effects of temperature-dependent vis
cosity on the temperature distribution of a fluid 
flowing in a pipe; (iv) neutron flux distribution in a 
reactor for temperature-dependent cross sections. 

2. BRANCHING OF SOLUTIONS 

We study the branching of solutions of 

Lu = Af(x, u), xED, 

Bu = 0, X E oD, 

(2.1) 

(2.2) 

where x = (Xl, x2 , ••. , X m), L IS the uniformly 
elliptic self-adjoint operator 

Lu = - i 1..(a;;(x) aU) + ao(x)u, 
;,;=10Xi ax, 

and the boundary conditions are of the form 

AU 
Bu == cx(x)u + (3(x) - . ov 

1567 
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The coefficients aij(x) = aj;(x) are continuously 
differentiable, ao(x) ~ ° is continuous, and, for all 
unit vectors ~ = (~I' ~2"" '~m)' 

m 

L ai;(x)~i~j ~ a > 0, xED. 
i.i=l 

The functions oc(x) and f3(x) are piecewise continuous 
with oc(x)::: 1 and P(x)::: ° on oDI, where oDI + 
8 D2 = 0 D and 0 DI is of positive measure. On ,8 D2 , 
oc(x) ~ 0, f3(x) ~ 0, and olov is the conormal 
derivative 

with n(x) = (nl(x), n2(x), ... ,nm(x» being the outer 
unit normal to 0 D at x. 

With these assumptions, and using the Green's 
function for the operator -L, we transform the 
nonlinear eigenvalue problem (2. I) and (2.2) into the 
equivalent nonlinear integral equation 

u(x; A) = A In G(x; t)f(t, u(t; A» dt. (2.3) 

This is the equation considered by Hammerstein,7 and 
later by Vainberg and Trenogin.9 

Let uo(x) be a solution of (2.3) for A = Ab ; that is, 

Hammerstein obtains, from Eq. (2.3), 

v(x;,u) - AoJD G(x; t)f,,(t, uo(t»v(t;,u) dt 

=,u JD G(x; t)[f(t, uo(t» + v(t; ,u)f,lt, uo(t))) dt 

+ (Ab +,u) In G(x; t) 

x [v2(t; ,u)fu(2)(t, uo(t»/2! + ... J dt. (2.8) 

In order that Eq. (2.8) be solvable, it is necessary 
that the right-hand side of (2.8) be orthogonal to 
cp+(x), the normalized eigenfunction of the transposed 
kernel G(t; x)/u(x, Zlo(x» corresponding to the charac
teristic value Ab • As can be verified by multiplying (2.7) 
by /u(x, uo(x», cp+(x) is given by 

cp+(x) = a/,,(x, uo(x»cp(x), 

where a2 = UD Uucp)2 dX)-l. Since cp+(x) is the solu
tion to a homogeneous equation, one can choose the 
appropriate sign for a when /u > ° ·or /u < 0, to 
insure that cp+ > 0, just as cp > 0. 

We let 

€(,u) == Lcp(t)V(t;,u) dt 

::: JDCP(t)[u(t; Ab +,u) - uo(t)] dt; 

Uo(x) = Ao L G(x; t)f(t, uo(t» dt, 
this orthogonality condition leads, after some effort, 

(2.4) to the "branch equation" 

where Ab is the simple principal eigenvalue and cp(x) is 
the corresponding normalized eigenfunction, if it 
exists, of the equation 

Bcp = 0, X E oD. (2.6) 

cp(x) is assumed to be real and strictly positive in D. 
We note that cp(x) is also the principal eigenfunction 
of the equivalent integral equation 

cp(x) = Ab JD G(x; t)f,,(t, uo(t»cp(t) dt. (2.7) 

Here/u(nl(x, u(x» denotes the nth derivative of/with 
respect to u. 

If v is to describe the solution of (2.3) in the neigh
borhood of Uo for A in the neighborhood of Ab , then we 
set v = u - Uo and ,u = ). - Ab • Assuming that 
f(x, u) is an analytic function of u so that it can be 
expanded in terms of a Taylor series about u = uo, 

OCJ OCJ OCJ 

L LmO€m + L €m L ,u!Lm! = O. (2.9) 
m=2 m=O !=1 

Here the first few "branch coefficients" are 

LOI = l r dx r dtG(x; t)f(t, uo(t»cp+(x), (2.10) 
Ab JD JD 

L 20 = tAb Ldx JDdtG(X; t)fu,,(t, UO(t»cp2(t)cp+(x), 

(2.11) 

and ifit happens thatj",.(x, Zlo(x» == 0 on D, Lll and 
Lao reduce to 

L11 = t Ldx fDdtG(X; t)f,,(t, uo(t»cp(t)cp+(x), (2.12) 

L30 = 2\J..b In dx fDdtG(X; t)f,,(3)(t, uo(t»cp3(t)cp+(x). 

(2.13) 

In general, if 

/uu(x, uo(x» == 0, /u(31(X, uo(x» 

== 0, ... ,fu(n-ll(X, uo(x» == 0 
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on D, then L 20 = Lao = ... = L(n-l).o = ° and Lno 
reduces to 

Lno = Ab r dx r dtG(x, t)fu(n}(t, uo(t» 
(n + I)! JD JD 

Because of the nature of the eigenfunctions cP(x) 
and cP+(x), it is clear that the properties of/ex, u) and 
its partial derivatives with respect to u determine the 
branch coefficients, and these in turn prescribe the 
nature of the bifurcation. A classification is made 
below. 

Solving the implicit Eq. (2.9) for E in terms of f-l, 
for small values of f-l, will detail the nature of the 
branching of solutions in the neighborhood of the 
bifurcation point A = Ab • Such an expression for E 

can be obtained by "Newton's diagram" or "polygon" 
method,lO for specific functions lex, u). 

In addition, Eq. (2.8) can be solvedu for small 
values of the dependent variable vex; f-l), thereby 
giving the solution u(x; A) in the neighborhood of 
the known solution. For our purposes, it is sufficient 
to note that the solution vex; f-l) = u(x; Ab + f-l) -
uo(x) can be expressed as a double series in powers of 
E and f-l, E being determined by (2.9). This series is 
of the form 

00 00 00 

v(x; f-l) = .L EmVmO(X) + ~>m.L f-lnVmn(x). (2.15) 
m=l m=O n=l 

Since E and f-l are restricted to small values, the 
positivity or negativity of vex; f-l) is determined by the 
largest term. Suppose, for instance, that E(f-l) is given 
by ±(Klf-l)![1 + Wl(f-l»), where Wl(f-l) - ° as f-l- ° 
and where Kl is such that (Klf-l) > ° for small positive 
or negative values of f-l. Then the largest term of (2.15) 
is ± (Klf-l)!VlO(x). It can be shown12 that vlO(x) is just 
equal to cP(x), the positive eigenfunction, so that the 
sign of v(x; f-l) is determined by the sign preceding this 
largest term. Hence, in this case, u(x; A) = uo(x) + 
vex; A - Ab) is greater than or less than uo(x), depend
ing on the sign of E. 

Suppose, in another instance, that E{f.l) is given by 
K2f-l[1 + W2{f.l»), where W2(f-l) - ° as f-l- 0. Then 
in this case, the largest term of (2.15) is given by 
f-l[K2vlO(X) + V01(x)]. Ifit happens that/(t, uo(t» == 0, 
one can show12 that VOl (x) = 0. Hence, this largest 
term reduces to f-lK2cP(X) , so that the sign of vex; f-l) is 
again determined by the sign of E. 

We now consider functions lex, u) with special 
properties, which are associated with problems of 
practical importance. 

3. SPECIAL CASES 

A. [(x, uo(x» == 0, /u(x, uo(x» ¢ 0 

In this and subsequent analyses, we assume that 
there exists a solution to (2.5) and (2.6), a necessary 
but not sufficient condition for branching, wheJe uo(x) 
is taken to be positive in D. 

In this case, LOI = ° and L 11 , L 20 , and Lao are the 
same as in Sec. 2. 

If /uu(x, uo(x» ¢ 0, the Newton diagram method 
gives E{f-l) = (-Lu f-l/L20)[1 + wl(f-l»), where wl{f.l)° as f-l - 0. This indicates that u(x; A) is single valued 
for A in the neighborhood of Ab • Moreover, from the 
closing statements of Sec. 2, u(x, A) is greater than or 
less than uo(x), depending on the sign of Luf-l/ L 20 . 

If /uu(x, uo(x» = 0, by chance, and /uI3,{X, uo(x» ¢ 
0, then the Newton diagram method gives E(f-l) = 
±( -Luf-l/Lao)![l + w2(f-l»), where w2{f.l) - ° as f-l-
0. This implies that there are two real solutions for 
A > Ab , when sgn L11 = - sgn Lao. The situation IS 

reversed when sgn Lu = sgn Lao. 
Suppose, for example, that/ex, uo(x» = 0, 

/u(x, uo(x» < 0, /uu(x, uo(x» = 0, 

and /u(3,(X, uo(x» > 0. Then the Newton diagram 
method yields E(f-l) = ±( -Luf-l/Lao)![l + w2(f-l»), as 
indicated in the previous paragraph. Since cP(x) is real 
and strictly positive and/u(x, uo(x» < 0, we conclude 
that L11 < 0. Likewise, since f ul3!(x, uo(x» > 0, it 
follows that Lao> 0. Thus, the quotient -L11/Lao is 
positive, and E(f-l) is real for f-l > ° only. We conclude 
that there are two real values of E, that is, two solu
tions u(x; A), for A > Ab and no real values of E for 
A < Ab • Furthermore, according to the arguments 
given at the end of Sec. 2, the two solutions ul(x; A) 
and U2(X; A) are such that Ul (x; A) S uo(x) S u2(x; A). 
If uo(x) > 0, then the two solutions are also positive. 

Similar considerations lead to the results summa
rized in Tables I and II. The plus and minus signs 
indicate that u > Uo and u < Uo, respectively. 

In general, if f(x, uo(x» = 0, fu(x, uo(x» < 0, 

fuu(x, uo(x» = fu(n-l}(x, uo(x» = 0, 

and fu(n}(X, uo(x» ¢ 0, then similar arguments lead 
to the results summarized in Table III. Iffu(x, uo(x» > 
0, the situation in Table III is reversed, as in Table II. 

Qualitative curves based on the considerations 
leading to Tables I and II and depicting Urn = max u 
vs A, are given in Fig. 1 for some cases of branching 
when there are double solutions for some values of A. 

We note in Fig. 1 (a) that the branch corresponding 
to urn> max Uo has positive slope. That is, dAfdurn > 0. 
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TABLE I. The number of real solutions u(x; A) for A in the neighborhood of Ab when [(x, uo(x» == 0 and 
[.(x, uo(x» < 0 for all xED, where the (+) and (-) signs indicate u(x; A) > uo(x) and u(x; A) < uo(x), 

respectively. 

[ •• (x, uo(x» > 0 
1: (+) 
1: (-) 

[".(x, uo(x» < 0 
1: (-) 
1: (+) 

[ •• (x, uo(x» == 0 

[.(al(X, uo(x» > 0 
2:(+), (-) 

o 

[.(al(x, uo(x» < 0 
o 

2:(+), (-) 

TABLE II. The number of real solutions u(x; A) for A in the neighborhood of Ab when [(x, uo(x» == 0 and 
j,,(x, uo(x» > 0 for all xED, where the (+) and (-) signs indicate u(x; A) > uo(x) and u(x; }.) < uo(x), 

respectively. 

[ •• (x, uo(x» ¢ 0 [.u(x, uo(x» == 0 

[u.(x, uo(x» > 0 
1: (-) 
1: (+) 

j,<u(x, uo(x» < 0 
1: (+) 
1: (-) 

[u(3)(x, uo(x» > 0 
o 

2:(+), (-) 

[.(al(X, uo(x» < 0 
2:(+), (-) 

o 

TABLE III. The number of real solutions u(x; A) for A in the neighborhood of Ab when [(x, uo(x)) == 0 and 
j;,(x, uo(x)) < 0 for all xED, and{.u(x, uo(x» == [.(al(x, uo(x)) == ... == '/;,(n-ll(X, uo(x)) == 0; the (+) and 

(-) signs indicate u(x; A)-> uo(x) and u(x; A) < uo(x), respectively. 

u 

[.(al(x, uo(x» > 0 
1:( +) 
1: (-) 

I 

"0 ------ ----E-

(0) 
u 

n even n odd 

j;,(al(X, uo(x» < 0 
1:(-) 

[.(nl(X, uo(x» > 0 
2:(+), (-) 

[.(nl(X, uo(x» < 0 
o 

1: (+) o 2:(+), (-) 

The other branch, corresponding to Um == max U < 
max Uo has negative slope dJe/dum < O. The opposite 
is true for Fig. 1 (b). We show in Sec. 5 that}, = Ab is a 
point of neutral stability. 

B. [(x, uo(x» ¢ 0, ru(x, uo(x» ¢ 0 

In this case, the relevant branch coefficients LOl and 
L 20 are the same as given in Sec. 2. Then the Newton 
diagram method gives f.(fl) = ± (-L01fl/ L20)l X 
[1 + Waefl)], where wa(fl) - 0 as fl- O. Thus, there 
are two solutions u(x; Je) for A < Ab, and there is no 
solution for A > Ab, when sgn LOl = sgn L 20 . The 
reversed situation holds when sgn LOl = - sgn L 20 . 
Furthermore, the two solutions u1(x; A) and u2(x; A) 
are such that max U1 < max Uo < max U2' 

For the particular case of 

j(x, uo(x» > 0, ju(x, uoex» > 0, 
we summarize the results in Table IV. 

FIG. 1. Branching of solutions for the case when 

I(x, lIo(X)) == 0 == lu"(x, " o(x» 

We give the qualitative curves in Fig. 2 for the 
particular case described in Table IV. Again, we 
take note that in Fig. 2(a) the branch corresponding 
to Um = max u > max Uo has positive slope dAfdum > 
0; the other branch, corresponding to um < max Uo has 
negative slope, implying that dAfdum < O. In this case 
also, A = Ab is a point of neutral stability, as is shown. and (a) 

(b) 
lu(X, lIo(X))/f,,(3l(X, lIo(X» < 0, 

I.(x, lIo(x»/I.(al(X, " o(x» > o. 

Once it has been established that branching occurs, 
an estimate of the numerical value of the bifurcation 
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TABLE IV. The number of real solutions u(x; A) for A in the 
neighborhood of Ab when I(x, Uo(X» > 0 and f,,(x, uo(x» > 0, 
where the (+) and (-) signs indicate u(x; A) > uo(x) and 

u(x; ).) < u.(x), respectively. 

o 
2:(+), (-) 

luu(x, u.(x» < 0 

2:(+), (-) 
o 

point is essential. In problems of physical interest 
this point represents a critical value, beyond which, 
or below which, an equilibrium state cannot exist. 

4. BOUNDS ON Ab 

The difficulty in calculating the critical value 
results from the fact that this value of A is determined 
by the simultaneous equations (2.4) and (2.7). 
Josephlo gives a technique of obtaining an upper 
bound on the bifurcation point when the nonlinear 
termf(x, u) is of the formf(x, u) = u + G(u), where 
G(u) ~ G(O) = I for u ~ 0, which is assumed on 
physical grounds, and the situation of Fig. 2(b) is 
assumed to exist. 

However, it is possible to obtain a fairly accurate 
value for Ab for more general cases. 

In the special case where uo(x) == 0, that is, 

r(x,O) == ° butfu(x, 0) '¥: ° on D, and Bu == u = ° on 

u 

I 

"0 ---------~-

u 

I 
I 

(0 ) 

"0 ------J---
I 
I 

(b) 

FIG. 2. Branching of solutions for the case when I(x, "o(X)) > 0, 
I"(x, uo(x» > 0, and (a) luu(x, /lo(x» < 0, (b) f,,.,(x, lIo(x» > O. 

oD, then the difficulty mentioned above does not 
exist. The bifurcation point can be obtained directly 
from Eq. (2.7), since Eq. (2.4) is satisfied for any Ab • 

If f(x, u) can be written in the form f(x, u) = 
h(x)g(u), then Ab is bounded above for the situation of 
Fig. 2(b) by ub (Ab), and below for the situation of 
Fig. 2(a) by lb (Ab), where 

ub (Ab) = Ao max tp/g(tp), (4.1) 
\1'>0 

lb (Ab) = Ao min tp/g(tp). (4.2) 
\1'>0 

Here Ao is the principal eigenvalue of the associated 
Helmholtz equation 

L' = Ah(x)', xED, 

B' = 0, X E aD. 
To show this, we write 

° = L('oLU - uL'o) dx 

= AJ}ohg(u) dx - Ao J}ohU dx, 

(4.3) 

(4.4) 

where 'o(x) is the eigenfunction associated with Ao 
and use is made of the self-adjointness of the operator 
L and its associated boundary conditions. 

Then 

A/Ao = L'oh(u/g(u»g(U) dx / Lsohg(u) dx, 

where it is assumed that the integral In sohg(u) dx 
does not vanish. Thus, 

. tp <A< tp mm-- - max--
\1'20 g( tp) - Ao - ~)20 g( tp) , 

(4.5) 

which gives the bounds on Ab stated above for the 
situations of Fig. 2. 

Note that the inequality (4.5) is quite general, but 
acquires significant meaning for the specific functions 
f(x, u) whose properties result in the situations 
described by Fig. 2. 

We now turn to the interesting question of the 
physical meaning of the existence of two solutions 
for some values of A. Clearly, one of the solutions 
must, in some sense, be associated with a more stable 
state when the physical system is subjected to a small 
perturbation. Hence, we attend to the question of 
stability in order to determine which solution repre
sents the stable state observed in nature. 
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5. STABILITY ANALYSIS 

For this purpose we follow the example of Joseph4 
and treat the related time-dependent problem 

ou* - + Lu* = Af(x, u*), xED, (5.1) at 
Bu* = 0, X E aD, (5.2) 

where A and j(x, u*) are such that there are two 
solutions to (2.1) and (2.2). We seek solutions of the 
form 

u*(x, t; J.) = u(x, A) + ufl(x, A)e-flt, 

where u(x, A) is the steady-state solution and up(x, A) 
'represents a small initial perturbation. 

The function j(x, u*), assumed to be analytic in 
u*, can be expanded in a Taylor series about u* = u, 
and, since ufl is taken to be an infinitesimal disturb
ance, the second- and higher-order terms can be 
neglected. Then the equations for ufl are given by 

LUfl = [,8 + Aju(X, u(x; A»]ufl' xED, (5.3) 

BUfl = 0, X E aD, (5.4) 

from which we can determine the value of ,8 associated 
with each solution. If fJ > 0, then the solution is stable; 
conversely, ,8 < 0 means that the solution is unstable. 
fJ = 0 implies neutral stability. 

Taking the derivative of both sides of equations 
(2.1) and (2.2) with respect to Urn = max u yields 

Lu = A/u(X, u)u + ~j(x, u), xED, (5.5) 

Bu = 0, X E aD, (5.6) 

where u = ou/ourn and ~ = dAfdurn. 

A. Point of Neutral Stability [(x, uo(x» ¢. 0 

If/(x, Uo(x» ¢ ° for xED, then, when ~ = 0 and 
,8 = 0, a solution of (5.3) and (5.4) exists and is given 
by ufl(x) = Au(x), where A is an arbitrary constant. 
In the limit, as A tends to Ab and u(x; A) becomes 
uo(x), Eqs. (5.5) and (5.6) are satisfied by u(x) = c/>(x) 
and ~ = 0. [See Eqs. (2.5) and (2.6)]. Thus, A = Ab is 
a point of neutral stability and the branches in Fig. 2 
have slope infinity there dUrn IdA = 00. 

B. Stable and Unstable Branches [(x, uo(x» ¢. 0 

We write 

° = L(ULUfl - upLu) dx = L(,8uufl - ~uflf(x, u» dx. 

In the neighborhood of Ab where i ~ 0, we have 

,8/A = LUpf(x, u) dx / L uUp dx, 

and in the limit as ~ goes to zero, i.e., J. tends to Ab , 

d,8/d~li=o = In c/>(x)f(x, uo(x» dx / t c/>2(X) dx 

= Lc/>(X)f(X, uo(x» dx. 

We conclude that in the neighborhood of Ab the 
constant,8 and the slope of the branch, durn/dA = I/t 
have the same sign ifj(x, uo(x» > o. Ifj(x, uo(x» < 
0, they have opposite sign. Thus, in Fig. 2(a), the 
stable branch is the one corresponding to Urn = 
max U > max uo, and the unstable branch is the one 
corresponding to Urn < max Uo' In Fig. 2(b), the 
situation is reversed. 

C. Point of Neutral Stability [(x, uo(x» == 0 

Taking the derivative of both sides of Eqs. (4.4) 
and (4.5) with respect to urn = max U yields 

LiJ = Aju(X, u)ii + juu(x, u)u2 + 2A/u(x, u)u 

+ Aj(X, u), xED, 
Bu = 0, X E aD, 

where A = 02Afou'fn and ii = 02U/ou'fn. 
If ju(x, uo(x» ¢ 0 on D and j(x, uo(x» == 0 == 

/uu(x, uo(x», then, when ~ = 0 and fJ = 0 in the 
limit as A tends to Ab and u(x; A) becomes uo(x), there 
is a solution of (5.3) and (5.4), given by ufl(x) = 
Aii(x) == Ac/>(x). Thus, A = Ab is a point of neutral 
stability and both branches in Figs. I (a) and I (b) have 
slope infinity there. 

D. Stable and Unstable Branches [(x, uo(x» == 0 

Employing the same arguments of Sec. B above, 
we find for the case j(x, uo(x» == ° that in the limit 

d~ I = 2 [ c/>2(x)fu(x, uo(x» dx. 
d)' 1=0 JD 

We conclude, then, that in the neighborhood of ).b' 

the constant fJ and the slope of the branch durn/dA = 
11)., have the same sign if j,Jx, uo(x» > 0, and the 
opposite sign if/ix, uo(x» < o. 

Thus, the stable branches in Fig. I are those corre
sponding to urn = max u > max uo, ifj,,(3'(x, uo(x» < 
0, or those corresponding to urn < max uo , if 

The other branches are unstable to a small disturbance. 
We now consider four examples of physical signifi
cance. 
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6. EXAMPLES 

A. Nonlinear Heat Generation and the Temperature 
Distribution in Conducting Solids 

Millman and Keller consider the problem 

/).T - AS(T) = 0, xED, (6.1) 

aT 
- = oc(T - To), x E aD, (6.2) an 

where To is the constant temperature outside D and 
S(To) = 0. They employ perturbation theor:y; to solve 
(5.1) and (5.2) for T in the neighborhood of To, and 
to make comments on the bifurcation of the solution. 

Since To is a constant and S(To) = ° on D, T(x) = 
To is a solution to (6.1) and (6.2) for all values of A 
and, if branching occurs, the bifurcation point is, by 
(2.5) and (2.6), simply the principal eigenvalue of 
the Sturm-Liouville system 

/).4> - AS'(To)4> = 0, xED, 

a4> = oc(4) - To), x EaD. an 
Suppose SI/(To) = ° and S'(To) < 0. Then, by 

what has gone before (see Table 1), we conclude that 
there are two solutions for A > Ab and no solution 
for A < Ab when Sill (To) > 0, and that there are two 
solutions for A < Ab and no soiution for A > Ab when 
Sill (To) < 0. Furthermore, the stability analysis in Sec. 
5D indicates that the smaller solution is the stable 
solution, and the larger solution is unstable, if 
Sill (To) > 0; the reverse is true if SII!(To) < 0. This 
agrees with the results of Millman and Keller. 

Suppose SI/(To) =;6 ° and S'(To) < 0. Then, by the 
results for this special case (shown in Table 1), there 
is only one solution for A in the neighborhood of Ab • 

However, Millman and Keller conclude, on the 
basis of their perturbation analysis, that there are 
again two solutions. It is believed that this conclusion 
results from extending the perturbation treatment 
beyond the limits of its validity. The analysis of the 
previous sections has no such intrinsic limits. 

B. Temperature Distribution in an Exothermic 
Chemically Reacting System 

One of the co-authors2 treats the problem of thermal 
explosions in a chemically reacting system. The 
governing equation for the steady-state temperature 
distribution is given by 

d
2
e + ~ de + "eo = 0, [0 1] u X E , , 

dx x dx 
(6.3) 

e'(o) = e(l) = 0, (6.4) 

where k = 0 corresponds to an infinite plane-parallel 

vessel and k = I corresponds to a cylindrical vessel 
of infinite length. 

Since f(x, e) = eO and all its derivatives are 
positive, the nature of the bifurcation of solutions to 
this problem is described by Table IV and Fig. 2(b). 
There are two solutions for A < Ab , and the stability 
analysis of Sec. 5B predicts that the stable solution is 
the smaller one, while the larger solution is unstable. 
There is no solution for A > Ab , indicating that 
A > Ab is a threshold value for a thermal explosion. 
Making use of (4.1), we see that this critical value is 
bounded above by 

'1p Ao 
Ab ::;; Ao max -- = -, at '1p = 1, 

1p2:0 exp '1p e 

where Ao is the principal eigenvalue for the associated 
Helmholtz equation, 

d
2
, + ~ d, + A, = 0, xED, 

dx2 
X dx 

nO) = ,(1) = 0, x EoD. 

For k = 0, we have Ao = t1T2; for k = 1, Ao = 5.784, 
i.e., the first positive root of Jo(Al) = 0. The upper 
bound on Ab is then 0.908 for k = 0, and 2.127 for 
k = 1. This compares well with the known values for 
A" of 0.893 and 2.000, respectively. 

C. Nonlinear Temperature-Dependent Viscosity 
Effects on Temperature Distribution in a 

Flowing Fluid 

Joseph4 considers the problem of fluid flowing in a 
channel, where the viscosity is a nonlinear function 
of the temperature, The appropriate equations for the 
temperature distribution for Hagen-Poiseuille flow in 
a cylindrical vessel of infinite length are 

1 ~(r de) + Ar2(1 + e + a()2) = 0, r[O, 1], (6.5) 
r dr dr 

0'(0) = O(l) = 0, (6.6) 

where a is a positive constant. 
For positive e,f(r, 0) = r 2(l + e + a(2) is strictly 

positive. In addition, fe(r, 0) > ° and feo(r, 0) > 0. 
We then conclude from Table IV and Fig. 2(b) that 
there are two solutions for A < Ab and none for A > Ab • 

The stability analysis shows that the smaller solution is 
stable, and the larger solution is associated with 
instabilities. Physically, these criteria indicate that 
stable flow is impossible beyond a critical value of the 
parameter A, which includes such physical constants 
as the channel diameter, reference viscosity, and 
axial pressure gradient. This critical value is bounded 
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above by 

1 
for 1jJ=-, 

.Ja 
where Ao is the principal eigenvalue of the associated 
Helmholtz equation, 

! ~(r d~) + Ar2' = 0, r E [0,1], 
r dr dr 

~/(O) = ~(1) = O. 

In this case Ao = 23.14, the first positive root of 
Jo<iA!) = O. 

D. Neutron Flux Distribution in a Reactor for 
Temperature-Dependent Cross Sections 

The neutron flux distribution in a nuclear reactor 
can be approximated by the I-velocity diffusion 
equation 

!.1~ + AL-2~ = 0, xED, (6.7) 

~=o, XEoD, (6.8) 

where L is the "diffusion length." 
Moskalev14 incorporates the temperature depend

ence of the cross sections by writing (6.7) and (6.8) as 

!.1~ + Aa(T)~ = 0, xED, 

~=O, xEaD, 

(6.9) 

(6.10) 

where aCT) = L~2(To/T)!e[-2fl(T-To)], To is the bound
ary temperature, and fJ is a small positive constant. 

We assume that the temperature depends on the 
neutron flux according to 

T- To = c~, 

where Tc is the reactor coolant temperature and c is 
another constant. 

Letting A == (To/Tc)!e-2P(Tc/To) / q, oc == 2fJTc> and 
u == c~/Tc' we can write (6.9) and (6.10) as 

!.1u + AAue-au/(l + u)! = 0, xED, (6.11) 

u = 0, X. E oD. (6.12) 

Since u(x) == 0 satisfies (6.11) and (6.12) for all A, 
if branching occurs, the bifurcation point is simply, 
by (2.5) and (2.6), the principal eigenvalue of the 
Sturm-Liouville system, 

!.1~ + AA~ = 0, xED, 

~ = 0, XE aD. 

Computing the derivatives of the nonlinear term 
and noting that, for known reactors, max u < 1 
since T < 2Tc , we find that the first derivative is 
positive, but the second derivative is negative. Then, 
from Table II, we conclude that there is only one 
solution for A > }'b which is positive, since uo(x) == 0, 
and one negative solution for A < Ab , which is 
disregarded as physically meaningless. 

Thus, Ab again represents a "critical" value, even 
though no branching occurs. This example also 
illustrates that the satisfaction by some Ab of Eqs. 
(2.4) and (2.7) simultaneously is a necessary but not 
sufficient condition for branching to occur at Ab • 
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It is shown that the solution of a certain Cauchy system provides the solution of a family of integral 
equations occurring in the theory of anisotropic scattering in a finite slab. Numerical experiments show 
that the Cauchy system is readily solved numerically, even in the case of very strong forward scattering. 

I. INTRODUCTION 

A key role in the theory of anisotropic scattering 
in a finite slab is played by the integral equation 

J(t, v, x, u) 
= te(v, _u)e-(X-t)/u 

1Xl1 , dv' + e(v, _v')e-(v-o/v J(y, -v', x, u) -, dy 
t 0 V 

Itl1 , dv' + e(v, +v')e-U-v)/v J(y, v', x, u) -, dy, 
o 0 v 

O~t~x,O~u~l,-l~v~+1. (I) 

It is assumed that the interval length x is sufficiently 
small that Eq. (I) possesses a unique solution. For 
the physical background and analytical and com
putational approaches, see Refs. 1-3. In this paper 
it is shown that the family of integral equations (I) is 
equivalent to a Cauchy system which can readily be 
handled computationally. First, the theory is given,4 
and then results of numerical experiments are 
described. 

II. STATEMENT OF CAUCHY SYSTEM 

We consider the Cauchy system for the auxiliary 
function S, 

S(v, U, 0) = 0, (2) 
where 

Siv, u, x) ;=: _(u-1 + v-1)S(v, u, x) + 2e(v, -u) 

11 dv' + e(v, v')S(v', u, x) -
o v' 

+ 2 tS(v, v', x) dv' (te( -v), -U) Jo v' 

11 dv" ) + t -If e( -v', v")S(v", u, x) , 
o V 

X ~ 0, 0 :$; v, U :$; 1. (3) 

We also consider the Cauchy system for the function J, 

Jx(t, v, x, u) 

= -u-1J(t, v, x, u) + f (e( -v', -u) 

+ tIl dv" e(-v', v")S(v", u, X»)J(t, v, x, v') dv' , 
o v" v' 

x ~ t, 0 ~ u ~ 1, -1 ~ v ~ +1. (4) 

The initial condition on the function J at x = t is 

J(t, v, t, u) = te(v, -u) + t e dv' e(v, v')S(v', u, t), Jo v' 

O~u~l,-I~v~+1. (5) 

It is assumed that this Cauchy system possesses a 
unique solution, at least for x sufficiently small. 

The aim is to show that the Cauchy system above 
and the integral equation (1) are equivalent.4 These 
equations have been derived previously on physical 
grounds.3 

III. DERIVATION OF CAUCHY SYSTEM 

We begin by differentiating both sides of Eq. (I) 
with respect to x, which yields 

Jx(t, v, x, u) 

1 
= - 2u e(v, _u)e-(X-O/u 

11 dv' , + -, e(v, _v')e-(x-t)/v J(x, -v', x, u) 
o v 

f
Xll dv' , + -, e(v, _v')e-(v-t)/v Jx(y, -v', x, u) dy 

t 0 V 

iti1 dv' , + -, e(v, +v')e-(t-v)/v Jx(y, v', x, u) dy. (6) 
o 0 v 

By regarding Eq. (6) as an integral equation for the 
function Jx , keeping Eq. (I) in mind, and using the 
superposition principle for linear systems, we see 

1575 
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that the solution of Eq. (6) for the function J", is 

1 
Jit, v, x, u) = - -J(t, v, x, u) 

u 

i1 dv' + 2 J(x, -v', x, u)J(t, v, x, v') - . 
o d 

(7) 

For J(x, v, x, u) we may write, according to Eq. (1), 

J(x, v, x, u) = tc(v, -u) 

i"'i1 dv' , + -, c(v, v')e-("'-Y)/V J(y, v', x, u) dy. (8) 
o 0 v 

We introduce the function S by means of the 
definition 

S(v, u, x) = 41'" e-("'-Y)/VJ(y, v, x, u) dy, 

o ~ v, u ~ 1, x ~ o. (9) 

Equation (8) may now be rewritten 

J(x, v, x, u) = tc(v, -u) + 1ll dv' c(v, v')S(v', u, x). 
o v' 

(10) 

Next, we differentiate both sides of Eq. (9) with respect 
to x. This provides the equation 

S",(v, u, x) 

= - ! S(v, u, x) + 4J(x, v, x, u) 
v 

+ 4fe-("'-II)/V( - ~J(Y, v, x, u) 

+ 2 (lJ (X, -v', x, u)J(y, v, x, v') dV') dy, 
Jo ~ 

(11) 

where use has been made of Eq. (7) for the function J",. 
Equation (2) follows directly from the definition in 

Eq. (9), where the function S is defined in terms of the 
function J. The differential equation for the function 
S, Eq. (3), comes directly from Eq. (11) by using Eqs. 
(8)-(10). The initial condition for the function J at 
x = tin Eq. (5) follows directly from Eq. (8) with the 
variable x set equal to t. The differential equation (4) 
for the function J, valid for x ~ t, follows immediately 
from Eqs. (7) and (10). 

IV. VALIDATION OF CAUCHY SYSTEM 

Now, we shall show that the solution of the Cauchy 
system (2)-(5) for the functions Sand J provides a 
solution of the integral equation (1). Our first task is 
to demonstrate that 

S(v, u, x) = 4 So'" e-("'-lI)/VJ(y, v, x, u) dy, 

x ~ 0, 0 ~ v, u < 1. (12) 

Let the function Q be defined by the equation 

Q(v, u, x) = 41"'e-(X-Y)/VJ(y, v, x, u) dy, 

x ~ 0, 0 ~ v, u ~ 1. (13) 

It clearly satisfies the initial condition 

Q(v, U, 0) = O. (14) 

Furthermore, differentiation of both sides of Eq. (13) 
with respect to x shows that 

Qx(v, u, x) 

1 = - - Q(v, u, x) + 4J(x, v, x, u) 
v 

+ 41"'e-(X-Y)/v[ - ~ J(y, v, x, u) + f (c( -v', -u) 

+ t - c( -v', v")S(v", u, x) i1 dv" .) 

o v" 

x J(y, v, x, v') - dy. dV'] 
v' 

(15) 

The last equation may be rewritten as 

Qiv, u, x) 

= - (~ + ~)Q(V' u, x) + 4J(x, v, x, u) 

i
1 dv'i'" +4 c(-v',-u)-, e-(X-lI)/VJ(y, v, x, v')dy 

o V 0 

i1i1 dv" dv' + 2 -" -, c( -v', v")S(v", h, x) 
o 0 v v 

X 11 e-(X-II)/V J(y, v, x, v') dy (16) 

or 

Qiv, u, x) 

= - (~ + ~)Q(V' u, x) + 2c(v, -u) 

i1 dv' + - c(v, v')S(v', u, x) 
o v' 

i 1 dv' + c( -v', -u) - Q(v, v', x) 
o v' 

11111 dv" dv' ,,,,, , + 2" - - c( -v, v )S(v , u, x)Q(v, v , x). 
o 0 v" v' 

(17) 

Assuming that the linear Cauchy system for the func
tion Q in Eqs. (17) and (14) has a unique solution and 
keeping in mind the Cauchy system for the function S, 
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we see that 
Q=S (18) 

or 

S(v, u, x) = 4i"'e-("'-II)/VJ(y, v, x, u) dy, 

x ~ 0, 0 ~ v, u ~ 1. (19) 

Next, we introduce the function M by the equation 

M(t, v, x, u) 
= te(v, _u)e-(",-t)/u 

1"'11 dv' , + -, e(v, _v')e-(II-t)/V J(y, -v', x, u) dy 
t 0 V 

+ (t P d~' e(v, v')e-(t-U)/V'J(y, +v', x, u) dy, 
Jo Jo v 

o ~ t ~ x, 0 ~ u ~ 1, -1 ~ v ~ + 1. (20) 

At x = t we find that 

M(I, v, t, u) 

itl1 dv' , = te(v, -u) + -, e(v, v')e-(t-II)/V J(y, v', t, u) dy 
o 0 v 

11 dv' 1t , = te(v, -u) + -, e(v, v') e-(t-II)/v J(y, v', I, u) dy 
o v 0 

11 dv' = te(v, -u) +! -, e(v, v')Q(v', u, t) 
0' v 

il dv' 
= te(v, -u) + t - e(v, v')S(v', u, t) 

o v' 
= J(t, v, I, u). (21) 

In addition, differentiation of both sides of Eq. (20) 
with respect to x shows that 

M",(t, v, x, u) 

1 = - :- e(v, _u)e-(",-t)/u 
.LoU 

i 1 dv' , + -, e(v, _v')e-(",-t)/v J(x, -v', x, u) dy 
o v 

+ - e(v, _v')e-(II-t)/V dy 1"'11 dv' , 
t 0 v' 

x (- ~ J(y, -v', x, u) 

+ 2 (lJ(X, -v", x, u)J(y, -v', x, v") dV") 
Jo if 

+ - e(v, v')e-(t-II)/V dy iti1 dv' , 
o 0 v' 

X (-~J(Y,V"x,U) 

+ 2 (lJ(X, -v", x, u)J(y, v', x, v") dV"). (22) 
Jo if 

By collecting terms, this equation becomes 

M",(t, v, x, u) 

1 
= - - M(t, v, x, u) 

u 

i1 dv' + 2 - J(x, -v', x, u)M(t, v, x, v'), 
o v' 

x ~ I. 

(23) 

From our uniqueness assumption, it follows that 

M(t, v, x, u) == J(/, v, x, u), x ~ I, (24) 

which is precisely the family of integral equations (1). 

V. NUMERICAL RESULTS 

The general scheme for solving the Cauchy system 
for the functions Sand J numerically is to approxi
mate the integrals occurring by the use of Gaussian 
quadrature formulas, which transforms the differen
tial-integral equations into a system of ordinary 
differential equations.5•6 

In the event that 

c(v, u) = const = tA, (25) 

the integral equation (1) becomes 

J(t, x, u) = iAe-("'-t)/u + tA f E1(lt - yi)J(y, x, u) dy, 

o ~ t ~ x, 0 ~ u ~ 1, (26) 
where, as usual, 

E1(lt - yl) = (le-1H1/z dz . (27) 
Jo z 

In addition, the Cauchy system for the function S 
becomes 

S",(v, u, x) = - (~ + ~)S(V, u, x) 

i1 dv' + tA S(v', u, x)-
o v' 

i l dv' + tA S(v, v', x)-
o v' 

i1i1 dv" dv' + 1A S(v, v', x)S(v", u, x) - - . 
o 0 v" v' 

(28) 

This is a well-known result for the case of isotropic 
scattering. Numerical results for Sand J, based on 
the numerical solution of the Cauchy system, using 
the method of lines, are available in Refs. 5 and 7. 
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To test the effects of stronger and stronger forward 
scattering, we selected a phase function of the form3 

p(cos 0) = k(b - cos 0)-\ b > 1, (29) 

which corresponds to 

dv, u) = (Ak)2[(b - UV)2 - (I - u2)(l - V2)]-!. 

(30) 

The constant k fulfills the normalization condition 

k = 2[log (b + I)/(b - 1)]-1. (31) 

The closer b is to unity, the stronger the forward 
scattering is. 

We found that, with b = l.l and), = 1.0, use of a 
Gaussian quadrature formula of order 7 and an 
integration step size of 0.01 in an Adams-Moulton 
fourth-order integration routine resulted in about five 
accurate digits in the evaluation of the function S for 
o ~ x ~ I, 0 ~ v, U ~ l. An IBM 7044 computer 
was used. When b = 1.01, about three accurate 
figures were obtained. When b = 1.001, we used a 
Gaussian quadrature formula of order 15 and a step 
size of 0.001 and obtained about one accurate figure. 
The front-to-back ratio passes from about 20 to 2000 

JOURNAL OF MATHEMATICAL PHYSICS 

in these cases. This shows the complete feasibility of 
the method from the numerical viewpoint, even for 
strongly peaked phase functions. 

VI. DISCUSSION 

The method presented, when augmented by 
quasilinearization,8 can be used to solve inverse 
problems. In this class of problems, we measure 
diffusely reflected radiation and wish to infer local 
scattering properties of the medium. 

Extensions to cases involving internal sources of 
radiation and reflecting surfaces are readily made. 
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By definition, a Riemannian space Vn admits a symmetry called a curvature collineation (CC) if the 
Lie derivative with respect to some vector g. of the Riemann curvature tensor vanishes. It is shown that 
if a Vn admits a parallel vector field, then it will admit groups of eC's. It follows that every space-time 
with an expansion-free, shear-free, rotation-free, geodesic congruence admits groups of CC's, and hence 
gravitational pp waves admit such groups of symmetries. 

1. INTRODUCTION 
A Riemannian space Vn with curvature tensorl 

R;km is said to admit a symmetry called a curvature 
collineation2 (CC) if £sR~km = 0 for some vector 
field3 ~i. In this paper, we show that any Vn which 
admits a field of parallel vectors also admits groups of 
CC's defined by ~i related to the parallel field vectors 

in a simple manner. It follows that every space-time 
which admits a shear-free, expansion-free, rotation
free, geodesic congruence admits groups of CC's. As 
a consequence, all plane-fronted pure gravitational 
waves (Rij = 0) with parallel ray vectors (pp waves) 
admit groups of CC's. 

It can be sho\Vn (see Ref. 2) that a necessary and 
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sufficient condition for a Vn to admit a CC may be 
expressed in the form4 

(him;i + hmi;i - h;;;m);k 

- (hkm;i + hmi;k - hki;m);i = 0, (1.1) 
where 

hii == £;gii = ;i;i + ;i;i, (1.1') 

with gii the components of the metric tensor of the 
Vn • Subcases of interest for this paper are (see Ref. 2) 
(a) special curvature collineations (SCC's), (b) affine 
collineations (AC's), and (c) motions (M's), defined by 

SCC: hii;km = 0, (1.2a) 

AC: hij;k = 0, (l.2b) 

M: hij = 0, (l.2c) 
respectively. 

F or purposes of this paper, we formulate the follow
ing definitions: A CC is a "proper" CC (Prop CC) if 
it is not an SCc. An SCC is a proper SCC (Prop SCC) 
if it is not an AC. An AC is a proper AC (Prop AC) 
if it is not an M. The terminology "improper CC" 
refers to any SCC (proper or not proper). 

2. GROUPS OF CC's IN A V" 

Assume that a Vn admits a parallel vector field 
Ai (A;;i = 0), Ai == S.i' where S is a nonconstant 
scalar.5 Let F(S) be an arbitrary function of S which 
is four-times differentiable.6 If? 

(2.1) 

then we find from the definition (1.1) of hii that 

hij = 2F" A;Ai , 

hij;k = 2F"'A;A).k, 

hij;km = 2F"" AiAjAkAm. 

(2.2a) 

(2.2b) 

(2.2c) 

It immediately follows from (1.1) and (2.2c) that 
; i of (2.1) in general defines a CC and that ; i defines 
a normal congruence of curves. 

It follows from (2.1) and (2.2) that ; i defines an 
improper CC, which is a Prop SCC, Prop AC, or M, 
if F{S) is a cubic, quadratic, or linear polynomial in 
S, respectively, and defines a Prop CC if F"" ¥: O. 

We now consider group properties of improper 
CC's. If we define the generators8 X(.) == ;(.)ialaxi

, 

where ;(.); == S·Ai , rJ. = 0, 1,2,9 we then find that 
[Xo, Xl] = AXo, [Xo, X 2 ] = 2AXl , [Xl' X 2 ] = AX2 , 

where A == AiA i = const. 
In the case of Prop CC's, F"" ¥: 0, we consider a set 

of r linearly independent functions F(.)(S), rJ. = 
1, 2, ... , r, and the corresponding generators 

;(.lia F' Aia 
y = -- = -(_.)-

a - axi axi' 

It is found that [Y., Yp] = 0 if A = O. We summarize 
the above results in the following theorem. 

Theorem 2.1,' A Vn which admits a parallel vector 
field Ai == S.i admits (a) a Prop SCC: ;(2)i == S2Ai, 
(b) a Prop AC: ;(1)i == SAi, and (c) an M: ';(O)i == Ai. 
The generators X. == ;(.)ialaxi define a 3-parameter 
group of Prop SCC's, which is Abelian if Ai is a null 
vector, A = O. The Vn also admits a Prop CC defined 
by the vector ;i == F'(S)Ai , F"" ¥: O. In case A = 0, 
the Vn admits an r-parameter Abelian group of 
Prop CC's defined by r vectors ;(.)i == F(.)A\ where 
F(.)(S), F;:/S) ¥: 0, rJ. = 1,2, ... , r, is any given 
set of r linearly independent but otherwise arbitrary 
scalar functions for any r = I, 2, .... 

3. GROUPS OF SYMMETRIES CONCOMITANT 
WITH PROP SCC 

Without the a priori assumption of the existence of 
a parallel vector field AI, let us assume that a V n 

admits a Prop SCC defined by a vector r( It follows 
(see Ref. 2, Corollary 5.1) that the Vn then admits, in 
general,lO a nontrivial field of parallel vectors Nk == 
M. k , where M == gii(r;;;j + r;j;i) = 2r;!i' The exist
ence of this parallel field Nk thus implies by use of 
Theorem 2.1 the existence of additional CC's (proper 
or improper) in the Vn.ln particular, if we choose for 
one of these additional CC's a Prop SCC defined by 
vector ;(2)1 == M2Ni , it can be shown that, in general, 
;(2)i and r;1 are linearly independent. 

Theorem 3.1,' A Vn which admits a Prop SCC does, 
in general, admit a nontrivial parallel field and, hence, 
additional CC's as determined by Theorem 2.1. 

On the other hand, if we assume that a Vn admits a 
Prop SCC based upon a parallel field Ai as described 
in Theorem 2.1, then the parallel field N i (as described 
above) can easily be shown to be linearly dependent 
upon Ai; hence, no additional CC's can be generated 
by reuse of Theorem 2.1 with reference to vector N i

• 

4. APPLICATIONS IN SPACE-TIME 

We now consider a space-time which admits a 
geodesic congruence which we take to be defined by 
the vector field ui

, ufiui = O. It can be shown that we 
may write 

where (J~~), w~~), and (J(.) are the shear, rotation, and 
expansion, respectively, and where Pl~) is proportional 
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to the appropriate projection operator corresponding 
to whether ui is null or nonnull.l1 From the above 
equations, it immediately follows that if a space-time 
admits a shear-free, rotation-free, expansion-free, 
geodesic congruence (either null or nonnull), then it 
admits a parallel vector field. Hence, we have the 
next theorem. 

Theorem 4.1: Every space-time which admits an 
expansion-free, shear-free, rotation-free, geodesic con
gruence of curves defined with respect to the vector 
field ui admits a group of CC's as described by 
Theorem 2.1, wherein the parallel vector field ;. i IS 

taken to be U
i
•12 

Since plane-fronted pure gravitational waves ,13 

Ri ; = 0, with parallel (null) ray vector ki' kik i = 0, 
k i ;; = 0, are characterized by an expansion-free, 
rotation-free, shear-free, null geodesic congruence 
(which is essentially defined by the ray vector k i ), we 
may state our last theorem. 

Corollary 4.1: Every plane-fronted pure gravita
tional (Ri; = 0) wave with a null parallel ray vector 
k, (pp wave) admits a group of CC's as described by 
Theorem 2.1, wherein the parallel vector field ;. i is 
taken to be ki,14 

It is of interest to note that a subclass of the Lich
nerowicz radiation space-times15 also admits groups of 
CC's as a consequence of Theorem 2.1. These space
times are considered in detail by Levine and Zund.16 
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We consider the E2-parametrization of unimodular 2 X 2 matrices A E SL(2, C), which is of the form 

E2 is a covering of the group of Euclidean motions in the plane. We compute the correspondingly 
factorized matrix elements of the unitary representations of SL(2, C) in an E2-basis; the result is given in 
Eq. (6). As a fringe benefit we obtain an integral transform which amounts to expansion in terms of 
Meijer G-functions and which generalizes the familiar Hankel transform. The results of this paper are 
useful, e.g., for computing vertex functions in the theory oj massless particles with continuous spin. 

1. INTRODUCTION AND RESULTS 

Matrix elements of unitary irreducible representa

tions of SL(2, C) in an E2-basis have recently been 
studied by Chang and O'Raifeartaigh.l They used the 
canonical parametrization of unimodular 2 x 2 
matrices A E SL(2, C): 

A = U1e-!a(13U2 , U1,2 E SU(2). 

It is the purpose of the present paper to give the appro
priately factorized SL(2, C) matrix elements in the 

E2-basis for an alternative parametrization of A. 
Every matrix A E SL(2, C) with A12 ¢ 0 may be 
written as 

There are two series of unitary irreducible repre
sentations of SL(2, C) labeled by a pair X = [10' c): 

principal series: 10 integer or half-integer, 
c pure imaginary; (3a) 

supplementary series: 10 = 0, 0 < c < l. (3b) 

Their decomposition in terms of (a direct integral of) . 

unitary irreducible representations of E2 is known 1.4 : 

Each faithful unitary E2 representation occurs with 
multiplicity one, and no others occur (with nonzero 

measure). The faithful unitary representations of E2 
are labeled by a real number p > O. A corresponding 
(improper) basis of the SL(2, C) representation space 
may be labeled by Ip, A): 

(Ma - A) Ip, A) = 0, (1Ti + 1T~ - p2) Ip, A) = 0, (4) 

-00 < a < +00, (1) where 
and 

o S ffJ + "P < 41T, 0 S ffJ - "P < 41T, 

o < ~ < +00. (2) 

The matrices E form a covering E2 of the group E2 of 
Euclidean motions in the plane (i.e., rotations and 
translations). For E2 we may, without loss of generality, 
take ffJ2 = 0, so that A is specified by the six real param
eters ffJl' ~1' "PI' a, ~2' and "P2' A parametrization 
related to (1) and (2) has been used in partial-wave 
analysis.2 It is also of importance in the theory of 
massless particles with continuous spin.a 

A = 10, 10 ± I, ... , 

i.e., A assumes either all integer or all half-odd integer 
values. 1Tl = Ml - N 2 , 1T2 = M2 + Nl , and Ma are 

the generators of E2; M k , and Nk are the generators of 

rotations and Lorentz boosts, respectively. The E2 
Casimir operator is 1T; + 1T~. 

We adopt the normalization 

(p', A' I p, A) = (p)-Ic5(p' - p)c5;.;". (5) 

The matrix elements of the unitary irreducible repre
sentation TiA) may then be written as 

(pAl TiA) Ip'A') = I dfiEl)r:p'K(a)d~'d:(E2)' 
K 

K, A, A' = 10, 10 ± 1, ... , (6a) 
with 

1581 
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and 

r~p"ia) = 2il-1(p/p')-ilffiC 

X G~~«pp'/il)2Ii(l0 - K - e), H -10 - K + e), 

i( -10 + K - e), Wo + K + e», 
il == 4e-a

• (6c) 

Here G~~ is the familiar Meijer G-function.5 Expressions 
(6) are valid both for the principal and the supple
mentary series. Equation (6c) simplifies5 for the special 
case of the Majorana representations to 

(6d) 
for 

x = [t,O], K = ±i, ±-!. ... , 
or 

x = [0, U K = 0, ±1, ±2,'" . 

The explicit expression (6) could, e.g., be used in 
harmonic analysis on the Lorentz group and is also 
useful in the theory of massless particles with contin
uous spin.3 Besides, we obtain, from the group repre
sentation law, inversion formulas for an integral 
transform which provides expansions in terms of 
Meijer G-functions (Sec. 3). 

2. PROOFS 

A. E2-Parametrization 

Every unimodular 2 X 2 matrix A' E SL(2, C) with 
A;2 ~ ° may be decomposed as follows6

: 

A' = kz with k = (fl .\), z _ (1 0) ° fl- - wi' 

W,fl,)·EiC. 

The matrix z E £2 already, and every k may be written 
in the form 

k = V-I Ee-tao-aV, with E = ·(e-h.p a. ) E E2. 
Wi et,.p 

This is achieved by taking the parameters Wi, a, and 
~ as 

~ = 2 arg fl, a = 2ln Ifll, and Wi = -eta;'. 

Application of this to A' = V-IA gives the desired 
result (2). 

B. Matrix Elements 

We use Gel'fand's description7 of (unitary) irre
ducible representations of SL(2, C) in terms of homo
geneous functions of a complex 2-spinor-variable 
, = ('1' '2) ~ (0, 0). Homogeneity reads 

I(fl') = fl1o+c-lp-lo+C-lfW, for fl E IC, 

and the transformation law is 

(7) 

(8) 

The corresponding generators are 

(9) 

where the (Jk are Pauli matrices. 
The representations of the principal and supple

mentary series are unitary by virtue of the following 
invariant scalar products: for the principal series, 

(lOa) 

and, for the supplementary series, 

Kx is Gel'fand's intertwining op!:rator7 and is given by 

Kx(" w) = N-l(WE,)-lo-r.-l(WEOIO-C- 1. (11) 

The normalization factor N will be fixed later. E is the 
2-dimensional anti symmetric tensor 

WE' = W 1'2 - W2'1' 

Note that WE' is an SL(2, C) invariant on account of 
EA-IE-l = AT, with T standing for the transpose. 
Finally, the measure is given by 

where 

q = ql'(J1' , q positive lightlike. 

0 0 is the 2 X 2 unit matrix. The integrals (10) are well 
known to be independent of the positive lightlike 
vector q in the definition of the measure. This is a 
consequence of the homogeneity condition (7) (see 
Appendix) and ensures the Lorentz invariance of the 
scalar products (10). The Hilbert spaces on which the 
unitary representations act consist of homogeneous 
functions with finite norm (/,/) as given by Eq. (10) 
(cf. Ref. 7). 

The explicit form of the basis vectors 1 p, A) in this 
realization of the representation space are also known4 : 

Ip,;') =f~X('), A = 10 ,10 ± 1,"', 

f~X( n = p-Re c 1'21 2c
-

2 ei ).4> J1oH(p "11'2I)ei1oa, (13) 

where 

oc + cp = 2 arg '1' oc - cp = 2 arg '2 - 27T, 

arg standing for the phase of a complex number as 
usual. These basis vectors satisfy Eqs. (4) and (5) and 
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transform correctly under the subgroup £2: 

(TiE)f~X)m = f~XaE) = I d~,iE)f~~m, (14) 
;" 

with dP given by Eq. (6b). Furthermore, one finds the 
relation for suitable normalization N, in Eq. (II), 

f dfl(w)Ki~, (J)f~X«(J) = p2iImcf~-xm, (15) 

where - X = [-to, - c]. This is essentially a' conse
quence of the Lorentz invariance of the intertwining 
operator Kx ' which implies that botb sides of Eq. (15) 
obey the same differential equations (4). Equation (15) 
may also be checked by explicit computation; in this 
way one finds 

N = 2-2C+2r(llol - c)/r(ltol + c + I). 
We are now ready to compute the matrix elements of 

peA). We obtain from Eqs. (8), (10), and (13), for the 
principal series, 

(pAl TiA) Ip'A') = f dflmf~xmf~:X(~A), 
and, for the supplementary series, 

(pAl TiA) Ip'A') 

= f dflm f dfl(W)Ki~, w)f~X(w)f~:X(~A) 
= f dflml~-xmf~:X(~A). 

Here we used Eq. (15) to obtain the last equation. 
Introducing the parametrization (I) and using (14) 
and the Lorentz invariance of the scalar product, we 
obtain 

(pAl Tx(A) Ip'A') 

= I (pAl TiEl) IpK) (pKI Tie-tatT"V) Ip' K') 
KK' 
x (p'K'1 TiE2) Ip'A') 

= I d~iEl)r~K.p'K,(a) d~:AE2)' 
",,' 

with 

resulting in a Kronecker b-K,K" The remaining inte
gration may be performed with the help of the formula 
for the regularized integrap·8: 

100 

dxxtT-1J m(ax)J n(~) 
= ta-tT/2btT/2G~~«taW I i(2n - 0'), i(2m + 0'), 

t(-2n - 0'), l(-2m + 0'» 

.m, n integer, 0' E C. 

The result is as indicated in Eq. (6c). 

3. MEIJER G-TRANSFORM 

The group representation law implies 

~ f 0' dO' (pAl Ti A) IO'K) (O'KI TxCA- l) Ip'A') 

= bU,p-lb(p' - p). 

Specializing to A = Vand inserting the expression (6) 
for the matrix elements of P, we find the completeness 
relation 

(-1)2/°1 LX) 0' dO' 

x G~~«tpO')21 t(lo - K - e), H -10 - K + e), 

t(-Io + K - e),t(lo + K + e» 

X G~~«tO'p'? I t(lo + K - e), H -10 + K + e), 

H -10 - K - e), t(lo - K + e» 
= p-lb(p' - p). (16) 

This is true for any X = [/0' e] in either the principal or 
supplementary series and arbitrary K such that K + 10 
is integer. 

Consider now a functionf(x) such that S dp f(p) IpA) 
is normalizable, i.e., 

100 

x-l dx If(xW < 00. (17) 

Define 

g(y) = (_) 210! LX)x dxf(x) 

x G~~«txy)21 t(1o - K - e), H -10 - K + e), 

t( -10 + K - e), t(lo + K + e». (l8a) 

and fm as given by Eq. (13). ±X is +X for the Then the following inversion formula holds: 
principal and -x for the supplementary series. We 
introduce new parameters of integration f(x) = t 1''' y dy g(y) 

so that 

dflW = (47T2
)-lX dx de/> d~II~2H' 

The integrations over ~, e/> may be carried out trivially, 

x G~~«(ixy)21 t(lo + K - c), t( -10 + K + c), 

t( -10 - K - c), t(lo - K + e». (18b) 

Note that (17a) and (l7b) are of the same form except 
for a change of sign of K and the over-all factor (_ )210• 
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Equations (18) provide a whole class of integral 
transforms labeled by (X, K), where X == [/0' c] satisfies 
either (3a) or (3b) and K is arbitrary integer, for 10 
integer, and arbitrary half-odd-integer otherwise. We 
propose the name "Meijer G-transform of order 
(X, K)." For the special cases X = [t,O] and X = 
[0, t] it goes over into the familiar Hankel transform 
of order 2K for the function !(x) = xf(!x2

). 
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APPENDIX 

For the convenience of the reader we give here a 
useful reformulation of results of Gel'fand on invariant 
bilinear forms. 7.9 Let {= ({l' {2) ~ (0,0) be a com
plex 2-spinor-variable and assign to every 4-vector 
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qll a matrix q = qilU
Il

• Here O'K are Pauli matrices and 

0'0 is the 2 X -2 unit matrix. We then have the following: 

Lemma: Suppose h(fl{) = ifli-4hW for fl E C 
Then 

J
C2

d2
{ d2~c5(gq~+ - l)hW 

is independent of the positive lightlike vector q". 
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The equivalence of the methods of Dyson and Kac is proven in the I-dimensional problem of the 
disordered chain, i.e., the determination of the spectrum of the frequencies of normal modes of a system 
of coupled oscillators, where the masses and/or spring constants are random variables. 

INTRODUCTION 

The problem of the disordered chain is to determine 
the spectrum of the frequencies of normal modes of a 
system of coupled oscillators when the masses and 
(or) spring constants are random variables. There 
exists an extensive literature, beginning with a 
pioneering paper of Dyson,! dealing with the 1-
dimensional case governed by the Hamiltonian 

(with or without periodic boundary conditions). 
Recently, Kac2 proposed yet another approach to 

the problem which was based on a number of plausible 
but unproved conjectures. In this paper, we prove 
that the results of Kac and Dyson are equivalent. 

1. THE METHOD OF DYSON: 
RANDOM MASSES 

Let us first consider the case in which all the springs 
are of equal strength and choose the units so that 
the elastic moduli K; == 1. Then the frequencies of 
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the normal modes 0 ~ WI ~ W2 ~ ••• S WN are the roots of the equation 

2 - m1w2 -1 0 0 

-I 2 - m2w2 -I 0 0 

D..N = = O. (1.1) 

0 0 -1 2 - mNw2 

We now assume that m1 , m2 ,"', mN are independent, identically distributed random masses with 
distribution function R(m). The problem is to find the limiting frequency distribution H(w), defined as 

H(w) = lim 1. (HN(w» = lim 1.1\ I 1/\ (1.2) 
N-+oo N 1V-+00 N Wn<W 

Dysonl derived the formula 

1°010g (1 + ~) dH(w) = 1
00 

dF(x) 1
00 

dR(m) log (1 + ~ + ~~) = (lOg (1 + i + ~~). 0 <~, (1.3) 

where F(x) is the distribution of the random variable X with property (a); i.e., if Xo is defined by the formula 

Xo = ~m + X(1 + X)-I, (1.4) 

where X is independent of m, then Xo has the same distribution function as X, i.e., F(x). Dyson's derivation 
was somewhat complicated, and we derive (1.3) by a simpler method suggested by Bellman.3 

Let DN = DN(~; m1 ,'" ,mN) be defined for ~ > 0 as follows: 

2 + m1 ; -I 0 0 0 

-1 2 + m~ -1 ... 0 0 

o o 

It is easily checked that 
N 

DN = m1 ••• mN IT (~ + w~) 
n=1 

and, hence, 

1 100 

lim - (log DN ) = (log m) + log(~ + ( 2
) dRew). 

N .... oo N 0 

(1.6) 

From (1.5), we have the familiar recursion formula 

(1.5) 

distribution function as Y, i.e., G(y). Using the 
identity 

DN DN- 1 Dl 
DN = --'--"'-' Do, Do == 1, 

DN- 1 DN- 2 Do 
one has 

I· 1 I . 1 ~/ Dn \ 1m - (og DN ) = hm - 4\log -j = (log Y). 
N .... oo N N .... oo N n=1 Dn-

(1.9) 

(1.7) From (1.6), (1.9), and property (b) of Y, we obtain 
DN DN- 2 -- = 2 + ml~ - -- , 

DN :""l DN- 1 

where clearly m1 and DN - 1/DN - 2 are independent. Let 
GN be the distribution function of DN/DN_1 ; then,as 
N -+ 00, the limiting distribution function G .should 
have property (b); i.e., if Y has distribution function 
G(y) and Y is defined by the formula 

Yo = 2 + m~ - Y-l, (1.8) 

with m and Y independent, then Yo has the same 

iOOlog (1 + ~2) dH(w) = (log Y) - (log ~m) 

= 1\log (1 +.1..- + Y -1)\ 
;m ;mY / 

(1.10) 

where m and Yare independent. In Sec. 3, we prove 
that (1.3) and (1.10) are, in fact, equivalent. 
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2. THE METHOD OF KAC: 
RANDOM MASSES 

In a lecture given at the Trondheim Theoretical 
Physics Seminar in 1968, Kac2 proposed a completely 
different approach. Though not simpler than the above 

approach, it is of some independent interest and it 
does yield what is probably the most explicit formula 
for the transform in (1.3) or (1.9). 

First of all, Kac introduces the periodic boundary 
condition so that DN is now given by the formula 

-1 0 o 
o 

-1 

o 2 + m2~ -1 

-1 o 

He then shows that 

(Db = C,V.kJ.N(k), k = 1,2, ... , (2.2) 

where C.v.k tends to 1 as N ---+ 00 and where J.(k) is the 
maximum eigenvalue of the Hilbert-Schmidt kernel 
K(k)(X, y) which is given by 

K(k)(X, y) = (1T-1Y[G(~ IlxII2)]!riIX-YII'[G(~ IIYI12)]!. 

(2.3) 

Here Ilxll denotes the k - dimensional Euclidean 
length of the vector x = (Xl' ..• , xk) and 

roo • 
G(~ Ilx112) = Jo e-;mllx ll dR(m). (2.4) 

In trying to extend formula (2.2) to k's which are 
not necessarily positive integers, Kac2 noted that, 
since the principal eigenfunction of (2.3) is an eigen
function of spherical symmetry, J.(k) is also the maxi
mum eigenvalue of the kernel: 

Lk(x, y) = (21T-t)(xy)!(k-l)e-(X2+y2)[G(h2)G(~l)]! 

x i r(n + t) (2xy)2n, 0 ~ X, y. 
n=O (2n)! r(n + tk) 

(2.5) 

Since Lk(x,y) is defined for all positive k's, it is 
natural to conjecture that 

(DN!k) "-' J.N(k), (2.6) 
for all k > o. 

If one goes one step further and conjectures that 
(2.6) is valid even if 

k = €/N, 
and that, for small k, 

A(k),-....Il - ock +"', (2.7) 

then one is led to the conjecture that 

. 1 ) 2 I' 1 - A(k) 2 (28) hm - (log D N = 1m = oc. . 
N-+oo N k-+O k 

(It is easy to prove that A(k) ---+ 1 as k ---+ 0.) 

(2.1) 

o -1 2+mN~ 

By a method suggested by Wilson (see the Appendix 
of Ref. 2), it is then easy to obtain 

~ An 2 ) 20c = (log (2 + ~m» - 2"" --in' (2.9 
n=11 - An 

where 

(2.10) 

and the }'n and the Un(x) are the eigenvalues and 
normalized eigenfunction of the kernel. 

Mo(x, y) = 2(xy)-!e-("hw2)[G(~x2)G(~l)]! 
00 (xy)2n 

X I , 0 < x, y. (2.10 
n=l n! (n - 1)! -

We justify the conjecture (2.8) by showing that it 
leads to Dyson's result. 

3. EQUIVALENCE OF THE DYSON AND 
KAC METHODS 

We seek an eigenfunction of (2.5) in the form 

cp(x) = xt(k-l)G!(~X2) 100 

e-u(C2 dQiu). (3.1) 

Substituting this into the integral equation 

looLk(X, y)CP(y) dy = A(k)cp(x), (3.2) 

we obtain after an elementary calculation 

A(k) 100 

e-UX
' dQk(U) 

l
ao 1"" e-(u+;m)/(l+u-Hm)x' 

= dR(m) t dQk(U) 
o 0 (1 + U + ~m) k 

= fu -V)lke-Vx

2 

dPk(v), (3.3) 

where Pk(v) is defined for 0 ~ v ~ 1 by the formula 

Piv) = f/(l-V)QkC ~ V - m) dR(9)· (3.4) 
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It is now clear that, in order for (3.3) to be fulfilled, 
it is enough that we have, for 0 :5; U ~ 1, 

Qk(U) = LU(1 - V)l-k dPk(v) / f(l - V)l-k dPk(v). 

(3.5) 

In view of (3.4), this constitutes an integral equation 
for Qk(U); if a nondecreasing solution can be found, 
the corresponding cp(x) as given by (3.1) is nonnegative 
and, hence, it is the principal eigenfunction. It also 
follows that 

A(k) = f(1 -v)fk dPiv). (3.6) 

In Appendix A, we prove that a nondecreasing solu
tion of (3.5) indeed exists. 

If one extends the definition of Qk(U) and Pk(u) by 
setting 

Qk(U) = 0, U ~ 0, 

Qk(U) = 1, 1:5; U, 

we see that Qk(U) and Pk(u) are distribution functions. 
Therefore, it is possible to select a subsequence k n t 0 
such that 

(3.7) 

where Qo(u) is again' a distribution function. It 
follows almost at once that Qo satisfies the integral 
equation 

Qo(u) = iUdPo(v), 

with Po given by the formula 

(3.8) 

Po(v) = f/(1-")QoC ~ v - m) dR(~). (3.9) 

Note also that Qo can also be characterized as follows 
[property (c)]: If Z has the distribution function Qo 
and if Zo is defined by the formula 

Zo = 1 - I/(l + ~m + Z), (3.10) 

with m and Z independent, then Zo also has the 
distribution function Qo' 

Now, it follows from the fact that all the Pk are 
distribution functiuns and, from (1.6) and (2.8), that 

1 100 

,~,i~ N (log DN ) = 0 log (1 + v) dPo(v) 

= (log (1 + ;m + Z» 

= (log m) + LOOlog (~ + (02
) dH(oo). 

(3.11) 

We note that there is a slight difference between 
(1.5) and (2.1) if we use DN in (1.5) instead of Ds in 

(2.1), and a modification of CN,k in (2.2) should be 
made. This is clearly a minor matter and the result is 
not affected. 

We now prove that (1.3), (LlO), and (3.11) are 
equivalent. To see this, we start from (1.8) and 
rewrite it in the form 

(Yo - I) = m; + (Y - 1)/[1 + (Y - 1)], (3.l2) 

with m and Y independent. Comparing (3.12) with 
(1.4), we see clearly that Y - I and X have the same 
distribution function F. Thus, (1.4) implies that 

(log [I + X-I + (~m)-I]) 
= (log (X + ~m + ;mX» - (log (;mX» 

= (log Xo(l + X» - (log (~mX» 

= (log (I + X» - (log (~m» 

= (log Y) - (log ~m), 

which shows that (1.3) and (LlO)'are equivalent. To 
show that they are also equivalent to (3.lI), let us 
start from (3.10), which is rewritten in the form 

_1_ = 1 + ~m + Z = 2 + ~m _ 1 
1 - Zo (1 - Z)-l 

(3.13) 

with m and Z independent. Comparing (3.13) and 
(1.8), we see that Y and (l - Z)-1 have the same 
distribution function or that Z and (Y - 1)/ Y have 
the same distribution function Po. From (1.10), we 
have immediately that 

/\IOg (1 + _1 + Y - 1/\ 
~m ~mY 

= (log am + 1 + Z» - (log ~m), 

which means that (3.11) is equivalent to (1.10). 

4. THE PROBLEM OF RANDOM VARIABLES 
{Kj/mj, Kdmj+I}j 

Let us discuss another type of disordered chain 
introduced by Dyson.1 We assume now that 

are independent random variables with common 
distribution function G(fl) concentrated on the non
negative real axis. Dyson's result in this case is 

LOOIOg (1 + ~) dH(oo) = 2 LOOIOg (1 + u) dF(u) 

= 2(log (1 + U», (4.1) 

where F(u) is the distribution function of U with the 
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property (d) that if 

Uo = 1/(1 + U), (4.2) 

where p, is independent of U and has the distribution 
function G, then the distribution function of Uo is the 
same as that of U, i.e., F. 

In the special case 

G(p,) = f: e-t dt, 0 ~ p" (4.3) 

KN + Kl + ~ml Kl 0 

F(u) can be found explicitly, with the result 

i
u i"1 e-

s
' F(u) = f(s) ds = - -- ds, 

o 0 K (1 + s) 
(4.4) 

where 

100 1 K = -- e-ss ds. 
o 1 + s 

(4.4') 

We first give the Kac approach to this problem. Let 

-Kl Kl + K2 + ~m2 -K2 

o 
o 

o o 
P,1 + Jl2 + ~ - Jl2 0 o 

o -Jl3 Jl3 + Jl4 + ~ -Jl4 

-Jl2N 

= ml ••• mN • DN ; 

o 

where, by assumption, Jll' Jl2"" , Jl2N are inde
pendent with common distribution function G(Jl). 
Then, as before, 

lim 1. (log DN ) = rOOlog(~ + w2
) dH(w), (4.6) 

N~oo N Jo 
where DN is defined by (4.5). 

Now the formula 

- = (1T)-tN dXl' . . dXN 1 foo foo Dt -00 -00 

x exp ( -~. ~ mnx! - ~ Kn(Xn+l - Xn)2) , 

XN+l = Xl, 

= (ml ... mN)-t1T-iN L: dXl •• ·L:dXN 

x exp { -~ ~ x! - [ (mK~J Xn+l - (::)* Xnr} 
makes it clear that 

- -t 1N «DN) ) = eN" (1), (4.7) 

where eN is a constant which tends to 1 as N -- 00 

and A(1) is the maximum eigenvalue of the integral 
kernel K(l)(x, y). 

K(1)(x, y) = 1T-te-is",s(exp {-[(Jlxi _ ("y)t]2})e-tiIl2, 

o - P,2N-I Jl2N-l + Jl2N + ~ 
(4.5) 

where Jl and" are independent random variables with 
common distribution function G. In general, we have, 
for k = 1, 2, ... , 

«DN)-ik) = CN.kAN(k), (4.8) 

where CN •k tends to 1 as N -- 00 and A(k) is now the 
maximum eigenvalue of the integral kernel K(k)(X" y). 

K(k)(X, y) = 1T-he-hllxlls 

X (exp [-Jl IIxI1 2 + 2(p,,,)1(x • y) _ " lIyIl2])e-hIlYlIs, 

(4.9) 
where x is the vector (Xl' X2' ••• , Xk)' 

Using the fact that, for k an integer, the principal 
eigenfunction is an eigenfunction of spherical sym
metry, we can easily check that A(k) is also the 
maximum eigenvalue of the Hilbert-Schmidt kernel, 

Lk(x, y) = 21T-*(xy)t(k-l)e-is(",s+ll) 

X i r(n + 1) (Jlne-IJ"")(Jlne-W/lo)(2xyr, 
n=o(2n)! r(n + ik) 

0< x, y, (4.10) 

where Jl has the distribution function G. 
Kac now makes the same conjecture as before, i.e., 

(4.11) 

for all k > 0; then, by analogous reasoning, formulas 
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similar to (2.6) and (2.8) are obtained leading finally 
to the conjecture that 

lim 1. (log DN ) = 2IX = -2),,'(0). (4.12) 
N-+oo N 

We now give a justification of the conjectures using 
essentially the same method as above. Again we seek 
the principal eigenfunction in the form 

4>ix) = xl(k-1)e-hx'looe-vx' dQiv). (4.13) 

Substituting this into the integral equation with the 
kernel Lk(x, y), we obtain 

A(k) Loo e-vx' dQk(V) 

_ 2 i {'(n + t) 
- 1Tt n~0(2n)! {'(n + tk) 

x /(flvte-vx2 roo In+k-1e- 1HI'+Vk) dy \(2x)2n 
\ Jo / 

ro X2n ~ • 
= L - «~ + fl + Vk)- k . (flvte-VX 

) 

n~O n! 

= «~ + fl + Vk)-h exp [-(~ + Vk)VX2/(~ + fl + Vk)]), 
(4.14) 

where Vk has distribution function Qiv). 
As in Sec. 3, we prove that the Qk(V) exists and is 

unique for k > 0 and that A(k) > 0 is given by the 
formula 

Again, we prove that 

and, therefore, 

log ~ + 2(log (l + U» = (log [~(l + Uo)(l + U)]) 

= (log (~ + fl + ~U» 
= (log (~ + fl + V»,/ 

which is (4.18). 
We note that Bellman's method can also be applied 

and that it leads to an equivalent result. 
In the special case, when G(p) is given by (4.3) 

[and F(u) by (4.4)], the kernel is 

2 1 1. 2 
Lk(x, y) = ! (xy)~(k-l)e-~;(x +Y ) 

1T 

00 {'(n + t)(n!)2 (2xyr 

x n~o (2n)! {'(n + tk) (1 + x 2t+1(1 + It+1 ' 

0< x, y, 

and the corresponding maximum eigenvalue is 

A(k) = «~ + fl + vUk)-ik
), 0 < k. 

Here, as before, fl, v, and Uk are independent, fl and v 
have the same distribution function G, and 

A(k/ 1 \ 
\1 + Ukx/ 

= /(~ + fl + vUk)-h(l + ~ + vUk )-1\ 
\ E+fl+V~ / 

The derivative of A(k), at k = 0, now satisfies the 
equation 

2IX = -2,1'(0) = (log (E + fl + vW», 

2IX = -2,1'(0) = (log (E + fl + V», (4.16) where W has the property (f), i.e., 

where ft is independent of V and V is a random 
variable whose distribution function Qo is such that 
if 

Vo = fleE + V)j(E + v + V), (4.17) 

where fl, v, and V are independent and where fl and 
v have the distribution function G, then Vo has the 
same distribution function as V, i.e., Qo [property (e)]. 

To show the equivalence of (4.1) and (4.6), it 
suffices to prove that (4.12) and (4.16) imply 

(log a + fl + V» = log E + 2(log (1 + U». (4.18) 

Rewriting (4.17) in the form 

Vo fl 

~ ~(1 + v/~(l + V/~)) 
and comparing it with (4.2), we see clearly that VI ~ 
has property (d). Thus, from (4.2), we have 

~(1 + Uo)(1 + U) = ~ + fl + ~U, 

Wo = (~ + vW)/(E + fl + vW) 

(fl, v, and Ware independent, and fl and v have the 
distribution function G) has the same distribution 
function as W. 

It is not hard to check that Wand (1 + U)-l have 
the same distribution function and, since the density 
function of U is known explicitly [see (4.4)], we can 
also determine the density function of W. 
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APPENDIX A 

Let B be the space of all probability measures con
centrated on the closed interval [0, 1] and consider 
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a mapping L* from B into B defined for Q E B: 

(L*Q)(u) = lU(1 - v)h dP(v) / f(1 -v)h dP(v), 

o ~ u ~ 1, 
where P(v) is defined by the formula 

P(v) = f/(l-V)QC : v - m) dR(~), 0 ~ v ~ 1. 

The mapping L* is easily seen to be 1-to-1 and 
(weakly) continuous. We also note that B is a convex 
and (weakly) compact set, so that the fixed-point 
theory applies. Hence, there exists Qk E B such that 

Qiu) = (L*Qk)(U) 

= lU(l - v)h dPiv) / iU(1 - v)h dPk(v); 

i.e., Qk satisfies (3.5). 

APPENDIX B 

Professor Kac called the author's attention to the 
following interesting and highly plausible conjecture. 

As mentioned in the text (see also Ref. 2), we have 
for k a positive integer 

(DNh ) = L Af(k), (Bl) 

where the Aj are the eigenvalues of the kernel 

(B2) 

Because the kernel is rotation invariant, its eigen
functions are of the form 

fCllxll) . S(x/llxll), (B3) 

where S is a k-dimensional spherical harmonic. 
As is well known, the eigenvalues 2lk) can be 

obtained as follows. 

Let 

L~n)(r, p) 

= (rp)!(k-l)e-(hp2)[G($r2)]![G($p2)]!o~n)(r, p), (B4) 

where 

o(n)(r ) __ 2_ 
k ,p - r(tk) 

x f' e2rp 
cos V'C~k-\ cos 1p) sink

-
2 1p d1p / LIT sink-

2 1p d1p, 

(B5) 

and the C~ are the normalized Gegenbauer polyno
mials; i.e., 

C~(X) = C~(x)jC~(1), (B6) 

and the Cn(x) are the standard Gegenbauer polyno
mials defined by the equation 

00 

(1 - 2xt + t2
)-. = L C~(x)tn. (B7) 

n~O 

Let the Ai(n, k) be the eigenvalues of Lin)(r, p). Then 
the eigenvalues of (B2) are the A;(n, k), each counted 
with multiplicity 

(2n + k - 2)r(n + k - 2)/[r(k - l)r(n + I)]. 

In particular, 
00 

(D-;,h = L(2n + k - 2) 
n~O 

OCJ 

x [r(n + k - 2)jr(k - 1)r(n + 1)] L 2f(n, k). 
i=l 

(B8) 

Now, it is easily ascertainable that the right-hand 
side of (B8) makes sense for all real k. Therefore, it is 
tempting to conjecture that (B8) holds for all real k. 
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The reduction of products of irreducible Cartesian tensors is formulated generally by means of 3-j 
tensors. These are special cases of the invariant mappings discussed in Part II [J. A. R. Coope and R. F. 
Snider, J. Math. Phys. 11,993 (1970)]. The 3-j formalism is first developed for a general group. Then, 
the 3-j tensors and spinors for the rotation group are discussed in detail, general formulas in terms of 
elementary invariant tensors being given. The 6-j and higher n-j symbols coincide with the familiar ones. 
Interrelations between Cartesian and spherical tensor methods are emphasized throughout. 

INTRODUCTION 

This paper treats the Clebsch-Gordan reduction 
for Cartesian tensors within the context of the general 
theory of Paper ILl The tensors to be reduced are now 
tensor products of two irreducible tensors. The 
appropriate linear mappings to reduced forms are 
specified by invariant tensors which are the ana
logs of the 3-j symbols of spherical tensor theory2,3 

and are, therefore, termed 3-j tensors. These 3-j 
tensors are conveniently described as linear combina
tions of tensor products of the elementary invariant 
tensors for the group, and this representation gives a 
concrete meaning to the 3-j formalism as a specifica
tion of Cartesian tensor operations. On the other 
hand, they can be represented as "contractions" 
between the primitive projections for the three 
symmetries involved and can be explicitly related to 
spherical tensor 3-j symbols by a resolution of the 
three projections. 

A special case of the Cartesian Clebsch-Gordan 
reduction for the rotation group has been discussed 
recently by Barsella and Fabri.4.5 The full 3-j tensors 
are not required for this case which, in our language, 
is the coupling of natural forms to natural forms, nor 
for the re-embedding of the coupled natural forms, 
but they are required for tensor-averaging applications 
of the type of the Wigner-Eckart theorem.6,7 

Section I summarizes the general theory for reduc
tion of Cartesian tensors, which is the basis for the 
development of the Clebsch-Gordan formalism. Some 
details concerning unitary representations are in
cluded in Appendix A2. Section 11 develops the 3-j 
formalism for a general group, and Sec. III discusses 
the I-j tensors and their relation to the spherical I-j 
symbols. The remaining sections develop the 3-j 
formalism in detail for SO(3) and SU(2) , i.e., for 
tensors and spinors under the rotation group. 

I. CARTESIAN FORMALISM 

We have a group G of linear transformations on a 
real or complex finite vector space X = Xl, the space 
of contravariant vectors, a dual space X = Xl of 
covariant vectors defined by an invariant scalar 
product, i.e., defined to transform contragrediently 
according to the inverse transpose representation of 
G, and we consider induced transformations on X:;', 
the space of mixed tensors of order (n, m), with n 
contravariant and m covariant indices. Dual bases 
e,,(n I m) and e"(m I Ii) satisfy e,,: eT = b~.8 If e" is 
irreducible of symmetry j, then the dual tensor e" 
is irreducible of symmetry j, where j denotes the 
contragredient representation.9,IO For unitary repre
sentations, j coincides with the complex conjugate 
representation j* . 

The reduction of the space X:;' into subspaces 
irreducible under the transformations induced by G 
is achieved by construction of appropriate projections 
n~, where j is the symmetry index and ()( a multiplicity 
index. n~(mn I mfi) is an invariant tensor in X;::t~, 
and besides being idempotent it must satisfy the con
ditionll that the range of the map n~::r::;. -+:r::;, (con
traction with right-hand indices) is dual to the range 
of the dual map n~: X: -+ X:;' (contraction with left
hand indices), so that it has a spectral resolution 
n~ = La eae". n~ projects out an irreducible subspace 
of symmetry j from X:;' and the dual subspace of 
symmetry j from X:;' . 

The n!, being invariant tensors, can be constructed 
from tensor products of the few elementary invariant 
tensors appropriate to the group. These can be 
interpreted as defining elementary tensor operations
contractions, embeddings, and the substitution of 
indices. They are usually directly related to the 
definition of the group, and, in principle, charac
terize the possible projections IT! and, hence, the 

1591 
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possible irreducible representations completely (Ap
pendix AI). 

As discussed in Paper II, any invariant tensor 
T(O)(m I Ii) maps an irreducible subspace H~~ c :r;n 
either into the null space or onto an irreducible 
subspace H~fJ c:r;m of the same symmetry. The 
mapping T(O): H~rJ. ---+ H~{J is one-to-one and can be 
inverted. Thus an irreducible subspace Hi of a space 
of convenient order can be selected for each symmetry 
j as a standard space for symmetry j, and every 
irreducible tensor FU) can be represented as a tensor 
fW in the standard space invariantly embedded: 

Pi)(n) = T(O)(n I mj) • fW(mj). (I) 

This observation reduces the problem of decom
position of contravariant tensors essentially to a 
knowledge of a set of projections, denoted by 
Ei(mi I mj)' into the standard spaces, one for each 
symmetry j. Where an invariant mapping between 
spaces of different order is possible, i.e., where 
covariant elementary invariant tensors exist, the 
standard space is naturally chosen in the space of 
least tensorial order consistent with symmetry, and 
the tensor f(i) in Eq. (1) may then be called the 

. reduced form of F(i). If the symmetry j occurs in the 
space of minimal order with multiplicity one, then 
tensors in Hi have a particularly simple form, being 
eigentensors of all invariant automorphisms T(O): 
:r;mJ ---+ :r;m; and, in particular, totally symmetric or 
totally anti symmetric to permutations of indices
such tensors are appropriately said to be in natural 
form,12 fW being the natural form of F(i). Where the 
multiplicity is not one, it may still be possible to find a 
relative invariant mapping to a space of relative 
tensorsl3 of lower order and multiplicity one. The 
inverse map requires a relative tensor of opposite 
weight so that the embedded relative natural tensor 
is again an absolute tensor.14 

Given the standard projections Ei, the reduction of 
nth-order tensors proceeds by contraction to the 
minimal rank, projection with Ei, and inversion of 
the mapping. Precisely, we construct a maximum 
number (equal to the multiplicity N~ of j in :r;n) of 
linearly independent invariant tensors T'D(n I mi)' 
satisfying T'D = T'D • Ei (so thatl the image of T'D: 
:r;mJ ---+:r;n is an irreducible subspace of :r;n of sym
metry j), together with the dual tensors15 P(mj Iii), 
satisfying P = Ei • TP, and 

P(mi I ii) on Tq(n I mi ) = t5:Ei(mi I mi)' (2) 

Then the projection into the total invariant but, in 
general, reducible subspace H~ = !Il H~1l of symmetry 

j (usually the only significant decomposition) is 

TIi(n I Ii) = 2 Tin I mj ) om; P(mi I Ii). (3) 
p 

The Tp extract standard or natural tensors f(j)P from 
a given tensor F, and the T pre-em bed them. I6 The 
T p can be constructed by applying Ei to arbitrary 
invariant tensors S~O)(n I mj ) of appropriate order, and 
a basis for the P can be similarly obtained. In the 
case of compact and finite groups, G can be taken as a 
set of unitary transformations on :r;; the dual space is 
essentially the adjoint space and, for any basis T p' a 
Hermitian metric gpq is defined, which can be used to 
raise and lower multiplicity indices (Appendix A2). 
The Clebsch-Gordan reduction is a specialization of 
this procedure. 

II. CLEBSCH-GORDAN REDUCTION 

Consider the decomposition of the tensor product 
of two irreducible subspaces Hh and Hi" the standard 
spaces for symmetries il and i2' into a sum of sub
spaces (Hh ® Hi.)i, of symmetry ia (in general, 
reducible) and of order n = ml + m2: 

Hit ® Hi. = 2 (Hit ® Hi2)ia. (4) 

This decomposition can be accomplished by the gen
eral procedure for tensors of order n (Sec. I), i.e., by 
constructing a basis T pen I m3)' Since, however, it is 
only necessary to span that part of H~' in Hh ® Hi., 
it is possible to take a smaller basis, that of invariant 
tensors T:~~'(n I ma), satisfying 

Tili. - EhEi •. T~li2 . Eil (5) 
is'P - • l3P • 

Only a number M(jlMa) of such tensors can be linearly 
independent, equal to the multiplicity of js in jl ® h· 
A set can be constructed by replacing T:!~2 on the right 
of Eq. (5) by arbitrary invariant tensors S~O)(n I ma) 
of order (ml + m2' rna). With a dual basisl5 T:~r" 
defined to satisfy 

(6) 

and 
T~'P • Tili. = t5 PEis (7) 

11:12· isfJ Q' 

the resolution of the projection for (Hit ® Hi")i. is 

TIi'(ml + msl ml + ms) 

= ~ T~~~I(ml + m21 ma) omIT~~~.(msl ml + ms)' 
p 

(8) 

Summation over ja gives the identity for Hi} ® Hi., 
i.e., the completeness relation 

2 TIia(ml + m21 ml + ms) = Eit(ml I ml )Ei2(m s l ms)' 
h ~ 
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Thus, if A(;')(m1) and B(2)(m2) are standard irre
ducible tensors, the T~3~ couple them to standard ,11. 
tensors C(isP) (m3)' 

CUsp) = A(i!)BU,) • Tis,? (10) 
• 1112' 

and these are re-embedded by the T:!~ in :x:m,+m" 

C( 3)(m 1 + m2) = I C(
3)P(m3) • T:~;', (11) 

P 

in such a way that 

~ CUs) = A(;')BU'). 
33 

(12) 

Here CUs) is of symmetry j3 but is, in general, 
reducible. 

The invariant tensors T:~f, and T:!~2 are Cartesian 
"Clebsch-Gordan tensors" of a type analogous to 
the (unitary) Wigner coefficients for the rotation group. 
The Cartesian "3-j tensors," which we denote by 
Vp (j1,j2,j3) and VP(ja,j1,j2), are defined by Eqs. 
(5) and (6) in essentially the same way, but are normal
ized in a way appropriate to bases for tensors of 
symmetry j = 0 in Hh ® Hi, ® Hi, c :X::::!+/II" 

(13) 

rather than by Eq. (7).15 Here, and in much of the 
following, we do riot indicate tensorial orders but use 
generic symbols r, s, f, r', etc., to distinguish whole 
sets of Cartesian indices r = {r1r2 ' •• r m}, etc. The 
orthogonality and completeness relations with respect 
to ja are now 

[j3]VpG~ ~ ~): Vq(~1 i
S
2 j;) 
= c5i'3s,c5~Eia(t' I f) (14) 

and 

I[j3]Vp(i~ i2 
iap r s' 

j3) . VP (i3 j1 j2) 
f t f s 

= Ei'(r' I f)Ei2(S' Is). (15) 

There is considerable symmetry within a given 
triad (jd2j3) or dual triad (jd2ja), and the index p 
can be associated with the triad as a whole. The 
orthogonality of Eq. (13) implies three relations 

[ji]VP(ja, j1, j2) : ViiI, i2, ja) = c5~Eii, (16) 

where ji is anyone of j1' h, j3 and the contraction is 
over the indices not associated with ji,17 Moreover, 
the uniqueness of the coupling18 j ® j -+ 0 implies 
that the dimensions of the spaces (Hit ® Hi')ia, 
(Hi! ® His);" and (Hi2 ® His)i' coincide with the 
dimension of (Hi, ® Hi, ® Ws)o. Thus, the same set 

of 3-j tensors VP(ja,j1,j2) and Vp (j1,h,ja) describes 
the couplingj1 ® j2 -+ ja of two contravariant tensors, 
the couplings j1 ® ja -+ j2 and j2 ® ja -+ j1 of a contra
variant and a covariant tensor to a covariant tensor, 
for which the projection is of the type 

ni'(sf I s't') = I V P (i1 i2 j~) or VI' (ia j1 j2) 
I' r s t t' f s" 

(17) 

the coupling j1.® h ® ja -+ 0 of one covariant and 
two contravariant tensors to an invariant, for which 
the projection is 

n(O)(rsfl ;'s't') = "" V (i1 i2 j3)Vp(i3 A j2) 
.; P r sit' ;' s' , 

(18) 

and the four dual couplings. Equation (18) implies 
that the invariant part of a tensor triple product is 

(A(h)(r)BU2)(s)C(ja)(f)(O) = ~ APVp(~1 i
S

2 j;), (19) 

where AP is the pth triple scalar product 

AI' = A(h)(r)B(j,l(s)C(js)(f) : Vp(~3 ~1 ~2). (20) 

This is the tensor property underlying the Wigner
Eckart theorem for a general group. Appendix A3 
illustrates some of these properties for GL(3). 

For j1 ,j2' j3 distinct, we are free to define symbols 
such as Vp(j1,j2,j3), Vp(j2,j1,j3), and Vp(j1,j3,j2) 
independently, and to impose simple "symmetry 
conditions." However, if j1 = j2, then transposition 
of indices rand s (ri +--+ Si) is a symmetry operation, 
and the set of V p' p = I, 2, ... , M(j1j1j3)' is a basis 
for a representation of S2, the symmetric group of 
order two. That is, from the completeness of the V p 

V (i1 i1 j~) = I SPy (i1 i1 j~), (21) 
qsrt pqprst 

where S2 = 1. By a change of basis, the representation 
can be decomposed into irreducible representations 
for which 

V (i1 i1 j~) = ± V (i1 il j~), (22) 
Ksrt Krst 

according as H~3(2ml) lies in the symmetric or anti
symmetric part of Hi, ® Hi,. The number of even and 
odd symbols V" is a characteristic of the triad. 

In the unitary case (Appendix A2), we define the 
adjoint of a 3-j tensor, 
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and a positive-definite Hermitian metric for the 
multiplicity indices, 

g1'Q = V~: VQ • (24) 

Then the inverse tensors are given by 

V1' = I g1'qv: . (25) 
q 

It is possible, though not necessarily convenient, to 
orthogonalize the V l' so that g1'q = (jpq and VP = V!, 
in which case the individual terms 

(26) 

are orthogonal projections giving a complete decom
position of Hit ® Hi,. Further, by a unitary trans
formation with respect to multiplicity indices, the 
tensors C(i3)1' for a particular product A (it) B(io) can 
be made orthogonal, each being embedded in a 
different orthogonal subspace. 

When hand ia are both contained in :x;n and, in 
particular, whenever ja = ia, then completely covari
ant and contravariant 3-j tensors can be defined. It 
is appropriate in this case to start with new sym
metricaP9 definitions 

Vp(jl j2 ja) 
I' s t 

= Eit(r I i')Ei2(S I s')Eis(t Ii'): Vpe~ ~~ ~~), (27) 

VP(~l ~2 I;) 
= VP (il i2 Jt~~): Eil(r' I i)Ei,(S' I S)Ei3(t' I i), (28) 

i ' S' 

and 
Vp : vq = (j;. 

In the unitary case, we define V!: V~ = g pq' so that 

VP(~l ~2 i~) = I g1'qvq(jl j2 ja)*. (29) 
rst q rst 

For two j's being equal, the only restrIctIOn on 
"phases" is again that the V p are a basis for a repre
sentation of S2' However, for jl = j2 = ja, the set of 
V l' are a basis for a representation of Sa, the symmetric 
group of order 3, and the irreducible representations 
characteristic of the triad may include the doubly 
degenerate representation. With the simplest choice 
of symmetries, i.e., with the V(j,j,j) bases for irre
ducible representations of Sa, some V p will be 
symmetric to all exchanges and some antisymmetric, 
but, in general, there will also be pairs Vd , VK2 

transforming into one another under the permuta
tions.20 For a multiplicity-free triad, the representation 

of Sa is, of course, I-dimensional, and V(j,j,j) is 
either symmetric or anti symmetric to single exchanges. 
These symmetries appear in an interesting way in 
Cartesian theory-for SO(3) and SU(2), for example, 
they appear directly through the antisymmetry of the 
elementary tensors Erst and Ers ' 

The Cartesian 3-j tensors can be related to spherical
tensor 3-j symbols by a spectral resolution of the 
projections in the defining equations according to 

Ei(r Ii') = I e~(r)ejm(f'). (30) 
m 

From Eqs. (27) and (28), we have, assuming the phase 
choices consistent, 

V1'(jl j2 ja) 
r s t 

= ml.~.m3 (~l ~2 (31 ) 

where 

and 

where 

( ~ ~2 ~3)1' 
m 1 m2 ma 

= VP(~l ~2 ;): e:':,(r)e:':.(s)e~3(t). (34) 

Equations (32) and (34) imply that the spherical
tensor symbols so defined satisfy 

(35) 
and 

i3.~m.[j3](~1 ~2 
(36) 

In the unitary case, 

(37) 
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and Eqs. (35)-(36) go over into the unitarity conditions 
of Derome and Sharp,3.21 provided the basis is 
chosen as orthonormal (gpq = Opq). It may, however, 
be possible to choose the 3-j tensors to be of simpler 
form if they are not required to be orthogonal. 

III. 1-j TENSORS 

The coupling of two irreducible tensors to an 
invariant is a special case of the Clebsch-Gordan 
reduction, one j being zero, but it is distinguished 
because the invariant coupling tensors, here called 
1-) tensors in analogy to the so-called 1-) symbols of 
spherical-tensor theory, define the metric properties 
of the irreducible subspaces and orthogonality 
properties of the irreducible tensors. 

The mixed 1-) tensor, which is the analog of the 
spherical symbol 0:;:', is naturally taken precisely as 
the projection Ei(r I &), numerical factors being 
completely determined by idempotency. It is thus 
unnecessary to introduce also a symbol Ei(s I r) 
for projections on the dual space, because idempotency 
determines the phases, and necessarily 

(38) 

The uniqueness of the coupling j ® j -+ 0, that is, 
the fact that)1 ® h contains) = 0 if and only if h = jl 
and then with multiplicity one,IS follows, in fact, 
directly from the properties of the projections. The 
invariant part of the tensor product of two standard 
irreducible tensors A(j)(r), BU')(s), one contravariant 
and the other covariant, say (A(j)(r)BO')(S»W) = 
AW)(r I &), satisfies AW) = Ei. AW) • Ei' and therefore, 
by Theorems 2 and 3 of Paper II (the latter a form of 
Schur's lemma), must vanish for) ¥- j' and for) = j' 
must be a multiple of Ei. (This is actually a generaliza
tion of Theorem 4, Paper II.) Thus 

(A!il(r)B(j')(S»(O) = AOij'Ei(r I &), (39) 

where Ei also, trivially, gives the coupling to the 
scalar 

}. = (j]-IB(i)(S). Ei(S If)' AW(r) (40) 

= UtIB(j). AU). (41) 

In contrast to spherical tensor theory2,3 which 
treats all the group representations in an equivalent 
way, completely covariant and contravariant 1-) 
tensors do not, in general, exist in Cartesian theory 
because j and j are not, in general, both contained in 
:x;n, but one in :x;n and the other in the dual space. If, 
however, they do both occur in :x;n and, hence, both 
also in :X;n' then covariant and contravariant 1-) 
tensors, which we denote by gj(f, s) and gi(r, s) and 
which can be chosen to coincide, respectively, with 

[j]Nugn and [j]!V(~~!), do exist and are closely 
related to the spherical 1-) symbols, the spherical 
tensor metric.2 

The uniqueness of the coupling) ® j -+ 0 implies 
that the definitions 

(42) 
and 

gj(r, s) = P(r I fl)Ei(s lSi) : gi(r', S') (43) 

are unique to within numerical factors. These are 
partly determined by the requirement that gi be the 
inverse of gi' in the sense 

gi(r, s). gif, S') = Ei(S lSi), (44) 

which implies also 

gi(r, s). gj(f', s) = Ei(r I f'), (45) 

[cf. Eqs. (16)]. In the unitary case, the numerical 
factors are determined up to a phase factor by 

. t 
g' = gi (46) 

[that is, gi(r, s) = gi(f, s)*] which is consistent with 
Eqs. (42)-(43) because Ei is self-adjoint. 

The uniqueness of the coupling also implies that 
the 1-) tensors for j are, to within numerical factors, 
the transpose of those for), i.e., 

g/f, s) = Agis, f), 

gi(r, s) = },-lgi(s, r), 

(47) 

(48) 

where, in the unitary case, A is at most a phase factor. 
For j ¥- j, we can define gi and gj independently. 
However, for j = j, in which case gj(f, s) is the 
metric for Hi, Eq. (47) implies gi(f, s) = A2gP, s), 
whence necessarily 

A = ±l, (49) 

the metric being symmetric or anti symmetric accord
ing to whether j = 0 is contained in the symmetric or 
antisymmetric part of Hi ® Hi, i.e., according to 
whether the representations are "integral" or "half
integral." 3,22 For spinors, for example,23 

gi(f, s) = (1:,..)2 i , (50) 

with the symmetry (-1 )2i. 
The relation to the spherical symbols is given by 

specialization of Eqs. (31)-(34), which here take the 
form 

gi(f, 05) = L (j)mm,eim(f)eim'(o5), (51) 
m,m' 

where 

(j)mm' = glf, s) : e~(r)e~,(s), (52) 

and similarly, 

gi(r, s) = I (j)mm'e~(r)e~,(s), (53) 
m.m' 
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where 
(j)mm' = gi(r, s) : eim(i)eim'(s). (54) 

The symbols (j)mm' and (j)mm' have the usual proper
ties of the spherical I-j symbols.3 Equation (51) 
implies that they couple spherical tensors to invariants 
in accord with the equivalence 

gp, s) : A (i)(r)B(J)(s) = ! (j)mm,AimBim', (55) 
M.m' 

where Aim = eim(r). AW(r) is a spherical tensor 
component of N. Similarly, Eqs. (44)-(45) imply the 
relations 

~ ( .)tn'm( .) .im' k } } m"m = Um", 
m 

~ ( ')mm'( .) .im' k } } mm" = Um'" 
m 

and Eq. (49) the usual symmetry for j = j, 

(j)mm' = ±(j)m'm, 

(56) 

(57) 

for the integral and half-integral representations. In 
the unitary case, from Eqs. (46), (52), and (54), 

(58) 

The Cartesian l-j tensors raise and lower indices in 
standard tensors in the manner 

gli, s) • Al(s) = Al(i), 

gi(r, s) • A1(i) = Al(s), 

so that, for j = j, 

(59) 

Ai(r). Bi(i} = (_1)2iAl(i). Bi(r). (60) 

But note, however, for j ~ j that 

gi(i, s) • N(r) = 0, (61) 

[cf. Eq. (47)]. In particular, we can lower indices for 
a spherical-tensor basis set in two ways, 

e;"(i) = g;(i, s) • e;"(s), 

= ! (j)m'meim'(i), (62) 
m' 

and using these e;"(i) tensors, we have the following 
representation of the spherical metric: 

(63) 

For ambivalent groupsZ2 and, in particular, for simply 
reducible22 groups, j = j for all representations and, 
therefore, a covariant I-j tensor exists for all sym
metries. This is true, in particular, for the vector 
representations (basis in Xl), and it implies the exist
ence of an invariant "metric" in the tensor space 
for all ambivalent groups, i.e., a covariant elementary 
invariant tensor of second order defining the invariant 
product of two contravariant vectors.24 

For orthogonal groups with !5rlr. invariant, covari
ant and contravariant indices are not distinguished, 
and g p, s) and the transpose of gi (s, r) can be chosen 
to coincide with Ei(r I s). Then Eq. (38) or Eqs. (46)
(48) express the symmetry Ei(s I r) = Ei(r I s) = 
[Ei(S I r)]* for the complex representations (j ~ j)
e.g., for SO(2) with j = m and j = _m,I.23 we have 

Em(r I s) = 2-m(!5rs + i€rs)ffl 

= 2-m(bsr - iEsr)m = E-m(s I r). (64) 

For real representations (j = j), Eq. (38) implies that 
Ei is symmetric, 

(65) 

and, since Ei is self-adjoint, also real, and, by Eqs. 
(47)-(49), that real representations are integral. 
Conversely, a real symmetric Ei implies j = j. 

IV. 3-j TENSORS FOR THE ROTATION GROUP 

For the rotation group SO(3), it is unnecessary to 
distinguish covariant and contravariant indices. The 
elementary invariant tensors are !5rs and Erst, related, 
respectively, to the dot and cross products. The 
natural form for a tensor of symmetry j is a traceless 
symmetric tensor of order j, and the projections have 
the representation1.23 

Ei(r I s) = ! c1'!5:-;21I!5:"b:.. (66) 

where the coefficients 
l' 

c (.) - (-1)1' (j!)2(2j - 2p)! (67) 
pJ - (2j)! p! (j - p)! (j - 2p)! , 

are, apart from the normalization Co = I, the coeffi
cients of Legendre polynomials. The fact that the 
Ei are symmetric to the interchange r ~ s implies 
that the group is ambivalent and the representations 
integral. 

The 3-j tensors are obtained by applying the projec
tions Eh, Eio, Eia to arbitrary invariant tensors 
S~O)(r, s, t) of order J = (jl + j2 + j3)' Since the Ei 
symmetrize indices and annihilate trace terms of the 
type !5r1fo , only elementary tensors of the types brs , 
!5. t , brt , and Erst need be considered, and S<O) may, 
without loss of generality, be restricted to the form 

S(O) .i" s.(J 51.1 
= UstUtrUrB' J even, 

S (O) s." s.(Js.Y 
= ErstUstUtt'Urs, J odd. (68) 

The exponents must be positive or zero and such that 
the total numbers of r, s, and t indices are, respec
tively,jl,j2' andja. Thus, for J even, 

{3+y=h, 
y+cx=h, 
cx+{3=h, 

(69) 
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with the unique solutions (J. = V - j1, etc., which 
are nonnegative if and only if the triangle conditions 

where oc = 1(1 - 1) - j1' etc. There are two especially 
simple cases. For the coupling to maximumj, 

(70) T(j1,j2,jl + j2) = Ei3(rl" . r1,sl ... si21 tl ... tia)' 

are satisfied. For 1 odd, the exponents (J. = Hl - 1) -
j1' etc., are again unique, and the triangle conditions 
must again be satisfied. This completes the proof 
within Cartesian theory (i.e., based on the existence 
of just the two elementary invariants Or8 and Erst) 

that SO(3) is simply reducible with respect to tensor 
representations according to the Clebsch-Gordan 
seriesja = j1 + j2,j1 + h - 1,'" ,lj1 - j21· 

The 3-j tensors themselves are conveniently taken 
in an unnormalized form, denoted by T(j1 ,h ,h)' 
such that the leading term [one or other of the terms 
in Eq. (68)] has coefficient unity. For leven, 

T(j1 j2 j3) = Ei'Ei2Ei. : (0:/-i'O:/-i20~sJ-i3), (71) 
r s t 

and for lodd, 

T(j1 j2 j3) 
r s t 
- EilEi'Ei3· ( ~!(J-ll-i,~1(J-1l-i2bt(J-1l-i3) (72) 
- : ErstUst Utr rs . 

The normalized 3-j tensors are then 

V(j1,j2,j3) = n-i T(j1,j2,j3)' (73) 
where 

n1,i2i. = T(j1,j2,j3): T(j1,j2,j3)' (74) 

These 3-j tensors have the usual maximum symmetries. 
For leven, T{j1 ,j2 ,j3) is invariant to all permutations 
of j1' j2, ja, but for 1 odd, it has the symmetry of 
Erst--changing sign for odd permutations and also, if 
we insist that Erst be an absolute tensor,13 under 
inversion of the coordinate system. 

The terms brs and Erst in Eqs. (71)-(72) take con
tractions between the three projections. Thus the 3-j 
tensors also have the following representation: For 
leven, 

T(J
r
'1 j2 ja \ = L Eil(r I YI .•• YpZI ... Zy) 

s t J all "'.11.' . 
X Ei2(S I Zl ••• ZyXl •.• X«) 

X Ei3(t I Xl •.. X«YI ••• Yp), (75) 

where (J. = il - jl' etc., and for 1 odd, 

T(j1 j2 ja) - ~ L Eil(r I x Y ... Y Z ... Z ) 
- .£.., ~"'01Io'O 0 1 Ply 

r Stall "'.11.' 

and, in particular, for j2 =0, 

T(j, 0, j) = Ei(r It). 

For the coupling to ja = j1 + j2 - 1, 

T(jl>j2,jl + j2 - 1) 

(77) 

(78) 

= L Ers",Ei3(Xr1 ••• r i ,-ls1 ... si2-11 t1 ... t i3), (79) 
x 

and, in particular, forj2 = 1, 

T(j, 1, j) = L Ers",Ei(rl •.. r i-IX I t1 ... t i)' (80) 

'" 
Equation (79) is proved by observing that the right 
side is, in fact, traceless and symmetric in r, s, and t, 
and has the correct leading term. 

Expansion of the projections Ei in Eqs. (71)-(72), 
in terms of elementary tensors, gives the expressions 

T(
jl j2 ja) _ ~ [ba Ob bCbtJ-il+a-b-c 

- .£.., xa •b•c rr ss tt st 
r s t a.b.c 

~lJ-i.-a+b-cotJ-i3-a-b+c] 
X Utr rs (81) 

for J even, and 

ja) _ ~ [oa Ob 15 c b1(J-1l-i,+a-b-c 
- .£.., X u•b•c Erst rr ss It sl 

t a. b.c 

~1(J-ll-i.-a+b-C01(J-ll-i3-a-b+C] 
X Ulr rs 

(82) 

for 1 odd. Here a, b, and c are the numbers of trace 
terms. The xa •b•c may be called 3-j coefficients25 (with 
respect to a nonorthonormal basis of tensor products 
of elementary invariant tensors) and are such that 
T(jl ,j2 ,j3) is traceless and symmetric in the three sets 
of indices. Table I gives the 3-j tensors for 1 ~ 11 
explicitly in this form, together with the norms n. 
General formulas for the xu.c and n are obtained 
in Secs. VI and VIII. 

For the unnormalized 3-j tensors in Table I, the 
coupling formulas take the form 

and 

CUal(t) = ([~])! Tel ~2 jt3): A (i,l(r)Bu2l(s) 

(83) 

X Ei2(S I YOZ1 ••• ZyXI •.• X«) 

X Eis(t I ZOXI ••• X«YI .•• Yp), 

Only the coefficients of type Xo.o.c are required for 
(76) the coupling to natural form since A(i!l(r) and B(ill(s) 
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TABLE I. Cartesian 31 tensors for the rotation group for J = j, + j2 + j3 ~ 11. V(j" h ,ja) = {J-!T(j, ,h ,j3)' Repeated indices 
are symmetrized (see Ref. 19). 

J 

2 
3 
4 

5 
6 

7 

8 

9 

10 

II 

31 tensor 

T(I,I,O) 
T(1,I,1) 
T(2, 2, 0) 
T(2,1,1) 
T(2, 2, 1) 
T(3, 3, 0) 
T(3, 2, I) 
T(2, 2, 2) 
T(3, 3, I) 
T(3, 2, 2) 
T(4, 4, 0) 
T(4, 3, 1) 
T(4, 2,2) 
T(3, 3,2) 
T(4, 4, 1) 
T(4, 3, 2) 
T(3, 3, 3) 
T(5, 5, 0) 
T(5, 4, 1) 
T(5, 3, 2) 

T(4, 4, 2) 

T(4, 3,3) 

T(5, 5, 1) 
T(5, 4,2) 
T(5, 3, 3) 
T(4, 4,3) 

£r,t 

0:, - 10rro .. 
0rl0" - 10rro't 
E'rlt~r' 
o~, - iOrro"ors 
o~,O,t - !OTTO"O" - io"6 .. o,, 

Expression 

OrlO"O" - !Co"O;t + 0,,0;, + OttO;,) + iO"o .. <5 tt 

£rI'( 0:, - io"o,,) 
£"t( orsort - lOr,o,t) 
0:. - to"o,.o;, + I.o;ro;, 
o~,o" - %(o,rD;.O,1 + D"o .. O,.ort) + I.D;,D,.(l,t 
0;,0;, - to"o,Ato,t - tOTT(O"O;, + OttO;.) + .-'.0;,0;, + f.iJ;,o,,<5 tt 
0;.0,,0,1 - !(o,rorso;t + o"o"O;t) - 10tto~, - .\07rO"Or,O't + /;,Orro"oll<5,. 
£",(o~, - %orro"o,,) 
£rs,(o;,Ort - to"O"or, - tOrro"O't) 
£"t( o"o"o.t - H OTTO;t + o"O;t + OttO;,) + .~.O,,0880tt) 
0:, - ¥o"o .. o~, + f,o;,o;,o" 
o:,Ort - tOrro~,O't - iOr,o"o;,Ort + .-\ D;,osso"O,t + .~ o;,o;,<5,t 
0:.0;, - iO,ro;,O,to., - 10rro"iJ,,0;, - ~OrrOttO~, + .~ o;,o"O;t + .~ o;ro"OrtO't 

+ l,o;ro"Ottors 
o:,or,O" - HO,ro;,O;t + <5"o;,O;t) - 10tto~s - 4~.OrrO .. orso'to., + i\.(o;ro"O;t 

+ or,o;.o;,) + HO,ro .. ottO;. - .-\O;ro;.Ott 
0;.0;,0" - to,ro"o"O;t - -H 0880,,0~t + Otto:,o,t) + .1. o;ro:t + ,1. (o"o"O;to., 

+ o,rOttO;.o./) + H-o"o"O,t0,.ort - .\o;rO"OttO,t 
£rs'{ 0:. - iOrro,.o;, + l,o:ro;.) 
£rs,(o:.o,t - 10"0;,0,, - 10"o"0,,Ort + ';\0;,0 .. 0.,) 
£,.,(o;,O;t - tOrrorsortO,t - HO,ro"o;, + o,rOttO;,) + l.o:,o:t + l-.o;,O"Ott) 
£rst(o;.o"o" - t(or,orso;, + o"orso;t) - tottO~. - :-.o"o .. o"O,t + li.orro .. OttO,,) 

3 
6 
5 
5 

7 
7 

7 
9 
9 
9 

I1 
11 

I1 

11 -6--

II • 
II .. 
:A/-
00 
IT 

are already traceless. Indeed, all that is required is to 
contract the product A(h)B(i2) to a tensor of order js 
by OJ - js) dot products or, for J odd, [t(J - 1) - jaJ 
dot products and one cross product, and to make the 
result traceless and symmetric. The latter could be 
accomplished by projecting with Eia, but many 
terms obtained would vanish. For J even, the nonzero 
terms are just 

required for tensor-averaging applications according 
to Eqs. (19) and (20). For J even, the (single) scalar is 
often easily determined from the component with all 
indices equal to z. Writing for the unnormalized 3-j 
tensors 

C(ia) = (U3])! ~ x {(AU,) otJ-i3-c B(2»U C} (85) 
Q '7 O.O.c , 

and for J odd, the terms in the parentheses are 

{(A(ft) x ol(J-l)-ia-c B(2»U}, 

where U is the unit tensor (b tt ,) and the braces indicate 
symmetrization of indices. Similarly, according to 
Eq. (84), only coefficients of type Xa,b,O are required 
for re-embedding since C(ia)(t) is already traceless in t. 
Table II illustrates the reduction forjl,j2 = 1,2. The 
first part of the table, which gives the natural forms, 
agrees with the results of Barsella and Fabri. 4 

The full 3-j tensors (all the coefficients xa.b.C> are 

(AU')BU·)CUa)yO) = flT(jl,j2,ja), (86) 

where fl = Q-IT : A (h) B(i2)C(iS), we have, by Eq. (84), 

fl = [! Xa.b.eJ-l 
a.h.c 

X (A(h)(z ... Z)BU2)(Z' .. Z)C(ia)(z ... z»(O). 

For J odd, from Eq. (85), 

fl = jIja[! xa.b.cJ-I 
a.b.c 

(87) 

X (A(il)(yz ... z)B(i2)(ZZ ... z)C(i,)(xz ... z»(O). 

(88) 

Section VIII gives formulas for the required coeffi
cient sums. Appendix (A4) gives a simple example of 
the application to matrix elements (Cartesian Wigner
Eckart theorem). 
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TABLE II. Coupling of irreducible natural tensors. h, j2 S 2. A, B are second-order tensors, a and b are vectors. Natural coupled 
forms are written in invariant notations (see Ref. 5): U is the unit tensor; braces imply symmetrized indices. Repeated indices 

are symmetrized, not summed (unless indicated). 

h h ja Natural forms COa) Embedded forms Clia)(j, + h) Expanded embedded forms& 

1 0 3-~(a • b) 

1 2-t (a X b) 
2 {ab} - t(a • b)U 

3-~C<°)ors 

2-~~C:') Erst 
C(2 ) 

rs 

l(a • blOT! 
!(a,.b, - a,b.) 
!(a,.b, + a,b.) - l(a • b)o" 

2 1 (W(A. b) (!t)~(CllIO _ lCtl)o ) 
5 t r TS .8 rr t(A • b)rO,. - HA • b),o., 

2 (i)l{A X b} 

3 {Ab - %(A • b)U} 
(1)' ~tC~~)Erst 
CIa) r,. 

jA.,.b, - jAr.br + HA • b),r5r • - !(A • b).O" 
lAr,.b. + lArsb. - ,VA. b)Ar 

- ,~(A. b)rO,. 

2 2 0 5-t (A : B) 5-JCIOI (0;, - 10rro,,) HA : B)(o;, - lOrA.) 
H(A. B)" - (A. B)srlors 
t[(A. B)" + (A. B)"lo" 

1 (%)i(A. X B) (t)~ :EtC:' ) Erst0,. 
2 (ll)t{A. B - !(A:B)U} e-l)t[C~;)o" - t(C~;IO,. + C;;)or.)l 

3 {A X B} - H(A. X B)U} 

4 {AB - HA • B)U + i.(A : B)U2} 

- t[(A • B)r.O .. + (A. B).sOrrl 
+ (A : B)( -to~. + IAA,) 

!(ArrB" - A"Brr) 
- H(A • B)" - (A • 1}),.lors 

HArrB .. + A"Brr) + iA"Brs 
- ~,[(A • B)" + (A • B)srlO., 
- i, [(A. B)rro" + (A. B)"o,,] 
+ Th-(A : B)(20;. + 0rro .. ) 

a It may be far from evident, in general, that the sum of the embedded coupled tensors is, in fact, the tensor product of the original tensors, as the completeness 
relation requires. Using the identity [ArrB .. + A .. Brr - 2ArsBrs + 2[(A· B),,6 .. + (A' B) .. 6 .. - (A' B),,6 .. - (A . B)sr6 .. 1 + (A : B)(6 .. 2 - 6rr6 .. )1 == O. CI4)(4) = 
(A2@B2)12)canbewrittenintheaUernativeformCrrasI4) = l<ArrB" + A"Brr)- t[(A' B) .. + (A' B)sr16r. + t[(A· 8),,6 .. + (A· B) .. 6,,1+ f.(A : 8)(136,,2-116,,6,,). 
It is then evident for h = it = 2 that the sum of the embedded tensors for 13 even is !(ArrBs• + A"Brr), and for h odd. !<ArrB" - A"Brr). The identity is obtained 
directly by contracting Aalo2Bblb2 with the antisymmetrized (in '1' S1' a1' bl ) tensor product E ± ;f(lJa1 aZ6blbZdqr26s18z) which vanishes because it is antisymmetric 
in four indices (impossible for 3-space). 

V. 3-j SPINORS 

For spinors under the rotation group, or more 
precisely for SU(2), the elementary invariant tensors 
are <5; and the antisymmetric €IlV and €IlV.26 The natural 
spinors of symmetry j are simply symmetric spinors 

of order 2j, and the projections Ei(2j Ii]) = (<5~')2i 
are simply symmetrization operators. 

The 3-j spinors are, therefore, invariant spinors of 
order 2jl + 2j2 + 2j3 = 2J, separately symmetric in 
the three sets of indices. The completely covariant 
3-j spinors are, therefore, to within normalization and 
phase of the form (€va)"(€all)P(€Il.)Y. The exponents 
satisfy the condition that the total numbers of fl, v, 
and a indices are, respectively, 2j1' 2j2' and 2j3' with 
the unique solutions oc = J - 2j1' etc., nonnegative 
if and only if the triangle conditions are satisfied. 
For maximum symmetry, we define 

Tsp(i~ ~2 i:) = (€va)J-2il( €a/A)J-2i.( E/Av)J- 2ia (89) 
p v a 

as the unnormalized completely covariant 3-j spinors. 
By successively raising indices with the I-j tensors 
gia(a, a') = (€a"')2ia, etc., we obtain the maximum
symmetry mixed symbols 

TSP(; ~2 j;) = (_1)J-2it(b~)J-2il(<5:l-2i2€t;2i3 
(90) 

and 

TSP(~ ~2 j;) = (_1)J-2i3(EvoY-2it(b:)J-2i2(b;)J-2i., 

(91) 
and the completely contravariant 

T"P(j1 j2 j3) = (€va)J-2it(€a/A)J-2i2(e/AV )J-2ia, (92) 
fl v a 

the latter numerically identical to the covariant spinor, 
being just the adjoint of a real quantity. Particularly 
simple cases are 

TSP (j: ~2 j1 ~ j2) = (€va)2i.( €C1/Aii l (93) 
fl v a 

and 

TSPU ~ ~) = (€C11l)2i. (94) 

The norm of the 3-j spinors is easily obtained by 
direct contraction: 

(2jt)! (2j2)! (2j3)! 
(95) 

A property for SU(2), useful in connection with the 
tensors under SO(3), is the result of cross contraction 
(of, say, a fl index with a v index). There are just 
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(J + 1)(J - 2ja) ways of contracting a p with a v in 
Eq. (92) to a non null result, out of a total of 4hjl ways. 
Hence 

Z flllVlT'l'(j~ ~2 i~) 
IlIVl P V (J 

VI. INTERRELATIONS 

The 3-j spinors are extremely simple, and this 
simplicity underlies the elegant proofs of spherical 
tensor properties by the "spinor method." Such 
derivations have generally been based on the proper~ 
ties of spinor invariants of the type U1V2 - VIUz rather 
than on the definition of (Cartesian) 3-j spinors as 
such. Our normalized 3-j spinors VBl' = O-!pl' are 
related to the spherical tensor 3-j coefficients with the 

is obtained from Eq. (98) by contracting 2jl~' 2jl~' and 
2ja-fold, respectively, with first~order spinors ull ' Vv' 

and Wa , and noting that for each mi there are C;:!in) 
identical terms. 

For tensors, the analog of Eq. (98) is complicated, 
because the e~(r) are complicated. However, the ana
log of Eq. (99) is quite simple: For u = u(O, c/», a unit 
vector eim • (U)i = yim(o, c/» is a spherical harmonic 
normalized according to 2m /yim/2 = 2i(j!)2J(2j)!.28 
By contracting Eq. (31) with (u)1t(V)i2(t\y' and noting 
that trace terms such as brr give u . u = 1, we obtain 
for J even 

0-1 ~ x cos OfJ-i1+a- b- c 
£., a.b.c 23 

a.b,c 

= I (il iz ia) 
mlmSm. ml m2 ma 

x Yilm l«(}1 <PI) YismS«(}2<P2) yi.m·«(}a<P~), (100) 

which can be regarded as a generalization of the 
addition theorem for spherical harmonics. It reduces 
to the addition theorem for h = 0, u = w. For J 
odd, the analogous equation differs by the change 
V ........ HJ - 1) and a volume factor [Ii x v· w] on the 

usual phases by Eqs. (31)-(34), with 

e~(ft) = eim(ji) = ( . 2i )-!(bVi+m(b~i-m. (97) 
) - m 

Equation (31) gives 

O-!T'l'(jl j2 ja) 
p V (J 

X Cl ~1 mJ! Cz ~2 mY! Ca ~3 mar! 
x (b~)h+ml( b~)il-ml( bDis+m. 

X (bDi2-m2( bDia+m3( b~)i3-m3, (98) 

and Eq. (32) gives the inversion. The familiar 
equation27 for the 3-j coefficients, 

(99) 

left. For u = v = lV, Eq. (100) gives the usefulformula 

(101) 

where Ni = (2j)!/[2 i (j!)I]. 
The 3-j tensors can be related to the 3-j spinors by 

substituting spinor expressions for the elementary 
invariant tensors U and f28: 

brs '" (fll •V)2, 

brr , "" (EIl,lll, 

f rst """ (J2) fllVEvaEa/l (102) 

In (EIlIl.)2, the two p indices are symmetrized as are 
the two ft', but not the ft and ft'. Substitution in Eqs. 
(82)-(83) must give expressions proportional to the 
corresponding (integralj) 3-j spinors, which are there
fore invariant to further symmetrization of the spinor 
indices. Symmetrization, however, annihilates alI the 
terms originally involving brr , bss , or btt , while making 
the leading term into the form of Eq. (89). Thus we 
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have the isomorphism 

Tel j2 
jt
3
) ~TSP(~ j2 ~), J even, 

s v 

T(~l j2 
jt3) ~ (J2) T$p(~ j2 

j;), J odd. 
s v 

(103) 

The factor J2 for J odd arises from Eq. (102). 
These relations give the normalizing factors for the 

3-j tensors: 

o (tensor) = 0 (spinor), for J even, 

o (tensor) = 20 (spinor), for J odd, (104) 

in conjunction with Eq. (95). They also give the for
mula for cross contraction of 3-j tensors. By double 
application of Eq. (96), we have for the tensors that 

j2 ja) 
s t 

J(J + l)(J - 2j3)(J - 2j3 - 1) 
= 

4j1M2i1 - 1)(2i2 - 1) 

X T(jl - 1 j2 - 1 °j3), (105) 
r s t 

which is valid for J even or odd and useful for 
deriving recursion formulas. Equation (lOS), and hence 
0, may also be obtain,ed directly, though less easily, 
from Eqs. (81) and (82) and Table VI. 

VII. HIGHER n-j SYMBOLS 

The higher n-j symbols are scalar quantities and 
therefore essentially the same in Cartesian tensor, 
spinor, and spherical tensor theory. With the maxi
mum symmetry, 3-j tensors and spinors of Eqs. 
(71)-(72) and (89)-(92), normalized to unity, and 
with definitions of higher n-j symbols analogous to the 
spherical tensor definitions, the higher n-j symbols 
coincide with the usual ones. Thus, for tensors or 
spinors, 

{ ~1 ~2 j3} = ~ V(il js2 jt3)V(~1 ~5 ~) 
14 Js js r.s.t.u.".w r 

X V(~4 J; ~)V(~4 ~5 J;), (106) 

with V = Q-iT. 
It is straightforward to verify Eq. (106) for some 

3-j tensors in Table I by carrying out the contractions 
with the help of the relation ~T *'rst*'TU" = bsubtv -

b.vbtu ' For example, 

:Is ~ *'rst*'rvw€usw€uvt = t = {
I

ll}, (107) 
r ••. Lu.v.w 1 1 1 

in agreement with V(I, 1, I) = a-i T(1, 1, 1) = 6-i *'r8t. 

Indeed, the relative ease of carrying out such con
tractions, compared to analogous summations over 
numerically specified spherical 3-j symbols, illustrates 
the point that formal recoupling theory is not always 
a necessity in low-order Cartesian-tensor calculations, 
although valuable, even for j = 2. 

The n-j symbols can also be represented in an 
interesting way as complete contractions between n 
projections Ei. Thus, if (ja + jb + jc) is even for all 
four triads, Eqs. (75) and (106) give 

{i:1 ~2 ~3} = [01230 l560 4260 mri 
1'4 J5 J6 

x ~ Eil(r~3r~21 r~6r~5) 
aU indices 

X Ei2(r;3ri l I r:6r:4) 

X Eis(r~2r~1 I r!5r~4)Ei4(r~6r:21 r:3r~5) 
X Ei5(r~6r~l I r~3r~4)E;8(r~4r:21 r~5r~l), 

(l08) 

where r~c == r~b denotes a set of i(jb + jc - ja) dummy 
indices. For triads with (ja + jb + jc) odd, there are 
cross products as given by Eq. (76). 

The n-j symbols have the usual recoupling signifi
cance. For example, if A(i/l) and B(k.) are irreducible 
tensors which can be separately averaged (e.g., tensor 
operators in different Hilbert spaces), and [A'i,,) @ 

B(iv)](!a) their coupling to symmetry la according to 
Eq. (83), then averaging over both the A's and B's, we 
get 

([AIi,) @ B(kl)](I')[A (12) ® B(ki)](Z2)[A Ii.) ® B(ks)]Ua»(O) 

-~-
= AOllI21.T(l1' 12 , ( 3), (109) 

where 

A = O~i _ T(J' J' J'): Alii) A (h) A Ii.) (111) A 1112 Ja 1, 2, 3 • , 

with a corresponding expression for AB' analogous 
to the relation between reduced matrix elements of 
commuting operators. 

VIII. GENERAl: FORMULAS FOR 3-j TENSORS 

A. J = i1 + h + fa Even 

The 3-j tensors are determined to within normaliza
tion by the fact that they are invariant tensors 
separately traceless and symmetric in the three sets 
of indices. By requiring single contractions of Eq. 
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TABLE III. General formulas for the 3-jcoefficients, J = j, + j. + fa even. 

. (j 0 j) (j!)2(2j-2p)! 
c.(J)=x 0 = (-l)p(Z')! 1('_ )1('-2)" P p } .p, J P,} :p , 

Xa = (_1)4 2a/1! (2/1 - 2a)! (lJ - N! (lJ - ja)! 
.0.0. a! (2j.)! (j, - a)! (lJ - j. - a)! (lJ - ja - a)! ' 

x -(-1)' 2·-'''j,!j.! (2j.-2b)! (lJ-j.)!(lJ-ja)! 
•.•• 0 - (2j.)! (2j.)! (j. - b)~ (lJ - It + a - b)! (ll - j3 - a - b)! 

x L ( -1)" 2'}.(2j1 - 2A)! (lJ - It + A)! 
;, A! (a - A)! (b - a + A)! (j1 - A)! (tJ - j. - A)! ' 

20""-" f • I • 1 (2' 2 )' (lJ ' ) I (1J . )' x =(-1)' },.J •. ]3. j3- c. ~ -J" l! -J3' 
a.'., (2ft)! (2j.)! (2j.)! (j. - c)! OJ - It + a - b - c)! (tJ - j. - a + b - c)! 

X ( (-1)1l221l(2j.-2,u)!(ll-j.-A+p)! b. V. - p)! (a - A)I (b - p)! (c - a - b + A + p)! (tJ - ja - A - ,u)! 

X ""C-OV2'v (2/1-2v)! (tJ-/1 + v)! ) 
f v! (A - v)! (,u - A + v)! V, - v)! (tJ - j. - v)! . 

"" x _ 2V J! j,! j.!j.! (J - 2j,)! (J - 2j.)! (J - 2h)! 
£., a.b" - 0- )- (2')1 (2-)' (2 -)1 (ll - ')! (tJ - ')1 (ll - .)': a.b.c }t, }., }3' " . J. . }3 . 

Sum: 

r i . n = T : T = (J + I)! (J - 2j,)! (J - 2j.)! (J - 2j.)! 
Norma lzat on. ' . (2j,)! (2j.)! (2ja)! ' 

(81) with respect to r, s, and t to vanish, we obtain 
the following set of recursion formulas for the 
coefficients Xa.b.c29; 

with the solution, which agrees with the results of 
Barsella and Fabri,4 given in Table m. 

To obtain xa.b,e in the general case, we start from 
the explicit expansion of T(jl ,j2,h + j2) as given by 
Eq. (77). We write23 (a + 1)(2jl - 2a - l)xa+l.b.c + {Jyxa.b•c 

+ !{J({J + l)x •. b.c_l + ty(y + 1)Xa.b-l.C = 0, 

(112) 
+ !IX(IX + l)X".b.c-l + ty(y + l)xa-l.b.c = 0, 

(c + 1)(2ja - 2c - l)xa.b.c+l + IXfJXa.b,c 

+ tlX(1X + l)xa.b-l.c + !(J({J + 1)Xa- 1 ,b.c = 0, 

where IX = tJ - jl + a - b - c, fJ = tJ - j2 - a + 
b - c, Y = V - ja - a - b + c. The direct solution 
of these would be difficult in general, but for two 
special cases it is simple. For jl = ja = j and h = 0, 
the "Legendre" coefficients ca(j) of the projections Ei 
are obtained, and for a = b = ° we have 

(c + 1)(2.i3 - 2c - l)xo.o. c+l = -1X{JXo,o.c> (113) 

Eh(t1 · , . (i. I rl ' . - r«sl ' . 'Sp) 

= ~ c1JUa)Nx . ..{IX{J I p)b:tb:"b;sbftb:rb~.. (114) 
P.X.V 

where K = fJ - p + x - y, a = IX - P - x + y, 'T = 
P - x - y, and the c1J(js) are the coefficients for the 
projection Ei. [Eq. (67)J. Here Nx .. y{lXfJ I p) is equal to 
the number of ways of selecting x pairs of type A-A, Y 
of type B-B, and p - x - Y of type A-B from totals 
of IX indistinguishable objects A and (J indistinguish
able objects B, normalized such that 

L Nx,!/(lXfJ Ip) = 1, (115) 
x.1I 

i.e., divided by the number of ways of selecting p 
pairs when A and B are not distinguishable: 

lX!tJ!P!(IX+tJ- 2P)!( 21J-X-Y ) (116) 
N (lXfJ I p) = . 

3J,1I (IX + fJ)! (IX - P - x + y)! (fJ - P + x - y)! (p - x - y)! x! y 1 

In particular, No.o(lXfJ Ip) gives the relation 

xo.o.1J = ciis)No.o(tJ - h, V - hlp) for J even, 
(117) 

between the coefficients C1J for the projections and the 
coefficients Xo.o.1J for the coupling of irreducible 
tensors to natural form.30 

Now according to Eq. (75), we can write, in 
general, that 

where IX = V - h - A + p, fJ = tJ - jl + A - p. 
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TABLE IV, General formulas for the 3-J coefficients, J = h + j. + j. odd,a 

_ -1 c 2e- a-:it!j.!j.! (2js - 2c)! <HJ - 1]- j2)! <HJ - I]-j.)! 
Xa.b., - ( ) (2j,)! (2j2)! (2ja)! (j. - c)! (HJ - I] - h + a - b - c)! (HJ - I] - j2 - a + b - c)! 

( 
22/l(2j. - 2,u)! <HJ - 1] - j. - A + ,u)! 

X ~ (-1)1' (j. _ ,u)! (a - A)! (b - ,u)! (c - a - b + A + ,u)! (HJ - I] - j. - A - ,u)! 
"',/l 

2'V(2j, - 2v)! <HJ - I] - h + v)! ) 
X ~ (-1)v v! (A _ v)! (Il - A + v)! (j, - v)! <HJ - I] - j. - v)! ' 

h! j.! js! (J - 2j,)! (J - 2j.)! (J - 2j.)! 
Sum: L,Xa.b.e = 2}(J+ll(HJ + 11)! (2jt)! (2j.)! (2j.)! (HJ - 1] - N! (HJ - I] -j.)! (HJ - I] -J's)!' 

a,/J,e 

, . , { _ T : T _ 2 (J + I)! (J - 2jt)! (J - 2j2)! (J - 2js)! 
Normahzatlon. ), - . - (2jt)! (2j.)! (2j.)! ' 

a The formula for xa,b,c is related to that for J even by the substitution J -- J - 1. but the formulas for nand k. Xu,bot are not Similarly related. 

The expansion of Ei. in Eq, (118) according to Eq, 
(114) and the comparison of the result to Eq, (81) 
give an equation 

Xa,b,t = ccCja) I X;'.I'.O 
;',/l 

X Na-1,b-/lCP - j2 - A + ft, V - jl + A - ft , c), 

(119) 

relating the general coefficients to coefficients with 
one subscript zero. By taking b, for example, equal to 
zero and noting that Na-A,_/l is zero unless ft, necessarily 
nonnegative, is zero, we relate the coefficients with 
one subscript zero to those with two subscripts zero: 

Xa,b,O = I XA,O,OCb(j2) 
;. 

X Na-A,oCP - ja - A, V - jl + A' b), 

(120) 

The combination of Eqs. (119) and (120) gives the 
general formula 

Xa,b,c 

= ccUa) L x).,O,OC v(j2) 
A,/l, v 

X Na-/l.b-iV - j2 - ft + Y, V - jl + ft - Y, c) 

X N/l-A.O(M - ja - A, !J - jl + )., v), (121) 

Substitution of the expressions for C p , x;',o,o' and 
Nx ,1J(ocP I p) from Eq, (67), Table III, and Eq, (116) 
gives the explicit formulas in Table III. These are 
unsymmetrical and appear simplest to use with 
jl < j2 < j3' Some particular cases are given in Tables 
V and VI. 

The coefficient sum ~a.b,c Xa.b,c' useful in connec
tion with Eq, (87) and for numerical checks, and 
given by Eq, (101) or directly from the recursion 
formulas of Sec, VIlIC, is written explicitly in Table 

III, From Egs, (115) and (119) we have, further, that 

L xa•b•O = (2 cc)-l L Xa.b,c 
n.b c a,b.c 

= N is L Xa,b,c' (122) 
a,b,c 

where N j = (2j)!j[2i(j!)2], and 

L Xa,b,c = Cc L Xa.b,o· (123) 
(l. b a,h 

B, J = h + h + h Odd 

The condition that the right side of Eq. (82) is 
traceless in r, s, and t leads to recursion formulas for 
the coefficients for J odd, identical to Eqs. (112) 
except for the change V --+ HJ - 1) in oc, p, and 
y, The formulas for the xa.b,c are, therefore, closely 
similar to those for J even and, indeed, are ob,tained 
from the latter as written in Table III, simply by the 
substitution J --+ J - 1. 

The proof is similar to that for J even. We consider 
the expansion of T(jl ,j2,jl + h - 1) in the form 

2 firskEiS(krl ' , . r it- l S I ' • , Sit-l I tl . , . tiS) 
k 

= L Cij3)Mx,ijl - 1,j2 - 11 P)€rstb:eb8~b;8bftb~rb~8' 
p.x.1I (124) 

where (J = h - 1 - P - x + y, K = h - I - P + 
x - y, T = P - x - y, and where Mx•1I is related 
to the previous Nx.1J by31 

M x ,ict..f31 p) = [(ct.. + f3 - 2p + l)j(ct.. + f3 + 1)] 

x Nx,ioc(31 p), (125) 
The expansion of 

T(jl' j2' ja) = 2 XA'/l,oErskEh(krl . , , raS} ••• Sp I t) 
) .. /l,k 



                                                                                                                                    

1604 

o 
II 

.~ 

+ . .:::, 
II .. ....... 

l

I
III 

C 

... 
I" ;;2' 

:Q' 

I 
1:1 

I 

.~ 

+ . ..::, 
II . ..:, 

+ 
..() 

I 
1:1 

I 

~Ii ~ ." M> 
I 

.,::,\i 
rl:I .~ 

N 

I 

+ 
..() 

1:1 
..() ..() I 
+ + ~ 
1:1 <:I 1..--1 

I I x 
:5 $ 

=- ~ 
l, d. 

.~ 

+ . ..::, 
II .. . ....., 

N 

f 
.~ 

+ . ..::, 
II .. . ....., 

1. A. R. COOPE 

+1 

+1 

+ 
..() 

I 
1:1 

I 

..() 

+ 

+ 

1:1 

I 
~ 

<:I 1..--1 

., ,...., -I 
I x 

.....::::... 

.~ 

+ 
. ..::, 
It . ..; 

where ot = HJ - 1) - jll -:- A + p, fJ = HJ - 1) -
j1 + A - p, leads to 

x -"'ex ".b.c - k c )..,..0 )..,. 
X M,,_)..b-,.(UJ - 1] - i2 - A + fI, 

and 
UJ - 1] - i1 + A - p I e) (127) 

X M"_J..o(![J - 1] - is - A, 

UJ - 1] - i1 + AI b), (128) 

the analogs of Eqs. (119) and (120). The final formula 
is given in Table IV. 

Coefficient sums can be determined from the tensor 
recursion formulas (Sec. VIIIC), or indirectly from 
the correspondence to spherical tensoIs [Eq. (34)],28 
which yields 

2 X",b,c = (_1)!(J+1)[Uj1 + 1)j3(ja + 1) oJ! 
NitNjzNj3 

X (~1 ~ {a), J odd, (129) 

where N j = (2j)!/[2 i (j!)2J. Table IV records 2 xa•b•c ' 

From Eq. (127), we have als031 

'" x = _2_ N '" x (130) k a.b.O • + 1 ia k abc . 
a,b 1a 

and 

'" is - 2e . '" k Xa.b.c = --. - e.(la) k Xa.b.o· (131) 
a.b 13 a.b 

C. Recursion Formulas: J Even or Odd 

Application of the projections Ejl+1 and Ell+! to the 
tensor product T(h,h;ja) ® U where U = (bra), 
together with Eq. (105), gives an equation for 
T01 + l,h + 1,ja): 

T(j1 + 1 i2 + 1 is) 
r s t 

_ b T(j1 i2 ja) _ j1 b T( i1 j2 jt3) 
- N . W r s t (211 + 1) sr ... r s 

j2 b T(i1 jll jts) 
(2j2 + 1) 8. r· rs'" s 

J(J + l)(J - 2ja)(J - 2js - 1) 

+ 4(2jl + 1)(2j1 - 1)(2j2 + 1)(2j2 - 1) 

X b
w

b •• T(j1 - 1 j2 - 1 ja). 
r s t 

(132) 

The symmetrization convention is used, and the 
notation sr .•. r means that one r index is replaced 
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TABLE VI. Particular 31' coefficients, (a + b + c) ~ 3. The parameter x equals lJ for J = (h + j. + ja) even, t(J - 1) for J odd. 

Coefficient 

1 

(x - ja)(x - js) 

(2jl - 1) 

Value 

(x - ja)(x - j. - l)(x- ja)(x - js - 1) 

2(2h - 1)(2j, - 3) 

Xl,l,O 
(x -ja)(x -is - 1) 

- 2(2h _ 1)(2j2 _ 1) [(2h + 2ja - 2x - 1) - 2(x - b)(x - j.)] 

X.,o,o 
(x - j.)(x - j. - I)(x - j. - 2)(x - js)(x -is - l)(x -is - 2) 

6(2jl - 1)(2h - 3)(2j1 - 5) 

(x - j.)(x - js)(x - is - 1)(x - ja - 2) . .. 
2(2jt _ 1)(2j1 _ 3)(2j. _ 1) [(2}2 - 1) - (x - ]I)(x -]2 + 1)] 

(x-b)(x-j.)(x-ja) [( ')('+' 1)+( ')('+' 1)+( ')('+' 1) 
2(2jl _ 1)(2j. _ 1)(2js _ 1) x -]I}2 ]a - X -}'}1 ]a - X -}S}1 }.-

by an s index. Equation (132) can be used as a recur
sion formula, but the substitutions r - sand s - r 
are inconvenient. Another relation of similar type, 

T(jl - 1 j'J + 1 js) 
r s t 

= 2M2jl - 1) T( j1 j'J jts) 
(J - 2j'J)(J - 2j2 - 1) sr' .. r s 

J(J + l)(J - 2ja)(J - 2js - 1) 

2(2j'J + 1)(2j2 - 1)(J - 2j'J)(J - 2jz - 1) 

X t5
ss
T(jl - 1 j2 - 1 js), (133) 

r s t 

is obtained by choosing the coefficients to make the 
right side traceless in s and to have the same leading 
term as the left side. The coefficients in (132) and 
(133) are the same for J even and odd.32 The combina
tion of Eqs. (132) and (133) gives a recursion formula 
not involving the substitutions r ~ s: 

T(j1 + l,j2 + I,js) 
= T(j1,jz,ja)t5rs 

_ (J - 2j2)(J - 2jz - 1) 15 T(' _ 1, . + 1, . ) 
2(2jl + 1)(2jl _ 1) rr h 12 ]a 

(J - 2jl)(J - 2j1 - 1) 15 T(' + 1 . - 1 .) 
- 2(2ja + 1)(2j'J _ 1) 8S h ,12 ,la 

J(J + l)(J - 2ia)(J - 2is - 1) 
4(2:h + 1)(2jl - 1)(2j2 + 1)(2j2 - 1) 

X 0rrO •• T(j1 - 1, j2 - 1, ja), (134) 

again valid for J even or odd. In the case h = j.,. = j 
and ja = 0, this reduces to the recursion formula of 
Paper II for the projections Ei, that is, essentially 
to the recursion formula for Legendre polynomials. 

-2(x - b)(x - j.)(x -is) + 2x - 1] 

Note added in proof: In the recursion formulas, 
T(h,h,}s) should be taken as zero if (hhh) is not 
a proper triad satisfying the triangle conditions. The 
meaning of the substitutions of indices, r - s, in 
Eqs. (131) and (132) is clarified by an example. For 
jl = 2,h = js = 1, Eq. (132) gives, correctly, 

T(l, 2, 1) = 6{!(t5.At + o •• t5. t) - tOrsOst} - }:P-o.At 

= t5 •• t5st - lt5,st5. t • 

Useful recursion formulas of a different type involve 
contractions with the elementary tensor E. It can be 
shown that 

LE
rI1JII

T( jl j2 ja) 
11J,1I xr' .. s yt··· 

= _p (J + l)(J - 2jl)(J - 2j2) T(j1 j2 ja -t 1), 
4jlja(2ja - 1) r s 

(Xl) 

where p = 1 for J even, p = 2 for J odd. The left side 
is obviously traceless symmetric, and the numerical 
factor follows from the tensor formulas or, more 
easily, from the spin or correspondence. It is then 
straightforward to verify the following recursion 
relation: 

ja ~ 1) 

(X2) 
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since the right side is traceless in all sets of indices 
and has the correct leading term. This relation is 
particularly useful because it allows all 3-j tensors 
for the coupling jl ® h ---->- ja, to be obtained from the 
particularly simple tensors for h = jl + h or ja = 
Ijl - hi, by stepping ja up or down. Related to these 
formulas is the cross substitution relation 

T( jl j2 ja) 
sr . " rs'" t 

= H[ja(ja + 1) - jl(jl + 1) - j2(j2 + 1)]/jlj2} 

X T(jl j2 ja) 
r s t 

+ J(J + 1)(1 - 2ja)(J - 2ja - 1) 

4jlj2(2jl - 1)(2j2 - 1) 

X brsT(jl-1 j2 -1 ja), 
r s t 

(X3) 

which expresses the effect of the Casimir operator 
'J2(jl + j2) = 'J2(jl) + 'J2(j2) + 2'Jl . 'J2, for tensors in 
Xi1+i2, on T(h,h,la). The tensor on the left is given 
by the average of all jd2 single transpositions, rf--+ s. 

All these relations can be expressed as relations on 
the coefficients X abC ' by the substitution of the explicit 
expressions of Eqs. (81) and (82). By contraction with 
(U)il(v)i2(W)i3 they can also be regarded as recursion 
formulas for angular functions Pi,i.i, «()l2' ()23' ()13) of 
the type given in Eq. (100). The substitutions of 
indices can be related to differential operators of the 
type v • (a/au). Insight into the relations is obtained by 
expressing them as recoupling transformations, which 
also relate the tensor norms 0 to the 6~i symbols. 
Thus, 

°itilia = [jl][j2][ja]{ V j~ j1 

(X4) 
for J even. 

IX. TENSORS NOT IN NATURAL FORM 

The preceding formalism applies in principle to 
the coupling of irreducible tensors not in natural 
form, provided the natural projections are replaced 
[e.g., in Eqs. (27)-(28)] by the appropriate nth-order 
projections n!(n I ii).3a However, equivalently, the 
coupling can be described in terms of the embedded 
reduced forms. If A(i·'(na), B(ibl(no), and CU,l(nD) are 
irreducible tensors and Ta , To, To describe their 
embeddings so that, in the notation of Eq. (I), e.g., 

AU·'(na) = T(na I ma)' aU·)(ma), 

where a(l·) is the reduced form, then the invariant 

part of their product is 

(ACi.lBCiblCu,l)cOl = AT(ja jb jc), (135) 
na no nc 

where the more general 3-} tensor is given in terms 
of the natural form 3-} tensor by 

(136) 

The reduced tensor A is independent of the embedding, 
provided the embeddings are properly normalized, 
i.e., 

A = O-lT( !a jo !c) : ACia)BCiblCCi,l, (137) 
na iiI) nc 

A = O-lT( ~a jo ~c ) : aCia)bCib'cCi,', (138) 
rna mo me 

provided 

Ta(ma I iia) • TaCna' rna) = E Ci.l(ma I rna), (139) 

etc. Similarly, in contraction together of different 3-j 
tensors of the form (136) according to Eq. (106), the 
Ta , To, and To are contracted together to natural 
projections Ei and produce no change in the result. 
Thus the 6-j and higher n-} symbols are independent 
of embedding. 

X. HYBRID 3-j SYMBOLS' 

Before Racah's spherical tensor operator methods,a4 
it was common to consider matrix elements of Car
tesian tensor operators between spherical tensor 
states.3S What is involved is essentially a "hybrid" 
3-} tensor, with two spherical-tensor indices and one 
set of Cartesian indices, which can be defined by 

(
jl j2 ja) = I (jl j2 ja )e~2(S) 
ml s rna m. rn l rn 2 rna 

= V (~ js2 jt): eitm'(f)ei3ma(i), 

(140) 

with the second expression for integral h, j3 only. 
For these, the Wigner-Eckart theorem takes the form36 

<tp~~'l A~:=! ... s;.ltp~:') = A(jl j: J~3), (141) 
ml s rna 

where I., the reduced matrix element, coincides with 
that for the spherical tensor operator A!.::' = 
Afi·'(S). e::.(s) in the usual spherical tensor theory.37 
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The disadvantage is simply that a general formula 
for the hybrid 3-j tensors is complicated. The formal 
properties, on the other hand, are analogous to 
those of the purely spherical and purely Cartesian 
3-j tensors-e.g., the same 6-j and 9-j symbols-so 
that there is no particular disadvantage if the final 
results are to be scalars, indices being formally 
summed. A simple result, for example, is 

I 1(1J!~:)1 A(io)(S) 11J!~!)12 = 1,1.1 2 Ei2(S Is). (142) 
ml.mS 

XI. DISCUSSION 

Tensor averages arise through integrations over 
coordinates or, for tensor operators, from the trace, 
and also in connection with quantum matrix elements. 
However, they are usually calculated efficiently not 
by integration, but by projection onto the appropriate 
subspace m of invariant tensors-this, for example, 
is the point of the Wigner-Eckart theorem for matrix 
elements. The projection is straightforward in prin
ciple if a basis for H~ is known,3s and the problem 
may be greatly simplified if symmetry conditions 
on the tensor restrict the possibilities to a smaller 
subspace H~' c H~ of invariant tensors of the given 
symmetry. Thus, an important case in which H~' is 
one- (or zero-) dimensional is that of a product of 
two irreducible tensors [Eq. (39)] and another for 
SO(3) is that of any totally symmetric tensor. Here 
the invariant part must be proportional to b~; ,23 and 
normalization gives 

(A(r»(O) = a(n + 1)-lt5:r
n

, n even, 

=0, n odd, (143) 

where a = AppqQrr"" (summation convention),39 
The tensorial content of the Wigner-Eckart 

theorem6
•
7 for a multiplicity-free group is, likewise, 

that the invariant part of the product of three irre
ducible tensors lies in a one-dimensional H~' (whose 
basis is the 3-j tensor). For a nonmultiplicity-free 
group, the analog of this property is given by Eqs. 
(19) and (20). However, the distinguishing property of 
the triple tensor product has been lost. The product 
of three irreducible tensors is no different in principle 
from that of any number of irreducible tensors. 

For the invariant part of an N-fold product, we 
have analogously that 

(144) 

where ),P, the pth N-fold scalar product ("reduced in
variant tensor") is 

;.p = (A(i!)Bu,) ... FUN) ON VP(jI' j2' ... ,jN)' (145) 

The V p and VP could logically be called N-j tensors 
(not to be confused with the scalar n-j symbols) and 
are defined in the Cartesian case by equations of the 
type 

Vijl,j2"" ,jN) 
= (EilEi2 ... EiN) ON Vp(jl,j2"" ,jN)' (146) 

[cf. Eqs. (27)-(28)] with appropriate modification if 
some indices are covariant, some contravariant, and 
with VP ON Va = b~ . The multiplicity M(jl ,j2' ... ,jN) 
is given by the possible parentage schemes for coupling 
N tensors to symmetry j = 0, and parentage also 
gives one possible set of (normalized) N-j tensors, 
analogous to the generalized Clebsch-Gordan coeffi
cients of Yutsis, Levinson, and Vanagas,40 

V" = Vp Dl,j2' k2) Ok 2V".(k2 ,j3' k3) 

Oks ... OkN - 2V (k" .) x . PN-2 X-2,).v-l,)/I" (147) 

though not usually the simplest set. For Cartesian 
tensors under the rotation group, the N-j tensors 
are simply a set of linearly independent invariant 
tensors separately traceless and symmetric in N sets 
of indices. 
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APPENDIX A 

1. Elementary Invariant Tensors 

These are usually directly related to the definition 
of the group and, in principle, completely determine 
the possible projections into invariant and, in par
ticular, irreducible subspaces and, hence, the possible 
irreducible representations. From this standpoint, the 
inequivalent irreducible representations of the general 
linear group GL(v) remain irreducible and inequivalent 
under the real linear group GL'(v) and unitary group 
U(v) , because all three are characterized by the 
existence of the same single elementary invariant 
tensor, the unit tensor 15:. The unimodular groups 
SL(v) and SUey) are defined by the existence of the 
additional elementary invariant tensors Er" .". rv and 
E",82"'"v (the permutation symbols). The factiO that 
irreducible representations of GL(v) and U(v) remain 
irreducible under SL(v) and SUey) corresponds to 
that fact that the mixed tensor ll! can only contain 
the covariant E

flT2 
.•• TV and contravariant lOS,s.' .. BV 

together, so that in view of the relation 

(AI) 
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where the sum is over all permutations of the r (or s) 
indices, there are no new possibilities for the projec
tions. Since, however, there are invariant mappings 
between spaces of different order, representations 
inequivalent under GL(v) and U(v) may be equivalent 
under SL(v) and SU(v). Similarly, the orthogonal and 
symplectic groups are defined by the invariance of the 
metric tensor, i.e., by existence of a covariant second
order elementary invariant tensor, symmetric, brB , 

or skew-symmetric, together with the corresponding 
contravariant tensor. In contrast to the change from 
U(v) to SU(v) the irreducible representations of 
SO(v) are, for v even, essentially different from O(v), 
because E r1 ••. 81 ••. s!. ' with covariant and contravariant 

indices now equivalent, can appear singly in the 
projections. 

2. Unitary Representations 

Representations of compact and finite groups can 
always be made unitary,lO and in this case we assume 
G itself to be a group of unitary transformations on 
:r;. The Hermitian inner product of two tensors of 
the same order, 

(A, B) = ~ (Ar
l"'

rn)*Brl"' rn, (A2) 
rl" . rn 

is then invariant under G. The orthogonality relations10 

for group representations imply that basis tensors 
e~a(n) for unitary irreducible representations (0( a 
multiplicity index) satisfy 

(A3) 

where ).~fJ is independent of (J and T. Consequently, 
we may assume that tensor bases are taken orthonor
mal with respect to the inner product, and we define 
the dual space by 

ea(i) = e~(f) = ea(r)* (A4) 

as the adjoint space. 
The adjoint Tt of a tensor mapping T(n I Ii): 

:r;n ........ :r;n is obtained by the interchange of covariant 
and contravariant indices and complex conjugation, 
and it is convenient to use this terminology also for 
mappings T: :r;n ........ :r;m between spaces of different 
order. Thus 

(eim), T • e,en»~ = (Tt 
• ea(m), e,en»~, (A5) 

where 
Tt(r I s) = T(s I f)*. (A6) 

The permutation symbol Er1r •... rn is the adjoint of 
Er1r•· .. r n , and the projections Ei are self-adjoint. 

The invariant mapping T(O): H~~ ........ H;"p of an irre
ducible subspace is conformal with respect to the inner 

product. For if T(O)(m I Ii) is any invariant tensor, then 
T(O)t om T(O) maps :r;n into itself, and by Schur's 
lemma,lo 

(e i ei ) = (T(O) . e i T(O). e i ) pa' p, «a' «, 

= (e i (T(O)t. T(O» . e; ) = A(ei e i ) (A7) 
a.a' «T rx.a' fJr' 

where A is independent of (J and T, a result which also 
follows from Eq. (A3) and the fact that invariant maps 
preserve symmetry. 

Given an arbitrary basis T 1/(n I iii;) for the reduction 
of nth-order tensors, we can always in the unitary 
case define a metric by which the multiplicity indices 
p can be raised or lowered. The adjoint Tt of T 1/ = 
T1/' Ei satisfies T~ = E;· T~, since Ei is seif-adjoint, 
and consequently the dot product Tt on T is propor
tional to Ei (Paper II, Theorem 3). We write 

T!(m, I fi) on Tq{n I iii;) = gpqEi(m; I iii,). (A8) 

Regarding the TAn I iiij ) as a linearly dependent basis 
for the N~U]-dimensional subspace H~, the quantity 
T~ . Tq can be regarded as a metric for the basis, which 
factors according to (A8) into Ei(m; I iiij ) for the 
tensor indices and into a positive-definite Hermitian 
metric g1/q for the multiplicity indices. This is a general
ization of the results of Paper II. Note, however, 
that the g1lQ for spinors in Paper II was not defined in 
this way and was not positive definite. The definition 
of g1/q here differs by a factor [j] from that of Eq. (24) 
for the 3-j tensors, because the T 1/ and V 1/ (h ' j 2 , j 3) 
are normalized differently. 

The dual basis for H~ can now be obtained by 
raising indices with the inverse tensor, 

P(mi I Ii) = ! g1/~!(mi I Ii), (A9) 
Q 

Eq. (2) being clearly satisfied. If the basis is orthogonal 
(g1/q = b1/Q)' the individual (orthogonal) projections 
T 1/ 0 m; T~ = U! give a complete decomposition of H~ . 
By a unitary transformation of the basis, a unique set 
of U! can be obtained for any given tensor F(n) such 
that the reduced tensors f(1)1/ are also orthogonal 
[a generalization of the result given in Paper II for 
SO(3)]. 

Equations (39) and (41) contain the orthogonality 
relations for irreducible Cartesian tensors in natural 
form-with analogous relations in terms of the g; and 
gj where these exist. In the unitary case, according to 
(A4), the complex conjugate of a tensor "transforms 
covariantly," 41 and from Eq. (39), 

K-1 f A(i)(r)*B(j')(s) d:r; = bjj.[j]-l(Aw, BW)Ei(S I f), 
(AlO) 
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where the integration is over the "unit sphere" in X where 
and K is the (finite) integration volume. For tensor 
operators in a finite Hilbert space of dimension K, 
e.g., a space of angular-momentum states, the left 
side is replaced by K-l TrQ (A(;)tB(i'l), the trace TrQ 
being over the Hilbert space. 

3. Example 

We give for illustration some 3-jtensors for GL(3).42 
The only elementary invariant tensor is the mixed 
tensor 15;. Table VII gives a set of projections for 
natural tensors of orders 1, 2, and 3 in terms of 15;. 
The third-order, 8-dimensional representation, de
noted by 3£, occurs with multiplicity two, and we 
have arbitrarily chosen the standard tensors as the 
eigentensors of the cyclic permutation (123) with 
eigenvalue ill = eilTi and projection pE = IT!E. The 
total projection for (reducible) tensors of symmetry 3£ 
is IT3E = IT3E + IT3E where IT3E = (IT3E)*.43 The + - , - + 
unnormalized 3-j tensors T(j, O,j) coincide with the 
projections (l-j tensors), and their norms n are 
therefore the same as the traces of the projections, 
i.e., equal to the dimensions [j] of the representations. 
The un normalized 3-j tensors are defined by 

T(~l j2 jt~) = I Eh(r I X)Ei,(S I y)Ei3(X, y I f), 
s all ".11 

Te3 jl J;) = I Ei&(t I x, y)Eh(x I f)Ei~(y Is), 
f all ".1/ 

(All) 
[cf. Eq. (75)]. 

The 3-j representation of the coupling of two 
contravariant vectors to a symmetric tensor is thus 
(using the summation convention) 

etl!, = T (2S T T) arbS 
t f s 

= !(atlbt' + atsbtl). (A12) 

The same 3-j tensor couples a contravariant vector and 
a symmetric covariant tensor to a covariant vector: 

(A 13) 

Finally, the invariant part of the tensor product of 
a covariant symmetric tensor with two contravariant 
vectors is44 

(A br 8)(0) = AT(1 1 2S) 
hta C f r s 

(AI4) 

4. Spin-l System 

The fine structure of a spin-l system is very con
veniently considered in a Cartesian basis, especially 
in "weak field" situations,45 and provides a very simple 
but interesting example of the Cartesian Wigner
Eckart theorem. The basis states <l>r (i.e., an ordinary 
vector basis i, j, k) satisfy 

(AI6) 

in terms of the usual rotation generators (spin opera
tors). Any operator for a spin-l system can be 
expanded in terms of the natural form irreducible 
tensor operators 

f(O) = 1, 

f?) = S., (AI7) 
-(2) ~( 2 
YS1S • = 1! SSl S8, + S8,SSl) - lS 15818., 

whose matrix elements are proportional, respectively, 
to the 3-j tensors 

T(l, 0,1) = brt , 

T(l, 1, 1) = Erst' (A18) 

(Table I). The proportionality constant for '((1) is 
conveniently found from (<1>1/1 S. 1<1>.,> = i [Eq. (A16)], 
and that for ,(2) from <<1>.1 V:;) 1<1>.> = _}S2 = -I; 

<<I>rl 1 l<I>t> = brt , 

(<I>rl S81<1>t> = iEr8 t, (AI9) 
..I.. -(2), 15 15 ('t'rl Y8ls,I<I>t) = - [t( rSlbts, + rs,btsl) - lbrtbsls,], 

Therefore, for a spin Hamiltonian of the form 

Je = H • S + D : Y(2), (A20) 

where D is, without loss of generality, traceless and 
symmetric, the Hamiltonian matrix is 

Jert = i L H,Er,t - D rt · , (A21) 

In particular, in the principle axis coordinate system 
ofD, 

[

-D 

;re = i;: 
-iHII 

(A22) 
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TABLE VII. 3-j tensors for GL(3). V = a-iT. The T tensors have relative normalization of the Clebsch-Gordan type (cf. T{,;, 
and Tj~;. of Sec. II). Symmetries j are labeled by the tensorial order and the permutation symmetry, S totally symmetric, 3 A 
totally antisymmetric, and E the doubly degenerate representation of S3, i.e., the 8-dimensional multiplicity-two representation 

of GL(3). w = e('1Ti/3), and Tt is the transpose conjugate. 

Projection 3-j tensor Expression 

Per It) TC 0 ~) t5' t 
s 

TC: 0 1:) E,s(r I t) (t5')' = Hor,b" + br.t5r,) 
s t tl t2 t} t2 

TC: 0 1;) E2A(r It) Hb;:t5;: - b;~b;~) 
s 

TCS 0 J:) (15;)3 ESS(r I f) 
s 

TCE 0 J:) n~E = Hbr,t5r.br• + wbr,br'or, + w*b'.b',br,) ESE(r I f) 
s . t\t2, ta t1t2 t3 tlt2, t a 

TC: 0 J;) E3A (r I f) Hbr,t5"20ra - t5r'o'at5', _ O'.t5',o', - t5',or,ora + or'braor, + b'3br,o',) 
S 

tlt2 13 tlt2 ts t}t2 t a t l t2 '3 tlt2 t3 tlt2 ta 

3-j tensors Expression 

Te 1:) = Tte: I 
:) E28(rs I ( ( ) = lW t5 8 + 08 br ) 

s f 
1 2 11 t2 tl l2 

TC 2:) = TtC: I :) E2A(rs I f,f,) = Hb;,bf. - (jf,bi.) 
s f 

TC 
2S J:) = TtC: I 1

s
S) E3S(rs,s,1 (,f,f 3) 

s f 

TC 
2A J;) = TtC: I 1:) 

f 
E3A (rs,s,1 f,f,(3) 

s 

TC 
2S J:) = TtC: I 

z:) ) s f .! [«(jr 0"0" + wo"o',or + W*t5'20r t5',) 
t112 t 3 t}'2 t3 t 1 '2 13 

TC 
2A JE) CE I 1:) ± (or t5'2t5'1 + wt5',o'lbr + w*t5',t5r t5'.)] 

= Tt t}'2 t 3 t}t2 t3 tlt2 t s 

S f f f 

The eigenstates ~I' = Ir ~rcrl' are specified by vectors normalized according t036 

c", orthonormal in the sense (c¥" Ic¥,) = c! . c, = r5I'V' 

and hence, from (AI9), the transition moment is <~r I ~t> = Ei(r I i), 
proportional to a cross product: and with components46 

<~"I S I~'> = ic!. T(1, 1, 1)· c, <l>rCq) = Ei(q I f). 

a = Tr Ei = [jJ 

3 

6 

3 

10 

8 

a = Tt; T 

6 

3 

10 

4 

(A24) 

= icy xc!. (A23) 

These considerations are particularly simple for 
spin 1, but they can be generalized to any integral 
spin. For spin j the states are natural tensors of order 
j, with linearly dependent basis states <l>r'12'" rj = <l>r 

The total spin S in Xi is defined in the usual way, in 
terms of the generators in Xl, as a sum of operators 
of the type 1(1) ® 1(2) ... ® S(i)· .. ® 1(j). The 
matrix elements of irreducible tensor operators yk are 
proportional to the 3-j tensors T(j, k,j) and, in 
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particular, for those in (A17),47 

1 
(A25) 

s 

2 
<<I>rl Y:2)I<I>tl = -j(2j - l)TC (A26) 

s 

Eigenstates ~Il = Lr <l>rC/r) of a spin Hamiltonian 
Je are specified by traceless symmetric tensors C

il 
of 

order j, satisfying 

[Je(r I t) - IlEj(r It)] • C/t) = 0, (A27) 

and orthonormal in the sense <~Il I ~v) = C: • Cv = 
0IlV' From Eqs. (A25) and (SO), the transition moment 
is proportional to 

(~Ill s I~v) = (i)j(C v OJ-1 xC:'), 

which is the generalization of Eq. (A23). 

(A2S) 

* Supported by the National Research Council of Canada and 
the President's Research Fund of the University of British Columbia. 

, J. A. R. Coope and R. F. Snider, J. Math. Phys. 11,993 (1970), 
referred to throughout as Paper II. 

2 E. P. Wigner. "On the Matrices Which Reduce the Kronecker 
Products of Representations of S.R. Groups," in Quantum Theory 
of Angular Momentum, L. C. Biedenharn and H. van Dam. Eds. 
(Academic, New York, 1965). 

3 J. R. Derome and W. T. Sharp, J. Math. Phys. 6,1584 (1965). 
• B. Barsella and E. Fabri, Nuovo Cimento Suppl., Ser. ],2,293 

(1964). 
5 J. A. R. Coope, R. F. Snider, and F. R. McCourt, J. Chern. 

Phys. 43, 2269 (1965), Paper I. The coupling of tensors with vectors, 
given here, is a special case. 

o E. P. Wigner, Group Theory and its Application to the Quantum 
Mechanics of Atomic Spectra (Academic, New York, 1959). 

7 C. Eckart, Rev. Mod. Phys. 2, 305 (1930). 
8 We use essentially the same notation as in Paper II. The dimen

sion of an irreducible representation is here denoted by [j) rather than 
Di to conform with common usage for the CG problem. In ea(n \ Iii), 
the n and iii indicate numbers of contravariant and covariant 
indices. ]n ea(n I iii) : ea(m I ti), each dot indicates scalar contraction 
over whole sets of indices according to a suitable convention, e.g., 
the first of a set with the first, etc. Where ambiguity could occur, we 
write, e.g., ea(n I iii) om ea(m I ti). In Sec. IIff. we frequently omit 
the designation of tensorial order and substitute a generic symbol 
for the particular Cartesian indices, e(r Is) = <:;: ...... ;~. 

• H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, 
New York, 1949). Hamermesh (Ref. 10) calls j the "adjoint repre
sentation." 

,0 M. Hamermesh, Group Theory (Addison-Wesley, Reading, 
Mass., 1962). 

11 For unitary representations this requirement reduces to the 
self-adjointness condition on an orthogonal projection. 

12 While suitable for SO(3) and SU(2), the term is perhaps 
optimistic in general, where the selection of a standard Hi may be 
arbitrary. 

'3 For example. G. E. Hay. Vector and Tensor Ana~ysis (Dover, 
New York, 1953). 

U See, e.g., the discussion of the improper rotation groups 0(3) 
and 0(2) in Paper II. 

'5 T .(n I iii,) and Tp(m, \ til are, for fixed components mj , dual 
tensors of symmetry j and .i in Xn and X n. Dual bases for the 
invariant part of X::'i and X~i would be (relatively) normalized: 
Tp :Tq = t'J~. 

,. For an arbitrary basis the individual terms T.· Tp are not 
necessarily projections of the type n~ -in the unitary case T •. T p 

is not self-adjoint unless the basis is orthogonal. 

'7 The right sides must be proportional to a projection, and further 
contraction must give Eq. (13). 

,. In the unitary case, this follows (e.g., Ref. 10) from the group 
orthogonality relations. More generally, if A and B are irreducible 
tensors whose linearly independent components Ar and B. transform 
according to the irreducible representations U<'r(:R) and V,',(:R), 
then ~r,. A,.C"B, is invariant for all A and B of the given symmetries 
if and only if UCV = C or UC = CY-' for all :R. By Schur's 
lemmas [H. Boerner, Representations of Groups (North-Holland, 
Amsterdam, 1963»), U and V-' are equivalent and, if the coordinate 
systems are chosen so that U == V, then C is a multiple of the unit 
matrix and the invariant is ~rArBr' See also Sec. III. 

,. For j3 = i3 half-integral. there is a phase change from the 
previous definitions of mixed symbols, in the sense that if new 
mixed symbols are defined by raising and lowering the t indices in 
the completely covariant and contravariant tensors VP(j.],ia) and 
V.(h ,j, ,]a), using the l-j tensors defined in Sec. III with). in Eq. 
(47) equal where possible to one, then the new mixed symbols are 
rel(lted to the previous ones of Eqs. (5), (6), and (13) by VP(j,J.js) = 
±VP(ja,],,],), plus sign for ja ¢ia or h =i3 integral, minus for 
j. = 13 half-integral. 

20 The point that the 3-j symbols for nonmultiplicity-free groups 
can not necessarily be chosen such that their absolute values are 
invariant to permutations of the j's and corresponding indices, when 
j, = j. = j3' is due to J.-R. Derome, J. Math. Phys. 7,612 (1966). 
We believe the situation is most clearly understood by recognizing 
the set of symbols for a triad with three j's equal as a basis for a 
representation of S3' as is done in the text. The essential point is 
conveniently illustrated by considering a generalization-symbols 
fot the coupling of N rather than three irreducible tensors to an 
invariant (Sec. XI). For all j's equal, the set of "N-j tensors" are 
a basis for SN, and for N> 3 degenerate representations are 
expected even for the rotation group. The simplest example is the 
coupling of four vectors, for which the multiplicity M(I, I, I, I) is 
three. A convenient nonorthogonal set of Cartesian 4-j tensors is 
VI = (j,.t'J,., V 2 = t'Jr,t'J.u, V 3 = 0rut'J. i , and clearly the doubly 
degenerate representation of S., as well as the total1y symmetric 
representation, occurs. 

21 The correspondence in notation is 

22 E. P. Wigner, Am. J. Math. 63,57 (1941). 
2S As in Paper II we use the symmetrizatio~ convention that 

repeated indices without suffix, as in _;:, = EroE" .•. E", are com-

pletely symmetrized, e.g., E~, = !(E""Er2 '2 + Er, •• 'r •• ,)' 

24 Thus SU(3), with <rs' as the only covariant elementary invariant 
tensor, is not ambivalent, whereas SU(2), which is ambivalent, has 
the second order '". The converse is not true. SO(2) with two 
elementary covariant tensors t'J" and Era is not ambivalent. 

25 They could wel1 be written x(~, i .. j:) but are, however, com

pletely symmetric to permutations of columns. The antisymmetry of 
Tv"j"j3) for J odd is contained in the basis tensor <"" not in the 
X.,bo< coefficients. 

26 f12 = E12 = -En = _E21 = 1. 
27 Equation (99) coincides with that of Regge [T. Regge, Nuovo 

Cimento 10, 544 (1958») on making the change in notation II, .-. II" 

VI +-+ v2 , W 1 "'--"" w2 • 

28 The ei,., with subscript m, are taken in the present article to be 
in natural phase relation Clt+e!,. = +U(J + I) - m(m + I))te!..+,). 
Equations (31)-(34) hold between the spherical 3-j symbols, and the 
3-j tensors with the phases we have assigned [xooo = + 1 in Eqs. 
(81) and (82)], provided the absolute phase of the tensors e!,.(r) is 
fixed by the assignment e~ = (+i)iN/Ei • (k)i. Thus e~ = -i2-! X 
(i + ij). Note that the yim in Eq. (100) are imaginary for j odd. 
Equation (99) shows .that the 3-j spinor phases defined by Eq. (89), 
together with the phases of the e!..(v) of Eq. (97), are likewise 
consistent with the spherical symbols. The isometric mapping 
of contravariant symmetric spinor components to tensor com
ponents is given by the complex conjugate of the matrix U~, v. 
of Paper II, Eq. (77). In particular the isometric mapping between 
3-j spinors and 3-j tensors has the convenient phases given in Eqs. 
(102) and (103). 
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•• The linear independence of the terms for different a, b, c 
follows from the uniqueness of the T(h ,j. ,j.) already proved. 
However, it is also implied by the possibility (Ref. 9) of an invariant 
decomposition of symmetric tensors A(r), B(s), C(t), and hence of 
their tensor product, into mUltiple traceless parts (cf. the discussion 
of Ei in Paper II). 

ao See the discussion of Eq. (85). No•o gives the fractional number 
of nonvanishing traces in A(1) 0 lJ-1a- P B111I'. 

a1 ~"". M ••• (rx.{J I p) = (rx. + {J - 2p + 1)/(rx. + (J + I) is not 
unity. 

so That is, do not substitute J -+ J - I. 
as nth-order tensors of symmetry j are not necessarily irreducible. 

If, however, e~a(n) is irreducible, then it can be shown to-determine 
completely the irreducible subspace which contains it and, therefore, 
the appropriate projection n~ . 

" G. Racah, Phys. Rev. 62, 438 (1942). 
35 In particular, the matrix elements of a vector; see, e.g., E. V. 

Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge 
V.P., London, 1935). 

88 The Wigner-Eckart theorem is naturally expressed in terms of 
covariant components because the indices shown for the states are 
essentially basis labels. 

87 It can be calculated conveniently from the zz ... z component 
of AUa); e.g., for J even, 

~);. = (+i)i.[(2jJ!/21.(j.!)2]t 

X ('P~il)1 AII.)zz(· .. z) I 'P1;a). 

38 The basis is a particular case T p(n I 0) of the T pIn I m;) of Sec. I. 
Such basis tensors for crystallographic groups are discussed by 
G. F. Smith, J. Math. Phys. 5, 1612 (1964). 

Ii This result is given in a less condensed notation by R. F. 
Snider and C. F. Curtiss, Phys. Fluids 1, 122 (1958). 

40 A. P. Yutsis, I. B. Levinson, and V. V. Vanagas, Matematicheskii 
Apparat Teorii Momenta Kolichestva Dvizheniya (Vilnius, 1960) 
[English translation: A. Sen and R. N. Sen, Mathematical Apparatus 
of the Theory of Angular Momentum (Israel Program for Scientific 
Translations, 1962)]. 

II N.B., if Y = .1{x, the covariant transformation is y" = (.:Rx)" 
not y" = .:Rx". 

42 It is intended to illustrate the definitions of Sec. II, not the 
general reduction formalism of Sec. I and Paper II. The well-known 
reduction of tensors under GL(v) is not simplified by the formalism 
of Sec. I, there being no covariant invariant tensors and therefore 
no invariant maps to spaces of lower order. 

4a If AU is an irreducible tensor satisfying D!E. A3E = AU, 
then it is mapped to the standard form by the permutation (23), 
i.e., by the invariant tensor TIO)(r' 1 r) = tJ'lr1'(jra'3'(Jr;.'. 

" This invariant part is, of course, not given simply by integration 
over angles, and integrals over the whole space X do not, in general, 
converge. 

45 M. S. de Groot and J. H. van der Waals, Mol. Phys. 2, 333 
(1959); 3, 190 (1960); P. Kottis and R. Lefebvre, J. Chern. Phys. 
39, 396 (1963). 

46 These basis states are precisely the Tin 1 mil of Sec. I with 
n = m; = j and p unnecessary. 

47 While the proportionality constants (reduced matrix elements) 
are found straightforwardly from Eqs. (87), (88) and Tables III, IV, 
both here and for the yk in general, that for (A25) is more simply 
obtained by observing first that 

(4) .... ·.1 S.I4> .... ·.> = i (4) •• ···.1 4> ...... > 
and second, from Eq. (80),that 

= iEi(yZ'" Z 1 yz ... z), 

T J J = j-1E'(XZ' •• z 1 xz' •• z) (
. 1 .) . 

.vz· .. z z xz'" z 
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The asymptotic expansion of one of Appell's generalizations of the Jacobi function is given for one 
parameter becoming large while the other is kept fixed. Inequalities are given which may be useful when 
both parameters become large. 

1. INTRODUCTION 

In a recent paper,l a double Sommerfeld-Watson 
transformation of a 2-variable expansion of the 
scattering amplitude was conjectured. The expansion 
was given as a double sum of polynomials of two 
variables, where the polynomials are Appell's general
ization of the I-variable Jacobi polynomials. 

In contrast to the situation with Jacobi functions, 
the asymptotic parametric behavior of the Appell 
functions is unknown and so, in the Sommerfeld
Watson transformation, it was not possible to show 
that contributions from semicircles at infinity could be 
neglected. 

We examine here the behavior of the Appell func
tions and give inequalities which indicate that the 
previous conjectures were justified. 

2. APPELL FUNCTIONS 

The functions with which we are concerned are 
Appell functions of the second and third kind. In the 
usual notation,2 these are given by 

Ellv(x,y) == P[,u + v + 2; -,u, -v; 1, I;x,y] (1) 

and 

GIlV(X\yl) == P[,u + 1, v + 1;,u + 1, v + 1; 

2,u + 2v + 3; Ifxl , Iff]. (2) 

Here,u and v are complex with Re (,u), Re (v) > -t; 
we consider x, y, Xl, f complex although we give an 
inequality for G IlV(Xl, f) only when Xl and yl are real. 
Ell/X, y) and Gil/xl, f) are defined from Eqs. (1) and 
(2) for Ixl + Iyl < 1 and lxII, If I > 1, respectively. 
We are most interested in what happens when l,ul and 
Ivl become large, either separately or together. 

3. ASYMPTOTIC LIMIT: IIlI ~ 00 

When one parameter becomes large, say \,u\-+ 00 

at fixed v, we may obtain the required asymptotic 
behavior using the results of Watson3 for the one
variable Jacobi functions. Thus, by definition, from 

Eq. (1) we have 

Ellv(x, y) = I I (,u + v + 2)p+i -,uM -V)Q xPyQ 
p=o Q=O p! p! q! q! 

= f(,u + v + 2M-,u)p xP 
p=o p! p! 

x 2FI[,u + v + 2 + p, -v; 1; y], (3) 

where 2FI[a, b; c; x] is the ordinary Gauss hyper
geometric function and 

(a)p = rea + p)fr(a). 

We may then use the relations between hypergeometric 
series4 to rewrite the hypergeometric function in Eq. 
(3) as 

r( -v)r(v + 1) 2FI[,u + v + 2 + p, -v; 1; y] 

inr(-,u - v-I - p)r(-v) ( )V 
= e -y 

r(-,u-2v-l-p) 

x 2F{ -v, -v; -,u - 2v - p - 1; ~J 

i".(v+1) r(-,u - v-I - p)r(v + 1) +e 
r(-,u - p) 

x y-V-I(1 _ y)-Il-l-p 

x 2F{V + 1, v + 1; -I' - p; 1 - ~J (4) 

under the usual conditions. Now for l,ul -+ 00 with 
larg,ul < 7T and Ivl finite, we may determine the 
asymptotic limit of the 2FI functions on the right
hand side of Eq. (4),5 i.e., 

2Fl[-V, -v; -f-l - 2v - P - 1; l/y] -+ 1, 

2FI[V + 1, v + 1; -,u -p; 1 - I/y] -+ 1 (5) 

under these conditions. Since we are concerned with 
f-l and v in the right half complex plane, Eq. (5) holds 
for all p since p is positive; in fact, the larger p is, the 
better this limit is. After some manipulation we obtain, 

1613 
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from Eqs. (3)-(5), 

E/lv(x, y) 

,-.., ein( _ yr 1'( -p- v - 1) p(O,2V+l)(1_ 2x) 
1'( -p- 2v -l)r(v + 1) Il 

+ ei ,r<V+l)(1 - y)-Il-Iy-v-IPIl(l + ~). (6) 
1 - Y 

This expression is then taken to mean that, in the 
limit as Ipl->- 00 in the right half-plane with Ivl finite, 
Ell vC X ,y) behaves in the same way as the functions on 
the right-hand side of Eq. (6) in this same limit. The 
right-hand side of Eq. (6) contains Jacobi6 and l' 
functions, whose behavior in this limit is known, and 
so the problem is essentially solved. Equation (6) 
again illustrates the connection between the Appell 
and Jacobi functions and it is interesting to note that 
the first Jacobi function in Eq. (6) is that considered by 
Balachandran and Nuyts7 in an alternative 2-variable 
expansion of the amplitude. 

4. ASYMPTOTIC LIMIT: Lui, Ipi ---+ OCJ 

For both 1/.11 and Ivl->- 00, it is clear that the 
approach of the preceding section does not work [Eq. 
(5) does not hold] and the derivation of rigorous 

asymptotic forms for Ellv(x, y) and GIlV(xl, yl) has 
proved too difficult. We are able to show that 

IEllv(x,y)1 <f(p, v: x,y) 
and 

IGllv(xl,yl)1 < g(p, v: xl,yl), (7) 

where f(I.1, v: x, y) and g(p, v: Xl, yl) have known 
properties. The results obtained hold for all p, v, x,y, 
Xl, and yl satisfying certain conditions and do not, 
in fact, require that Ipi and Ivl be large. It is hoped, 
however, that the inequalities are best in this limit. 

We again consider E/lv(x, y) to illustrate the method 
which is based on the use of a Mellin-Barnes double
integral representationS of a suitable transformation 
of E/lvCx, y). We have then2 

Ell\' = (1 - x _ y)-/l-V-2 

X F2[p + V + 2; p + 1, v + I..; 1, 1; p, q] 

= (1 - x - y)-Il-V-2F2[p, q], (8) 

where 

p = x/ex + y - 1), q = y/(x + y - 1), 

and x and yare such that both sides of Eq. (8) are 
defined. For F2[p, q] defined by Eq. (8), we have 

F2[ ] ___ 1 J 
p, q - 47T2rcp + v + 2)I'Cp + l)rcv + 1)' 

with 

J =f f r(p + v + 2 + s + t)rcp + 1 + s)r(v + 1 + t)I'C-s)r(-t) (_p)"{_q)t ds dt, 
ct C2 1'0 + s)r(1 + t) (9) 

where CI and C2 are contours in the sand t planes, respectively, chosen to separate the poles of 1'( -s) and 1'( -t) 
from those of r(p + I + s), rev + 1 + t), and r[p + v + 2 + s + t]. In the s(t) plane, CI (2) is taken to 
be the line set) = -t + ip, - 00 < p < 00, together with a semicircle at infinity in the right half-plane. We 
must have Re (p), Re (v) > -t for this to be possible. Contributions from semicircles at infinity may be 
shown to be zero for Ipl, Iql < 1 and larg (-p)l, larg (-q)1 < t7T· If we had used the original P function 
in Eq. (1) instead of the transformed function P[p, q], we would have needed to indent the straight-line 
contours to exclude poles of 1'( -p + s) and 1'( -v + t) at s = p - m and t = v - n, m, n = 0, 1, 2, ... , 
and it would have been impossible to satisfy conditions like larg (-x)1 < t7T for x real. Thus, we have 

f
-1+ooi f-!+OOi r(p + v + 2 + s + t)f(p + 1 + s)I'(v + 1 + t)r( -s)f( -t) j t 

J = ds dt (- p) (-q). (10) 
-i-oo; -i-oo; 1'(1 + s)I'(l + t) 

This integral is convergent for larg (-p)l, larg (-q)1 < 
t7T without the restrictions on Ipl and Iql which apply 
to Eq. (9). Substituting in 

s = -t + i[k - 1m (p)], 

t = -t + i[/ - 1m (v)] 

and taking the modulus of both sides using 

lI'(x + ;y)1 = lI'(x - iy)l, 

we find 

IJI S (pq)-l exp [1m (p) arg (-p) 

+ 1m (v) arg (-q)]I, (11) 
with 

I = L: L:'1'[Re (p) + Re (v) + ik + il + 1] 

x 1'[Re (p) + t + ik]I'[Re (v) + t + il]l 
x exp [-k arg (-p) ~ 1 arg (-q)] dk dl. (12) 
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The dependence on 1m (f.l) and 1m (v) is thus simply 
extracted from the integral. To proceed further, we 
need to approximate the f functions in the integrand 
in Eq. (12). We do this using Eq. (A4) of the Appendix. 
First, however, we split 1 of Eq. (12) into four parts 
for the four separate ranges of integration - 00 < 
k ~ 0, ° ~ k < 00, - 00 < I ~ 0, and ° ~ I < 00. 

If 

and where B(l, k) is the integrand in Eq. (12), then 

II < 2 LX! L"If(Re (f.l) + Re (v) + 1 + ik + il) 

x I'(Re (f.l) + tik)l'(Re (v) + t + il)1 

x exp [klarg(-p)1 + I larg(-q)l] dkdl. (14) 

where 

(13) 

For large y, lI'(x + iy)l,....., e-~/2IYI, and so the integral 
in Eq. (14) converges for larg (-p)l, larg (-q)1 < 11". 
Substituting in the I' -function approximations from 
Eq. (A4) of the Appendix, we obtain 

II < B(4Y/11")-2Re(~)-2Re(v)[r(2 Re(f.l) + 2)1'(2 Re (v) + 2)['(2 Re(f.l) + 2 Re (v) + 3)]! 

x loolooexp [k(larg(-p)1 + 2y - 11") + /(larg(-q)1 + 2y - 11")] 

x {[Re (f.l) + k + I]{Re (v) + 1+ l][Re (f.l) + Re (v) + t + k + In! dk dl. 

IRe (f.l) + t + ikllRe (v) + t + ill IRe (f.l) + Re (v) + 1 + ik + ill 

The integral in Eq. (15) now converges for 

larg (-p)1 < 11" - 2y, larg (-q)1 < 11" - 2y, 

where y is such that y = e- Y ,....., 0.6 and B is a numerical constant independent of ,u and v. 

(15) 

Since the most important contribution to the integral in Eq. (15) comes from I and k small, we may 
approximate the last term in the integrand by 

[Re (f.l) Re (v) Re (f.l + v)]-! 
to give 

II < BI(4Y/7T)-2Re(~)-2He(v) [1'(2 Re(f.l) + 2)1'(2 Re (v) + 2)]! 

x [f(2 Re (f.l) + 2 Re (v) + 3)]! [Re (f.l) Re (v) Re (f.l + v)]-!. (16) 

Constants of integration such as larg (-p)1 + 2y - 7T have been absorbed into the constant BI. A similar 
result is obtained for 12 with the convergence conditions 

larg (-p)1 < t11" - y, larg (-q) < t11" - y. 

Finally, collecting together all relevant terms and simplifying, we obtain 

(

16y2 )-RC (Il)-He (v) 

IEllv(x, y)1 < B ---;;;-11 - x - yl [Re (u) Re (v) Re (f.l + v)t! 

x exp [1m (f.l) arg (x) + 1m (v) arg (y)] 

[1'(2 Re (f.l) + 2)1'(2 Re (v) + 2)1'(2 Re (f.l) + 2 Re (v) + 3)]! 

x 11'(f.l + l)1'(v + l)f(f.l + v + 2)1 ' (17) 

for Re (f.l), Re (v) > -t, and 

I arg (x) - arg (1 - x - y) I < ~ 7T - y, 

larg (y) - arg (1 - x - y)1 < t7T - y. (18) 

Although Eqs. (8) and (9) were only valid with restric
tions on Ixl and IYI, Eq. (10) converges for all values 
of x and y for which Ipl and Iql remain finite, subject 

only to the restrictions on \arg (-p)\ and \arg (-q)\. 
Equation (10) may then be used to define the continua
tion of the p2 function for values of Ipl and Iql, for 
which Eqs. (8) and (9) are not defined. Of course, we 
may only close the contours in the right half-planes 
to obtain the original F function if we have the 
restriction Ipl, Iq\ < 1. Since we have only used Eq. 
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(10) in obtaining the result (17), it follows that Eq. 
(17) is valid for all x and y for which conditions (18) 
are satisfied and for which Ipl and Iql are finite. 

Equation (17) now gives the required results as the 
large t-t and v behavior of all the factors on the right
hand side is known. This result may be simplified by 
use of the Legendre duplication formula or Eq. 
(A5) to give a form reminiscent of Watson's asymp
totic formulas for the Jacobi functions, i.e., 

IEllv(x, y)1 < BI«4y2/rr2) 11 - x _ yl)-Re(II)-Re(v) 

X exp [1m (t-t) arg (x) + 1m (v) arg (y) 

+ rr 11m (t-t)1 + rr 11m (v)l] 
X O(t-t-iv-i(t-t + V)-I). 

We may use a similar though more complicated 
method to find the behavior of GIIV(XI,yI). We then 
find 

IGllv(x\ l)1 
B I r(2t-t + 2v + 3) I 

< rev + l)r(v + 1)r(t-t + 1)r(t-t + 1) 

X (2y/rr)-Re (lIl-2Re (vl It-t-iv-t(t-t + v)-tl 

X r(2 Re (t-t) + 2)r(2 Re (v) + 2), (19) 

[r(4 Re (t-t) + 4 Re (v) + 5)]t 

again for Re (t-t), Re (v) > -t and where we have 
assumed for simplicity that Xl and yI are real and 
greater than unity. The results (18) and (19) are now 
in simple enough form to allow them to be used in 
connection with the Sommerfeld-Watson transform 
referred to previously. 
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APPENDIX: THREE r-FUNCTION INEQUALITIES 

Erber8 quotes an integral of Cauchy and derives a 
r-function inequality, namely, 

W(x + iy)1 < 2(i17y)",+t [r(2x + 2)]t i-,,/2 Ivl , (AI) 
Ix + iYI 

for x> 0 and y real, Iyl ~ 2/17. 
We use the same integral to obtain two other 

bounds which are more suitable for our purpose. 

Cauchy's integral is 

W(x + iy)12 

2-2a: r(2x + 1) -"II(I"d (. )2'" _2'1'1111)-1 =17 2e 1pSlD1p e . 
Ix + iYI 0 

N~ ~~ 

I" d1p(sin 1p)2"'e-2'1' I II I > f d1p(sin 1p)2"'e-2'1'lvl, y < rr. 

For y < t17 we have sin 1p ~ 21p/17, and, if we tab y 
such that y = r Y, we also have for the range of 
integration r'l' ~ 1p. Thus, 

I" d1p(sin 1p)2"'e-2'1' I II I 

> (~r f 1p2"'e-2'1' I vi d1p 

> (~rf 1p2"'+21111 d1p 

= (~r(2X + 2 Iyl + 1)-ly2"'+le-2YIIiI. (A3) 

Thus, substituting from Eq. (A3) into Eq. (A2), we 
get 

W(x + iy)1 

< (17y)-t(4Y)-"'eIVI(Y-hl [r(2x + l)]t(x.+ Iyl + t)t, 
17 Ix + 'yl 

(A4) 
where y = r Y ~ 0.6. 

Similarly, we may show that 

W(x + iy)1 

> 17-t 2-",+t(IYlt/lx + iYI)e-hllll[r(2x + 1)]t. (A5) 

We use Eq. (A4) in the Ellv(x, y) case and Eqs. (AI), 
(A4), and (A5) in the G IIV(X!, yI) case. 
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The reduced wave equation tlu + k 2n"u = 0 is considered, where n = 1 in the exterior of a circular 
cylinder of radius a and n = N < 1 in the interior. The solution and its first derivatives are required 
t~ ~~ continuous. fo~ r = a. The beha~ior of the sol~~ion for large ka is described, especially in the 
vlclmty of a ray mCldent upon the cyhnder at the cntlcal angle. The principal novelty of the present 
result.s is .a descriptio~ of !he solution in certai~ region~ by a combination of geometrical optics (ray 
contnbutlOns) and whlspenn~ gallery modes (a kmd of dIffracted modes). These results are in qualitative 
agreement with those ?f Chen, but certain de.tails in Chen's treatment require elaboration. The present 
res~lts ~o. not agree wIth t~~se of N us.senz~e~g for N < 1, es~ially in the geometrical interpretation. 
!hls revIsIon of Nussenzvelg s work brings It mto agreement wIth Keller's geometrical theory of diffrac
tIon. In fact, part of the present work can be combined with Chen's results to give a fairly complete 
geom~trical t~eory for diffra~tion by ~ convex, transparent object. However, the present treatment does 
not gIVe a umform asymptotIc expansIOn of the solution, since the expansion is not given in a transition 
region in the immediate vicinity of the critically reflected ray. 

1. INTRODUCTION 

The reduced wave equation 6.u + k 2n2u = 0 is 
considered, where n = 1 in the exterior of a circular 
cylinder of radius a and n = N < 1 in the interior. 
The solution and its first derivatives are required to 
be continuous for r = a. The behavior of the solution 
for large ka is described, especially in the vicinity of a 
ray incident upon the cylinder at the critical angle. 
The principal novelty of the present results is a 
description of the solution in certain regions by a com
bination of geometrical optics (ray contributions) and 
whispering gallery modes (a kind of diffracted modes). 
These results are in qualitative agreement with those of 
Chen,L2 but certain details in Chen's treatment 
require elaboration. The present results do not agree 
with those of Nussenzveig3 for N < 1, especially in 
the geometrical interpretation. This revision of 
Nussenzveig's work brings it into agreement with 
Keller's geometrical theory of diffraction. In fact, 
Sec. 4 and Appendix C of the present work can be 
combined with Chen's results to give a fairly complete 
geometrical theory for diffraction by a convex, trans
parent object. However, the present treatment does 
not give a uniform asymptotic expansion of the 
solution, since the eKpansion is not given in a transition 
region in the immediate vicinity of the critically 
reflected ray. 

Section 2 contains a description of the exact solution 
and certain asymptotic approximations, which are 
obtained by replacing Bessel and Hankel functions 
by their asymptotic expansions. In Sec. 3, a formal 
analysis of the solution is given in terms of various 
saddle-point and residue contributions, and these 
terms are interpreted geometrically. Section 4 contains 

a description of the integration contours appropriate 
to the various regions in which the solution simplifies 
and thus summarizes the asymptotic behavior of the 
solution. The relationship of the present work to 
previous work is described in Sec. 5. 

2. THE EXACT SOLUTION 

In this section the exact solution for a plane wave 
incident upon a circular cylinder is given, and it is 
transformed into a form suitable for asymptotic 
evaluation. This involves replacing the Bessel and 
Hankel functions by their Debye expansions or by 
their uniform asymptotic expansions in terms of Airy 
functions. In certain regions, it is also desirable to 
represent the solution in terms of successive surface 
interactions (internal reflections, etc.). These inter
actions correspond to successive terms in a geometri
cal series (the Debye series). 

In terms of polar coordinates rand e, the solution 
u(r, e, k) is required to satisfy the following: 

6.u + k2u = 0 for r> a; (2.1) 

6.u + k 2N 2u = 0 for r < a, N < 1; (2.2) 

u and au/ar are continuous for r = a; (2.3) 

u = eikr cos 9 + user, e, k) for r ~ a, (2.4) 

where Us satisfies the radiation condition 

lim rt (aU s _ ikU
8

) = O. (2.5) 
,.-+ 00 ar 

By use of the Poisson summation formula, the 
incident field may be represented in the form 

1617 
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Separation of variables leads to a solution in the form 

u(r, e, k) = u(1)(r, e, k) + u(2)(r, e, k) for r ~ a, (2.7) 

where 

(2.8) 

(2.9) 

Here we have set 

A = (H~2J'(ka) _ NJ~(kNa»)/(H~l)'(ka) _ NJ~(kNa»). 
H~2)(ka) J;..(kNa) H~l)(ku) J;..(kNa) 

(2.10) 

For r :::; a, the solution is given by 

u(r, e, k) = i i fOC> eWh-8+21TmJBJikNr) H~2J(ka) d)', 
m~oc> -OC> JikNa) 

(2.11) 

where 

Asymptotic Expansions of the Cylinder Functions 

Since the vicinity of a critically incident ray is of 
primary concern, the region of integration near). = 
kNa is most significant. By assumption, kNa is large, 
and hence the Debye expansions of the Hankel 
functions are valid (see Sommerfe1d4): If ex2 < r2, 
then 

Hk~J,(2J(kr) ""' [2/7Tk(r2 _ e(
2)1]1 

X exp [±ik«r2 - e(
2)1 - ex cos-1 (ex/r» T li7T]. 

(2.13) 

If ex is- near Na, then JkaCkNa) can be uniformly 
approximated in terms of the Airy function. We 
prefer to use V(w), defined by 

V(w) = Ai (-w), (2.14) 

where Ai is the Airy function (see Erdelyi5). Then, if 
ex < Nr, 

Jka(kNr) ""' 2: ( ~(~' ex) 2)1 V(ki per, ex», (2.15) 
k Nr-ex 

where 

If ex> Nr, the same formula holds if per, ex) is defined 
by 

H - per, ex)]! = ex cosh-1 (ex/Nr) - (ex2 - N2r2)1. 

(2.17) 

The function per, ex) is regular where Q( = Nr, and it 
has a simple zero there. 

If the approximations (2.13) and (2.15) are inserted 

(2.12) 

into (2.8), the result is 

u(IJ(r, e, k) ""' Jk m~oc> f/ k4>(r.6.a.mJ 

X Z(r IX) V(w) + ~V'(w) dQ( + v(lJ(r e k) (2.18) 
, V(w) - ~V'(w) " , 

where 

cP(r, 0, ex, m) = (r2 - Q(2)1 - 2(a2 - e(2)1 

+ ex[ -cos-l (ex/r) + 2 cos-l (Q(/a) 

+ i7T - e + 27Tm], (2.19) 

Z(r, Q() = [27T{r2 - e(
2)t]-le1i1T , (2.20) 

~ = -ik-!prCa, Q()/cPr(a, IX), (2.21) 

w = kia{ex) = kip(a, Q(), (2.22) 

v(l)(r, e, k) 

= -t i r eiA(h-8+21Tm)AH~2J(ka) H:::(kr) d)'. 
m=-oc> J1AI?ka HA (ka) 

(2.23) 

Similarly, if (2.13) is inserted into (2.9), the result is 

u(2)(r, e, k) 

""' k m~oc> f/ k 4>,(r.6.a. fflJZ(r, Q() dQ( + v(2J(r, e, k), 

(2.24) 
where 

cPi(r, e, ex, m) = -(r2 - Q(2)1 

+ ex[cos-1 (ex/r) + i7T - e + 27Tm], 
(2.25) 

v(2J(r, e, k) = t! r eWh-6HllfflJHl2\kr) d)'. 
m=-oc> J1AI?ka 

(2.26) 



                                                                                                                                    

DIFFRACTION BY A CIRCULAR CAVITY 1619 

For r ~ a, we obtain 

00 fa 
u(r, e, k) ,...., .jk m~oo _

a
eik'l'(6.a.ml 

V(k f per, oc»g(r, oc)2 d + ( e k) 
X oc V r, , . 

V(w) - ~V'(w) 
(2.27) 

Here, 

"P(e, oc, m) = -(a2 - oc2)! 

+ oc[cos-1 (oc/a) + }7T - e + 27Tm], 

(2.28) 

g(r, oc) = [27T(a2 _ oc2)!r! (p(r, oc)(N
2
a

2 
-..- OC

2»)! eli .. , 
(N2r2 - oc2)p(a, oc) 

(2.29) 

vCr, e, k) 

= t i r ei).(h-6+21TmlBH~2l(ka) J;,(kNr) d)'. 
m=-oo J1"I;:'>a JikNa) 

(2.30) 
The Debye Series 

Integrals such as (2.18) and (2.27) are difficult to 
deal with because of the factor V( w) - ~ V' (w) in the 
denominator. Even if the asymptotic expansion of the 
Airy function is introduced, the saddle-point method 
is not applicable, because the asymptotic expansion 
of V corresponds to waves moving in two different 
directions. In certain circumstances, this difficulty can 
be overcome by separating the denominator into two 
pieces and expanding the quotient in a geometric 
series. Each term can be interpreted in terms of inter
actions at the interface and reflections at the origin. 

We first define the V±(w), which correspond to out
going and incoming waves: 

V±(w) = V(e±t..iw). (2.31) 

The connection between V, V+, and V_ is given by 

V(w) = e1i1TV_(w) + e-!i1TV+(w). (2.32) 

For w » 1, the first term in the asymptotic expansion 
of V+ is given by 

± 1 i1T 3 

V±(w)""" e IT e±iiw". (2.33) 
2(.j7T)Wt 

Thus (2.32) and (2.33) show that the denominator in 
(2.18) and (2.27) contains two different phases where 
w» 1, i.e., where pea, oc) > O. We write 

V(w) - ~V'(w) = e1i1T[V_(w) - ~V~(w)](1 - R), 

(2.34) 
where 

After insertion of (2.34), (2.27) becomes (formally) 

u(r, e, k),....,.jk m~oo l~faeik'l'(6.a.m)V(kfp(r, oc» 

x 2e-
h1Tg

(r, OC)Rl doc + vCr e k). 
V_(w) - ~V~(w) " 

(2.36) 

An alternate form of (2.36) is obtained by inserting 
(2.32), namely, 

u(r, e, k) 
00 00 

,...., I I [u~(r, e, k) + ut(r, e, k)] + vCr, e, k), 
m=-oo 1=0 

(2.37) 
where 

u~(r, e, k) = [e-hi].jk f
a
eik'l'(6.a.m) 

V±(ki per, oc»2g(r, OC)Rl doc x ~~~~~~~---
L(w) - ~V~(w) 

(2.38) 

Here the factor in brackets appears only in the defini
tion of ui. 

We note that u;; is identical to the integral in (2.27), 
if V is replaced by V_ throughout. This amounts to 
considering solutions of the original boundary-value 
problem with radial dependence H~2)(kNr) instead of 
J,,(kNr) for r ~ a. Such solutions would be obtained 
by imposing a "radiation condition" at the interface, 
instead of a regularity condition at r = O. The radia
tion condition amounts to the requirement that the 
solution for r < a have a phase which increases with 
distance from the boundary (see Keller and Lewis6). 

Solutions with radial dependence Hi2l(kNr) [or 
V _(kf p(r, oc»] are unsatisfactory because of the 
singularity at r = O. This singularity is cancelled by 
addition of a term with radial dependence Hi1)(kNr) 
[or V+(kfp(r, oc»]. This explains the term ut in (2.37). 
Geometrically, uri represents a wave incident upon the 
interface from inside. The interaction produces a 
reflected wave inside (u~) and a transmitted wave 
outside. Thus, each term in (2.37) has an interpretation 
in terms of successive interactions at the interface and 
at the origin. 

An analogous decomposition is possible for the 
scattered field (2.18). Replacing V by V_ throughout, 
we define ur(r, e, k) by 

(2.39) 
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We write 

u(l)(r, 0, k) = ur(r, 0, k) + u;(r, 0, k) + v(Il(r, 0, k), 

where 
(2.40) 

00 fa eikt/>(r.6.a.m)Z(r N)e hlTY d 
u;(r, 0, k) =.Jk I ' "'" '" oc 

m~-oo -a 1T(V - ~V')(V_ - ~V~) . 

Here we have used the Wronskian relation 
(2.41) 

V'(w)V_(w) - V(w)V~(w) = if,i lT/21T. (2.42) 

After substitution of (2.34), (2.41) becomes (formally) 

u;(r, 0, k) = .Jkm~ool~ f/ k t/>(r.6.a.m) 

e-hlT~RI doc 
X Z(r, oc) . (2.43) 

1T(L - ~V~Y 

~he interpretation of (2.43) is similar to the interpreta
tIOn of (2.37). 

3. FORMAL ANALYSIS AND GEOMETRICAL 
INTERPRETATION OF THE SOLUTION 

This section contains a formal treatment of the so
lution, to show in detail how various parts of the 
solution are given by geometrical optics. First, the 
geometry of transmission and reflection at an interface 
is described. These simple notions lead at once to 
complicated systems of rays for diffraction by a 
transparent cylinder. When the Airy functions which 
appear in the integrands of the previous section are 
replaced by their asymptotic expansions, these inte
grands can be interpreted in terms of reflection and 
transmission coefficients. The saddle-point method 
then shows that (2.24) yields the incident field, (2.36) 
represents the transmitted and multiply reflected field 
inside the cylinder, (2.39) represents the reflected 
field outside the cylinder, and (2.43) represenfs the 
transmitted, multiply reflected, and retransmitted 
field outside the cylinder. Certain poles and residues 
of (2.18) and (2.27) are also examined and interpreted 
in terms of whispering gallery modes, i.e., waves 
which travel just inside the interface and shed energy 
outside at the critical angle. 

Geometrical Optics at the Interface 

We look for approximate solutions of (2.1)-(2.5) 
for large k in the form 

u.(r,O) = eikt/>.(r.6)Z.(r, 0), for r ~ a, 

u1(r, 0) = eikt/>,(r,6)Zl(r, 0), for r::;; a. (3.1) 

It follows from substitution of (3.1) into (2.1) and 
(2.2) that 

(VCP1)2 = N2, (Vcp.)2 = 1. (3.2) 

The ray direction is the direction of Vcp. Further 
details are given by Keller and Lewis.s 

The boundary condition (2.3) implies that 

a cos ° = cps(a, 0) = CP1(a, 0), (3.3) 

1 + Zs = Zl, for r = a, (3.4) 

cos () + (0 CPs) Z = (OCP1) Z or S or 1, 
for r = a. (3.5) 

In view of (3.3), the tangential components of Vcp., 
VCPl' and V(rcos 0) are equal for r = a; it follows 
from (3.2) that 

sin Yi = N sin Yt, for r = a, (3.6) 

where Yi and Yt are the angles of incidence and 
refraction, respectively. Now Zs and Zl can be deter
mined from (3.4) and (3.5): We 'define 

(3.7) 
then 

Zs = R22 = (1 - ~)/(l + ~), for r = a, (3.8) 

Zl = T2l = 2/{1 + ~), for r = a. (3.9) 

These coefficients are called the reflection and trans
mission coefficients for incidence from outside the 
cylinder. In a similar way, we can prescribe an 
incident field in region I, and outgoing conditions on 
the remainder of the solution. The result is 

Rll = (~ - I)/(~ + 1), 

T12 = U/(1 + n 
(3.10) 

(3.11 ) 

The preceding theory breaks down if sin Yi = N, 
since th~n Yt = i1T, and the transmitted ray is tangent 
to the CIrcle. However, if sin Yi > N, then we can find 
a complex CPl' and we require that 1m CPl increase as r 
decreases. Such a solution is called an evanescent wave 
and the field is said to be totally reflected in the exte~ 
rior. If (3.7) is replaced by 

~ = i(sin2 Yi - N2)!/cos Yi' 

then (3.8) and (3.9) remain unChanged. 

The Geometry of the Rays 

(3.12) 

The critically incident rays correspond to sin Yi = N, 
and they strike the cylinder at heights ±Na. These rays 
are reflected at the same angle, and the region between 
these reflected rays is the region of ordinary reflection 
(denoted by O.R.; see Fig. I). This region is covered by 
rays which are reflected from the cylinder. between 
A and B. Initial values on these rays are given by 



                                                                                                                                    

DIFFRACTION BY A CIRCULAR CAVITY 1621 

(3.3), (3.8), and (3.9). The phase and amplitude on 
each ray can then be computed by solving the eikonal 
and transport equations. The region between the 
critically reflected rays and the shadow boundaries 
(which begin at C and D) is the region of total reflec
tion (denoted by T.R.). It is covered by rays which are 
reflected between A and C and between Band D. 
Initial values are given by (3.3), (3.12), (3.8), and 
(3.9). The shadow region can be treated by creeping 
wave theory. (See Rulf,7 and Lewis, Bleistein, and 
Ludwig8 for details.) 

The ray geometry inside the cylinder is shown in 
Fig. 2. A ray incident at E between A and B gives rise 
to a transmitted field corresponding to the refracted 
ray EF. The ray strikes the cylinder again at F, where 
it gives rise to a reflected ray FG and a transmitted 
ray. The amplitude of the transmitted ray at F is 
determined by means of the reflection coefficient Rll , 

and the amplitude of the transmitted ray is determined 
by means of the transmission coefficient T12 • A 
similar procedure yields appropriate reflected and 
transmitted rays and amplitudes at G, H, etc. It will 
be seen later that there are caustics along each ray 
FG, GH, etc., and hence a caustic correction must be 
included in the computation of amplitudes and phases. 

The field, as described above, presents the following 
complications: The region of total reflection and the 
shadow region are covered by rays of type T21 R~l T12 • 
for each value of / 2 O. Thus, in T.R., at each point 
there are infinitely many geometrical rays. In addition, 
for sufficiently large values of I, a chain of reflected 
rays which encircles the interior of the cylinder an 
arbitrary number of times can be found. However, as 
E approaches A, the direction of EF is nearly tan
gential, and so geometrical optics must fail. These 
difficulties, due to infinitely many geometrical rays 
and rays which are nearly tangential, are the principal 
novelties of the present problem. 

FIG. 1. The geometry of the rays outside the cylinder. 

FIG. 2. The geometry of the rays inside the cylinder. 

. Asymptotic Expansions of the Airy Functions 

The integrals (2.38), (2.39), and (2.43) are not 
suitable for application of the saddle-point method, 
since the integrands contain Airy functions. However, 
in certain regions the asymptotic expansions of the 
Airy functions are valid, and the saddle-point method 
can be applied. Here we proceed formally, in prepara
tion for the more careful treatment of Sec. 4. 

We shall assume that per, O() > 0 and a(O() = 
p(a,O() > O. In that case, (2.33) is valid, and substitu
tion of (2.33) into (2.39) yields 

ur(r, e, k) "" y'k m~co 1>oeik4>(r.9.~.m) 

where 

X Z(r, O() 1 - ~(O() dO(, (3.13) 
1 + ~(O() 

~(O() = (y'a)Pr(a,O() = (N 2a
2 

- O(~! 
epr(a, e, 0(, m) (a 2 

- 0(2)! 
(3.14) 

Similarly, substitution of (2.33) into (2.43) yields 

u~(r, e, k) "" y' k mioo 1~0 1>oeik4>(r.9.~.m.l)z(r, O()( - i)l+l 

X T21(0()(Rll(O(WT12(0() dO(, (3.15) 

where T21 , Rll , and T12 are given by (3.8)-(3.11) with 
~ given by (3.14), and 

ep'er, e, 0(, m, /) = ep(r, e, 0(, m) + t(l + l)ai . (3.16) 

Substitution of (2.33) into (2.38) yields 

ut(r, e, k, m) ""1 eik4>±(r.9.~.m.l) 
<1>0 
p>O 

X Z±(r, O()( -i)zT21(0()(Rll(0(»Z dO(, (3.17) 
where 

ep±(r, e, 0(, m, /) 

= ep(a, e, 0(, m) ± ip~ + i(21 + l)a~, (3.18) 

Z-Cr, O() = [(N2a2 - 0(2)/(N2r2 - 0(2)]lZ(a, O(), (3.19) 

Z+(r,O() = -iZ_(r, O(). (3.20) 
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It is easy to check that the integrands of (3.13), 
(3.15), and (3.17) are given by geometrical optics, if 
the incident field is the integrand of (2.24). Note that 
(Mr, e, IX, m), ep(r, e, IX, m), and ep-(r, e, IX, m, 0) are 
all equal where r = a, and the corresponding ampli
tudes are related by R22 (1X) and T21(1X). In order to 
make the solution regular for r < a, the term uri must 
be added. A discussion of this point and its relationship 
to geometrical optics is given in Appendix A. Since uri 
corresponds to a wave incident from the inside, 
transmitted and reflected terms are required to satisfy 
the boundary conditions. These terms correspond to 
setting 1 = 0 in (3.15) and to u; in (2.37) and (3.17). 
Similar interpretations hold for the higher values of I. 

The Incident Field 

We apply the saddle-point method to (2.24). The 
stationary point a(r, e) is obtained by setting the 
derivative of epi equal to zero: 

~ -I.(r (J a m) = cos-1 ~ + lrr - e + 2rrm = o. alX '1'. , , , r 2 

This implies that 

a(r, e) = r cos ,(e - trr - 2rrm), 

epi(r, e, a, m) = -r cos e. 

(3.21) 

(3.22) 

(3.23) 

Thus & is constant along lines parallel to the x axis (the 
incident rays) and epi(r, e, a, m) is the incident phase. 
A short calculation shows that the amplitude given by 
the saddle-point method is also correct. 

It is apparent from (3.21) that the different values 
of m contribute saddle points on different sheets of the 
covering of the (x, y) plane by the (r, e) plane. Since 
we will confine our attention to a small portion of the 
(x, y) plane, only the value m = 0 will make a signifi
cant contribution to the field. 

The Field Inside the Cylinder 

We apply the saddle-point method to (3.17) to 
verify geometrical optics. We set m = 0 throughout, 
in order to concentrate on phenomena in the vicinity 
of the critically incident ray. 

The stationary point for u;(r, e, k, 0) [denoted by 
IX; (r, e)] is obtained by setting the derivative of ep
equal to zero: 

(1.- -1 (1.0 -1 (1.0 0 
= cos-1 ..J1.. + lrr - (J + cos - - cos - = . 

a 2 Nr Na 

(3.24) 

F 

FIG. 3. Interpretation of lXo. 

We set 

<1>o(r, e) = epo(r, e, 1X0, 0) = - [a 2 
- (1X0)2]~ 

+ N{[a 2 - (1X0)2/N2]i - [r2 - (1X0)2/N2]i}. (3.25) 

Since (Vep;)2 = N2 identically in IX, it follows that 

Vepo' V ~ epo = 0, (3.26) 
alX 

i.e., (a/alX)ep; is constant along rays for ep; and, 
hence, 1X;(r, e) is constant along the rays for <1>; . 
Where r = a, (3.25) agrees with (3.23) and, hence, 
1X;(a, e) = a(a, e). Now (3.25) can be interpreted 
geometrically as in Fig. 3. On EE', we have IX; = a = 
a sin Yi' and OE' = a/N = a sin YP according to 
Snell's law. Then 

EP = EE' - PE' = [a2 - (a2/N2)]i - [r2 - (a2/N2)]k. 

(3.27) 

Comparison with (3.25) shows that <1>; (r:.!!.) is the 
sum of the incident phase at E and N EP (which 
represents the time required to travel from E to P in 
medium 1). The amplitude at P can be verified in a 
similar fashion (see Appendix A). 

The saddle-point evaluation of u; breaks down at 
E' , since p(r, IX;;) = 0 there. This difficulty is due to the 
complicated behavior of the Bessel function where 
order and argument are nearly equal. This difficulty is 
treated in Appendix A. As is explained there, between 
E' and F, u- must be replaced by uri. The saddle-point o , . 
evaluation of uri shows that the phase of u; at P IS the 
sum of the phase at E' and N E'P, when P is between 
£' and F. Similar discussions can be given for ut when 
I> O. 

The Scattered Field 

Here we apply the saddle-point method to (3.13) 
and (3.15) in order to verify geometrical optics in the 
exterior of the cylinder. As before, we set m = O. The 
saddle point ~(x) of (3.13) satisfies 

a - ~ 
- -I.(r e ~ 0) = 2 COS-I?: + -21rr - () - cos-1 - = O. OIX 'I' , , , a r 

(3.28) 
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We set 

<I>(r, e) = cp(r, e, &) 
= _ (a2 _ &2)! + (r2 _ &2)! _ (a2 _ &2)i. 

(3.29) 

By the same argument as for a;;-, we see that a(r, e) is 
constant along rays of <I>(r, e). Where r = a, 
& = & = a sin Yi' The interpretation of <I> is given in 
Fig. 4. The segments OR and OQ are perpendicular to 
the extensions of the incident and reflected rays. Since 
the angle of incidence equals the angle of reflection, 
OQ = OR = &. Hence <l>atPis equal to the sum of the 
incident phase at E and EP. From the saddle-point 
method, we obtain 

Ur(r, e, k) r-...J eik<l>(r,8JR22(&) 

x [2(r2 - &2)!j(a2 - &2)! - 1]-!. (3.30) 

The saddle point of al of (3.21) is obtained from 

a ..J.' 1 a l 1 a l 
- 'f' (r, e, rx l , 0, 1) = -cos- - + 2 cos- -
orx r a 

1 a l + i7T - e - 2(1 + 1) cos- - = 0. (3.31) 
Na 

We define 

<I>;(r, e) = cp'(r, e, rx l , 0, /) = _(a 2 
- rxD! + (r2 - rxD! 

- (a 2 
- a~)t + N2(l + 1)( a2 

- ~~t (3.32) 

If 1= 0, as is shown in Fig. 5, then <1>; is the sum of 
the incident phase at E, plus N EF, plus FP. Similar 
interpretations hold for higher values of I. The saddle
point evaluation of (3.15) yields 

00 

u;(r, e, k) r-...J 1 eikCII
!'(r,8J( - i)IT21(al)(Ru(aIWT12(al) 

!=o 

X [1 _ 2(r2 - rx~)! + 2(1 + 1)(r2 - rx~)kJ-!. 
(a 2 

- rxD! (N 2a2 
- rxD! 

(3.33) 

p 

FIG. 4. Interpretation of oc and cI>. 

p 

FIG. 5. Interpretation of cI>~. 

The factor (_i)l can be interpreted as a phase shift, 
since each internally reflected ray passes through a 
caustic (see Appendix A). The factor in brackets can 
be interpreted as a ray density. 

The totally reflected field corresponds to a real 
saddle point ii of (2.18) with Na < ii < a. In this case, 
a < ° and (see Erdelyi5) 

V(k!a) r-...J [( - a)-!j2(~ 7T)k*]e-ik(-O'Jf. (3.34) 

Then (2.18) becomes (formally) 

where 

~t(rx) = U-a)Pr(a, rx) = (rx
2 

- N
2
a

2
)! (3.36) 

CPr(a, a) (a 2 
- (

2)! 

Now (3.35) has the same form as (3.13). A similar 
procedure yields (3.30), with 

Residues near IX = Na 

In addition to the saddle points which have been 
described above, there are poles in the integrals (2.18) 
and (2.27) just above the real axis. Here it will be 
shown that these poles correspond to whispering 
gallery modes (excited by the critically incident ray) 
which propagate just inside the cylinder and continu
ally shed energy to the outside. The transmitted wave 
leaves the cylinder at the critical angle, and hence it is 
analogous to a lateral wave. 

The Debye series was introduced in Sec. 2 in order 
to apply the saddle-point method, and the resulting 
approximations are predicted by geometrical optics. 
These approximations break down near the critically 
incident ray, which is refracted tangentially inside the 
cylinder. Therefore, we might expect some sort of 
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diffracted waves which are excited by the critically 
incident ray, i.e., which correspond to values of oc 
near Na. Since the Debye series converges very poorly 
near oc = Na, we use the more basic formulas (2.18) 
and (2.27). 

The poles of (2.18) and (2.27) correspond to values 
of w for which 

V(w v ) - 'V'(wv) = 0, p = 1,2,···. (3.38) 

If q v is a root of V, then to first order 

(3.39) 

The corresponding values of oc can be approximated 
from (2.22) and (2.16): 

OCv ,....., Na - k-i(lNa)i(qv + 0. (3.40) 

Since 1m' < 0, we have 1m OCv > 0; and since 
, = O(k-i ), the OCv are close to the real axis. 

After formally taking a sum of residues, (2.27) 
becomes 

u(r, e, k),....., I (27Ti)k-l_2_[eik'l'V(ki,)gJ . 
v~l v'c W v) 0 p/ooc "'~"'. 

(3.41) 

Since OCp - Na = O(k-i ), we have per, ocp ) < 0 
unless r - a = O(k-i ). In view of (3.34), the residues 
are exponentially small inside the cylinder except in a 
strip of width O(k-i) near the boundary. On the 
boundary, from (2.28) we have 

"P(a, e, ocv) 

= _(a 2 
- IX;)! + IXv (cos-

1 :: + ~ - e + 27Tm). 

(3.42) 

By neglecting the imaginary part of (XI' , this expression 
can be interpreted as in Fig. 6. We choose CA = OCp , 

and hence the ray at C is incident near the critical 
angle. Then <}: COP is given by cos-1 IXv/a + 7T/2 - e. 
To the lowest order, (Xv = Na, and hence "P""'" 
(MC) + N CP, where CP denotes the arc length 

FIG. 6. Interpretation of the phase on the boundary. 

p 

FIG. 7. Interpretation of the phase away from the boundary. 

from C to P. The term of order k-i in IX shifts the v 
phase of each mode slightly, and the last term 
(involving ') has order k-1 with positive imaginary 
part. This term may be interpreted as an exponential 
~ecay in amplitude (independent of ..frequency) as CP 
mcreases, due to energy being shed to the exterior. 

After formally taking a sum of residues, (2.18) 
becomes 

u(l)(r, e, k) r-.J I (27Ti)k-12,[
eik

f>Z] . (3.43) 
v=1 op/o(X «=av 

Again, neglecting the imaginary part of (Xv' we 
may interpret cf>(r, e, ocv) as in Fig. 7. We have 
CA = OB = OD = (XI" DE = (a 2 - IX~)!,and DP = 
(r 2 - oc~)t. Furthermore, 

cos-1 (ocv/a) = t7T - <}:COA = <}:EOD. (3.44) 

Hence we obtain 

cf>(r, e, OCI) = cf>i(C) + EP + (Xv (<}: EOC). (3.45) 

To lowest order, OCp = Na and cf>(r, e, (Xv) consists of 
the sum of the incident phase at C, N CE, and EP. 
The higher-order terms in OCv can be interpreted just 
as in (3.42). We conclude that each term in (3.43) 
represents a wave which travels just inside the cylinder, 
as described above, and then is shed to the exterior at 
an angle near the critical angle. It is interesting to 
note that the residues which have been obtained 
represent a limiting case of waves which are incident 
~ear t~e critical angle, are transmitted nearly tangen
tIally, Internally reflected many times, and emerge at 
an angle near the critical angle. 

4. ASYMPTOTIC EVALUATION OF THE 
SOLUTION 

This section contains an asymptotic evaluation of 
the solution, based upon the concepts and approxi
mations of the preceding sections. The original 
integral is decomposed and the contour of integration 
is d~formed in different ways in the various regions 
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of space. In the region of ordinary reflection (see Fig. 
I), for IX < Na, the integrand is split into terms corre
sponding to Ur and u; as defined by'(2.39) and (2.41). 
Only Ur contributes a saddle point, and the rest of the 
scattered field is exponentially small. This agrees with 
the prediction of geometrical optics that only the 
incident and reflected fields are present in O.R. 

In the region of total reflection, a more complicated 
decomposition is required. For a certain IX* < Na. 
the integrand is split into terms corresponding to Ur 

and u; for IX < IX*, and the form (2.43) is used for 
u;. Each term in the latter sum has a saddle point. 
For IX> IX*, the original form (2.18) is used, but the 
contour is deformed into the upper half-plane, 
picking up some residues near IX = Na. There is an 
additional saddle point for uti) between Na and a. 
The saddle points for u; correspond to the transmitted, 
multiply reflected and transmitted rays, the residues 
correspond to the whispering gallery modes, and the 
saddle point for u(I) yields the totally' reflected field. 
In the shadow regions, the saddle point for u(l) is 
replaced by a sum of residues, which correspond to 
creeping waves. The other terms are as before. 

Inside the cylinder, the ray geometry is complicated 
by the presence of caustics of the internally reflected 
field. However, near the boundary r = a, a close 
analogy holds with the treatment for the exterior. The 
main difference is the evanescent field (corresponding 
to a complex saddle point) which contributes to the 
field near the region of total reflection. 

The Region of Ordinary Reflection 

As is explained above, we use a decomposition 
analogous to (2.39) and (2.41) for IX :;;; IX *. The point 
IX* is chosen midway between (i(r, 0) and Na [see 
(3.28)]. Thus (2.18) becomes 

u(I)(r, 0, k) 

r-..J ~ki~·eik"'(r'8'~'O)Z(r IX) V_(w) + 'V~(w) da 
-a ' V_(w) - 'V~(w) 

+ ~ki~·eik"'(r'8,a,O) Z(r, lX)e
ii .. , dlX 

-a 1T(V(W)_'V'(W»(V_(w)-'V~(w» 

+ ~k fa eik.(r,8,a,O)Z(r, a) Yew) + 'V'ew) dlX 
Ja· Yew) - 'V'ew) 

+ ~ ~k fa eik",(r,8.I1I.m) 
m"O J-a 

X Z(r, a) Yew) + 'V'ew) dlX + v(I)(r e k). (4.1) 
Yew) - 'V'ew) , , 

Now the contours can be deformed as shown in Fig. 8. 
Because IX* is not near Na, the asymptotic expansions 
of Vand V_ are valid in the first two integrals of (4.1). 

U r 

No 

FIG. 8. The contour in the region of O.R. 

Moreover, it is apparent from (3.28) and the geo
metrical interpretation of IX that oep(r, e, IX, m)/olX is 
positive or negative if m is positive or negative. Hence, 
each term in the summation with m =;e 0 can be made 
exponentially small by deforming the contour into the 
upper or lower half-plane, respectively. For a similar 
reason, the integrals from IX* to a and v(I) are negli
gible. Thus. we obtain 

u(l)(r. e, k) r-..J ~ kja·eik4>(T,8,a,O)Z(r, IX) 1 - ;( a) da 
a 1+;(IX) 

+ ~kja·eik"'(r.8,a,O) ehai4'(~w)Z(r, IX) dlX. (4.2) 

a (1 + i'~w)2 
The integrand of the second term of (4.2) is the term 

in (3.15) with m = I = O. It follows from the inter
pretation of (3.31) that oep'(r, e, IX, 0, O)/OIX < 0 in 
O.R. and, hence, the second term in (4.2) is negligible 
after the contour is deformed into the lower half-plane. 
Hence. u(1) is approximated by the saddle-point 
contribution described in (3.28)-(3.30). 

The Region of Total Reflection, and the Shadow 

Here the integrand for u(I) is decomposed by use of 
a number IX* < Na. Poles having real parts greater 
than a* and saddle points less than IX* will appear in 
the evaluation of the solution. There is some arbitrari
ness in the representation of the solution; this corre
sponds to the fact that the residues and saddle-point 
contributions have very similar geometrical inter
pretations. We note that the saddle points cluster at 
Na, while the poles cluster at - 00. Hence, there is a 
position for a* which yields approximately equal 
numbers of saddle points and residue contributions. 
It would also be desirable for the last residue retained 
to have the same order of magnitude as the last saddle 
point retained. Both of these conditions are satisfied if 
Na - a* = o (k-!). Then the number of saddle 
points and residues retained is O(kt) and the last 
terms retained are O(k-!). There is a remainder 
integral, which also is O(k-!) except in transition 
regions. These transition regions are present since the 
positions of the various saddle points depend upon 
the observation point. In other words. each trans
mitted wave T21Ril Tn has its own transition region 
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from O.R. to T.R. If I and k are large and fixed, the 
corresponding saddle-point contributions mayor 
may not be induded, depending upon the position of 
the observation point. 

We decompose u(l) as follows: Let L = kill-, where 
Il- and Il--I are bounded. We define <1>* by 

<I>*(r, 0, IX) = (r2 - 1X2)! - 2(a2 - 1X2)! 

+ IX[ -cos-I (IX/r) + 2 cos- I (IX/a) 

+ i7T - 0] + (2L + 3) 

X [(N2a2 - 1X2)! - IX cos-I (IX/Na)], 

(4.3) 

and we determine 1X*(r, 0) as the stationary value of 
<1>* : 

- = -cos-I 
- + 2 cos-I 

-
0<1>* I IX* IX* 

OIX a=a' r a 
IX* + t7T - 0 - (2L + 3) cos-I - = O. 
Na 

(4.4) 

Note that IX* is not a saddle point of cPr. or cPL+l but 
lies between their saddle points. We write 

u(l)(r, 0, k) = II + 12 + Ia + 14 + v(l)(r, 0, k) 

+ I v'kfu eil·4>Z V + sV' dlX, (4.5) 
m*O -u V - sV' 

where 

II = v'kfa'eik4>Z V_(w) + sV~(w) dlX, (4.6) 
-u V-Cw) - sV~(w) 

(4.9) 

The last two terms in (4.5) can be estimated as in O.R. 
We deform the contours as follows (see Fig. 9): 

The end points are moved from IX* to fJ*, where 

u, 

000 
a* No 

FIG. 9. The contour in the region of T.R. 

u~ 

~. No 

FIG. 10. The contour adjacent to O.R. 

Re IX* = Re /3*, 1m /3* = O(k--3). The contour for 
II is moved into the upper half-plane. No residues are 
contributed, since II does not have poles near the 
real axis. The contours for 12 and Ia are deformed into 
the lower half-plane passing through IX *. The contour 
for 14 is deformed into the upper half-plane near /3*, 
but it crosses the real axis at the saddle point ii 
between Na and a. Residues are contributed from the 
poles just above the real axis and to the right of IX*. 
On the deformed contour, II is exponentially small, 
since ocP(r, w, IX, O)/OIX > 0 if IX < Na and the observa
tion point is in T.R. Each term in 12 can be evaluated 
by the saddle-point method, since all of the saddle 
points for I ~ L are to the left of IX*. These contribu
tions arc described in (3.31 )-(3.33). Similarly, 14 is 
asymptotically given by a sum of residues [see (3.43J
(3.45)] plus a saddle-point contribution [see (3.35)
(3.37)). The integral Ia is estimated in Appendix B. 
Provided that the segment (IX*, /3*) does not pass 
near a pole, it is shown that Ia has order k-~. 

We omit the details of the treatment of the shadow 
region, since it is quite analogous to the above. The 
residues from poles near IX = a correspond to creeping 
waves (see Rulf,7 and Le\\is, Bleistein, l3.nd Ludwig8). 

The Interior of the Cylinder 

The field inside the cylinder is extremely compli
cated, due to the presence of ray families for each 
value of I (the number of internal reflections). For 
I > 0, each such family has a caustic curve. Hence, 
the number of saddle-point contributions to be 
expected varies considerably from point to point 
inside the cylinder, and the integration contours 
will change accordingly. Here we confine our attention 
to the vicinity of the boundary r,....., a, and near the 
critically incident ray e,....., ec (defined below). There 
the deformation of the contour is completely analo
gous to the previous ones. 

We define 

ec' = i7T + cos- I (Na/a). (4.10) 

If e > ec and r ,....., a, the observation point is adjacent 
to the region of ordinary reflection. The solution 
(2.37) may be rewritten as u = Uo + u'. The contour 
of integration is shown in Fig. 10, where ii denotes 
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u' 

u' o 

<::) 0 0 

FIG. II. The contour adjacent to T. R. 

the saddle point of u;; (the transmitted ray). Further 
away from the boundary, saddle points for I > 0 may 
be encountered in pairs. The corresponding contours 
have a loop above the real axis, to the left of!Y. = Na. 

If () < () c and r "-' a, the observation point is adjacent 
to T.R. The appropriate contour is shown in Fig. 11. 
The integrand for u has a saddle point in the upper 
hnlf-plane, above the interval (Na, a). This contribu
tion yields the evanescent field, due to total reflection 
of the incident ray. There are also residue contribu
tions, which correspond to whispering gallery modes. 
All of these contributions decay exponentially as r 
decreases. There are also saddle-point contributions 
from the various terms which comprise u', which 
correspond to internally reflected rays. 

5. COMPARISON WITH PREVIOUS RESULTS 

The most relevant previous work is due to ChenI.2 

and Nussenzveig.3 Chen extends Keller's geometrical 
theory to cover transparent bodies, and the present 
results are in agreement with his. Nussenzveig (cor
rectly) criticizes Chen's choice of contour, but 
these difficulties are removed by our more elaborate 
treatment. Chen's results, together with Sec. 4 and 
Appendix C of the present work, give a fairly com
plete description of diffraction by a general transparent, 
convex object. A more rigorous and complete 
treatment could probably be given by imitating the 
method of Ludwig.!! 

The bulk of Nussenzveig's work is concerned with 
the case N > 1, which is quite different from the case 
N < 1. For the latter case, Nussenzveig obtains 
residue contributions from poles· in the lower half
plane (below !Y. = Na). He interprets these residues as 
modes which propagate from the region of total 
reflection into the region of ordinary reflection. 
This interpretation is not correct, since the minus sign 
in front of ':0 in his equation (4.82) is not taken into 
account. Therefore, the direction of propagation of 
his residues should be from the region of ordinary 
reflection to the region of total reflection, as with the 
residues described in Appendix C. However, since the 

poles are in the lower half-plane, the amplitude of 
each term increases with increasing phase. Therefore, 
these modes transport energy from a source in the 
interior of the cylinder to the exterior; indeed, the 
amplitude of each mode increases exponentially as 
r decreases, for r < a. We conclude that these modes 
are unphysical and are not excited by a wave incident 
upon the cylinder. The treatment of Streifer and 
Kodis1o utilizes similar modes and suffers from the 
same defect. 

Buldyrev and Lanin treat the Green's function 
for diffraction by a transparent cylinder in a series of 
papers. 1l- 13 Their results agree with the present ones, 
except in the region of total reflection (see Ref. 13). 
In this region, Buldyrev and Lanin13 represent the 
solution as a sum of M saddle-point contributions, 
plus a "head wave" s,t, where M has order pi 
and p = kNa in our notation. It is shown below that 
this value for M is too large, since the saddle-point 
method is not valid for so many terms. Such a large 
value for M is not plausible, since it involves use of 
the asymptotic expansion of the Airy function where 
its argument is bounded. 

If one attempts to overcome the above difficulty 
by a choice of M «pi, then the saddle point of c/>O.lf 
moves away from' = I (see Fig. 6 on p. 141 of 
Ref. 13), and the end points T± [see (2.5)] must be » 1 
in order that exp [ipc/>O,iJ,lW] be negligible outside of the 
interval (C, '+) (see p. 142 of Ref. 13). Therefore, 
the integral for GjJf(Y,p) cannot be dealt with as 
simply as in Ref. 13. However, if their contour C3 is 
deformed into a descent contour, then the portion near 
, = 1 is pushed into the upper half-plane. The result 
is described in Sec. 4 above. 

Buldyrev and Lanin justify the choice M = O(Pi) 
on the basis that "two waves exist separately if the 
optical path difference is greater than the wavelength" 
(see p. 140 of Ref. 13). The validity of the method can 
be checked mathematically as follows: An integral 
of the form 

J(p) = flmei1J4>(~) d, (5.1) 

yields a saddle-point contribution at (ll if a number 
o can be found such that, for I' -Llli ~ 0, 

-1."( Y .) ~» -1."'(,) 6
3 

P't' \:'.11 2 P't' 3! ' (5.2) 

(5.3) 

(5.4) 
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Conditions (5.2) and (5.4) justify expansion of 4> and 
/ about' = 'M' while condition (5.3) is necessary 
in order to evaluate the simplified integral. If M = 
O(pt) as in Ref. 13, then 4>"('M) = O(pt) and 4>'11 = 
O(pt). Then (5.2) and (5.4) require that 

p-t » 15 » p-t. (5.5) 

The function / is defined by (1.4) of Ref. 13; it in
volves the quotient of Airy functions of argument 
[P4>(l, ,)]t, raised to the Mth power. Hence, (5.5) 
implies that 

/'('M)Q » pi/aM), 

which contradicts (5.4). 
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APPENDIX A: THE INTERNALLY 
REFLECTED FIELD 

The discussion of the field inside the cylinder which 
is given in Sec. 3 suffers from two defects: the method 
is only valid where per, IX) > 0, and the substitution 
of ut(r, 0, k) for u"(r, 0, k) beyond the midpoint of 
each internally reflected ray requires justification. 
Here we shall remove these defects and also discuss 
the caustics inside the cylinder by applying the 
method of stationary phase for double integrals. 

Assuming as before that a(lX) > 0, we substitute 
(2.33) into (2.36) to obtain 

u(r, 0, k),-..J kf I I 
m=-<Xl!=O 

x J. exp [ik(tp(r, 0, IX, m) + f(21 + l)ai )] 
",>0 

X V(ktp(r, 1X»(2)!( -i)!T21(IX)[Ru(IXW 

x [ per, (I.)(N
2
a

2 
- 1X2) ]tdlX' (AI) 

(a 2 _ 1X2)(N2r2 _ (1.2) 

Now we use the integral representation for V in 
order to obtain a double integral: From Erdelyi5 we 
have 

V(kfp) = kt l<Xl eik [pp_tp3] df3, (A2) 
27T -<Xl 

where 

'F = tp(r, 0, IX, m) + i(21 + l)ai + per, 1X)f3 - !/J3. 
(A4) 

The method of stationary phase is applicable to (A3), 
provided that the Hessian of'Y is different from zero 
(see below) without any further restrictions on p. 
The conditions for'F to be stationary are 

tp~ + (21 + l)(Ja)a" + f3PIl = 0, P - f32 = O. 
(AS) 

We note that (AS) implies that 4>± [given by (3.18)] 
is stationary. The cases f3 ~ 0 correspond to stationary 
points for ut. 

We define L\ (the Hessian of 'F) by means of 

The caustics of the field correspond to zeros of L\, and 
the ordinary method of stationary phase is not 
applicable at caustics. Since N < 1, the term in 
brackets in (A6) is positive for alII, and hence L\ < 0 
if f3 > O. If 1= 0, then L\ < 0 even if f3 < 0; but 
if I > 0, then L\ will vanish if f3 < 0, for some value of 
r between IX/Nand IX. Geometrically, these facts imply 
that in Fig. 3 there is no caustic between E and F, 
but there is a casu tic between F and F', etc., The 
solution has no anomalies at E', F', etc.; the diffi
culties there are due to the deficiencies of the represen
tation (2.37). The method of stationary phase in two 
dimensions can be applied to (A3) to verify the 
results of geometrical optics (with caustic corrections). 
We omit the details. 

APPENDIX B: THE ERROR INTEGRAL IN T.R. 

Here we estimate the error integral 13 , given by 
(4.8). It follows from the definition of L and from 
(4.4) that 

Na - (1.* = O(k-1). (Bt) 

Hence, the Airy functions in the denominator of 
(4.8) may be replaced by their asymptotic expansions 
[see (2.32) and (2.33)]: 

f
3

,....., Jk e eT21Rll IX . l
p* ikO»* L-H d 

-<Xl (27T)1(a2 - 1X2}1(cos W - i sin W) 
(B2) 
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Here <1>* is given by (4.3) and 

W = iw! - !7T = k(N2a2 - <x2)! 

- k<x cos-1 (<x/Na) - !7T. (B3) 

From (BI), it follows that 

(B4) 
and 

oW Toc = O(ki ). (BS) 

After introducing Was a new variable, we obtain 

I / e ~ 21 11 f 
iktP·l:T. RL+l dW 

3~~7T . 
(27T)!(a2 

- <x2)!(COS W - i~ sin W)W", 

(B6) 

When (B4) and (BS) are applied to (B6), the result is 
that the portion of the integral where <X - <x* = 
O(k-i ) has order k-! if cos W - i~ sin W is bounded 
away from zero. The remainder of the integral (in the 
lower half-plane) is exponentially small. 

APPENDIX C: WHISPERING GALLERY 
MODES 

The following discussion is motivated by the residue 
form (3.41). However, it is independent of the rest of 
the paper, and the results are valid for a general 
convex boundary which is concave towards the faster 
medium. The basic idea is to find solutions of the 
differential equations and jump conditions which 
have a caustic inside but close to the boundary. The 
resulting equations are very similar to those of 
Ludwig14 and Lewis, BIeistein, and Ludwig.s 

We denote the solution in the exterior of S by 
Vex, k), and the solution in the interior of S by 
u(x, k). S is assumed to be smooth and convex. The 
differential equations are 

!1U + k 2V = 0, !1u + k2N2u = 0, N < I, (CI) 

and the boundary conditions are 

u = u, 
ou oU 
- = - for x on S. (C2) 
on on' 

Motivated by Refs. 8 and 14, we make the ansatz 

u(x, k) = exp {ik[Oo(x) + k-i 01(x)]} 

x [V(kipo(x) + Pl(X»gO(x) 

+ ik-!V'(kipo(x) + Pl(x»ho + .. 'J. 
eC3) 

Here V is given by (2.14): VI/(w) + wV(w) = 0. The 
corresponding ansatz for V is 

U(x, k) = exp [ik(rpo(x) + k-i rp1(X»] 

x [Zl(x)/k! + ... J. (C4) 

We require that Po(x) = ° on S; this implies that 
the caustic (where Po + k-iPl = 0) is close to the 
boundary. 

The boundary conditions eC2) cannot be satisfied 
unless the phases match; thus we must have 

Oo(x) = rpoCx), 01(X) = rpl(X), for x on S. (CS) 

The usual procedure of geometrical optics (see Keller 
and Lewis6) implies that 

[VCrpo + k-i rpl)]2 = 1 

to first two orders, and hence 

(C6) 

(VrpO)2 = I, Vrpo' Vrpl = 0. (C7) 

The second equation of (C7) implies that rp1 is constant 
along rays. Similarly, equations (1.21)-(1.22) of 
Ref. 14 imply that 

(VOo)2 + Po(V PO)2 = N2, (C8) 

VOo ' Vpo = 0, (C9) 

2VOO·VOl + 2poVpo' Vp1 + P1(VpO)2 = 0, (ClO) 

VOl' Vpo + VOo ' Vp1 = 0. (Cll) 

Note that since Po = ° on S, (C8) and (C9) imply 
that oO%n = ° and (VOO)2 = N2 on S. Then (CS) and 
(C7) imply that 

orpo = (I _ N2)! 
on ' 

on S, (CI2) 

and hence the exterior rays leave the boundary at the 
critical angle. 

In order to apply the boundary conditions, we 
compute 

oU ['k(Or/>O)Zl ] ~ - = I - - + . " exp [ike r/> + k-u" )] 
on on k! 0 '1'1 , 

(C13) 

:: = [ki(~o) V'(P1)gO + .. -] exp [ik(Oo + k-i (1)]. 

(CI4) 
Hence, eC2) implies 

(~0)V'(p1)gO = i(Oo~O)Zl' 
V(P1) = 0, 

V'(P1)ho/i = Zl' 

(CIS) 

(CI6) 

(CI7) 
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The present equation (CI6) differs slightly from the 
residue equation (3.38), since the roots of (3.38) are 
not real, but near the real axis. The present procedure 
is equivalent to the earlier one, but more convenient 
for calculations. 

Now (CI5) and (CI7) imply that 

h _ op%n 
o - ocp%n go . (CI8) 

From Eq. (1.23) of Ref. 14 (at Po = 0), we have 

2V()0· Vgo + il80go + (Vpo)2ho = 0, (CI9) 

and thus (CI8) implies 

2 op%n ( 
2V80 · V go + il80go + (V Po) -- go = O. C20) 

ocp%n 

If we define p by means of 

2N dp = (V PO)2 op%n = 2 ,(C2t) 
ds ocp%n a(t -.,. .N2)t 

where s is the arclength along a surface ray and a is 
the radius of curvature of the surface ray, and if we 
set 

(C22) 
then 

dG 
2N - + il()oG = O. 

ds 
(C23) 

Equation (C23) together with (CI6) would result from 
imposing the condition u = 0 at the boundary. The 
interpretation and analysis of these equations is 
essentially contained in Lewis, Bleistein, and Ludwig.s 

The exponential decay factor e-P in go is due to the 
energy continually being shed to the exterior. Note 
that u = O(k-i ) at the boundary; hence the loss is 
relatively small. It is interesting that, in two dimen
sions, from (C21), 

dp 1 

dw = N(l - N2)t' 
(C24) 

where w is the angle formed between the tangent to 
the boundary and the x axis. 

The wave in the exterior is analogous to a lateral 
wave, since the rays for CPo meet the boundary at the 
critical angle. The wave in the interior is analogous 
to a whispering gallery mode for the interior problems 
with boundary condition u = O. These modes are 
excited in a boundary layer near a critically incident 
ray. The diffraction coefficients are determined from 
the residue calculation (see Chen2). 
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We investigate the existence of noninvariance groups in the second-quantization picture for fermions 
distributed in a finite number of states. The case of identical fermions in a single shell of angular momen
tumj is treated in detail. We show that the largest noninvariance group is a unitary group U(22i+l). The 
explicit form of its generators is given both in the m scheme and in the seniority-angular-momentum basis. 
The full set of 0-, 1-,2-, ... , (2) + I)-particle states in the) shell is shown to generate a basis for the single 
irreducible representation [1] of U(22j+l). The notion of complementary subgroups within a given irre
ducible representation of a larger group is defined, and the complementary groups of all the groups 
commonly used in classifying the states in the) shell are derived within the irreducible representation [1] of 
U(22j+l). These concepts are applied to the treatment of many-body forces, the state-labeling problem, 
and the quasiparticle picture. Finally, the generalizatiol1 to more complex configurations is briefly 
discussed. 

1. INTRODUCTION 

The concept of the noninvariance groupl is a very 
attractive one since, for a given dynamical problem, 
all the states belong to a single irreducible representa
tion (IR) of the group. This leads to the establishment 
of many relations for the matrix elements of operators 
between these states as well as to more systematic 
classification schemes for the states themselves. 

Unfortunately, these noninvariance groups have 
been discussed only for very simple1 I-particle prob
lems, and even in those cases they lead to noncom pact 
groups. For many-body problems, even with simple 
types of interactions, their determination seems at 
present to be out of the question. 

On the other hand, if we are working in the second
quantized picture (SQP) with a finite number of states 
oN', the most general interactions can be formulated in 
terms of polynomial functions of the generators2 of a 
unitary group U(oN'). This suggests the possibility that 
we may find, in the SQP, noninvariance groups of a 
simple type, which may also be independent of the 
characteristics of the interactions we would like to use. 

Actually, noninvariance groups of this type have 
been known for some time. To indicate their charac
teristics explicitly, we restrict ourselves to the SQP for 
identical fermions in a single shell of angular momen
tum j. The anticommuting creation and annihilation 
operators are then denoted respectively by 

b;;;, 
with 

,. . m, m = J, ... , - } , (Ll) 

{b;;;, bt,,}+ = {bm, bm'}+ = O. 

(1.2) 

explicitly in that of Judd,4 the orthogonal group of 
4j + 3 dimensions O+(4j + 3) is introduced, the 
generators of whose Lie algebra are 

It is then shown4 that all states 

Im1 ' •• m n) == bt.,bt,2 ... bt,n 10), 

m1 > m2 '" > mn, 

(1.3) 

n = 0, 1, 2, ... , 2j + 1, (1.4) 

where 10) (corresponding to n = 0) is the vacuum 
state, belong to the single IR 

[t t ... t] == [t2i+1] (1.5) 

of O+(4j + 3). Thus the group O+(4j + 3) is a non
invariance group in the SQP for a single shell of 
angular momentumj. 

In this paper, we introduce a noninvariance group, 
of which O+(4j + 3) is actually a subgroup, which 
proves to be much more useful in the discussion of the 
matrix elements of our dynamical problem. To derive 
this group, we note first that the number of states 
(1.4), because of the anticommuting nature of the b+'s, 
is given by 

~ Cj ~ 1) = 221+1. (1.6) 

Thus, the number of operators of the type 

b;;,,' .. b;;'nbm'n' ... bm" , 

m1 > ... '> m n , m{ > ... > m~" 
n, n' = 0, 1, ... ,2j + 1, (1.7) 

is (221+1)2, if we include among them the operator 1. 
In the work of Helmers3 and others, and more The commutator of two operators of the type (1.7) 

1631 
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clearly must give us back again a linear combination 
of operators of the type (1.7), and so these operators 
form a Lie algebra. In the next section, we show that 
this Lie algebra corresponds to a unitary group of 
22i+1 dimensions U(22i+1). We clearly see from (1.7) 
and (1.3) that U(22i+l) contains O+(4j + 3) as a 
subgroup, so then U(22i+l) is also a noninvariance 
group in the SQP. In fact, we prove that all states (1.4) 
belong to the single IR [1] of U(22i+l). 

We now proceed to determine linear combinations 
of the operators 0.7) that satisfy the usual commuta
tion relations for the generators of the group U(22i+l), 
thus proving in a constructive fashion that we are 
dealing with a group of this type. 

2. THE GENERATORS OF THE GROUP U(22i+1) 

In our analysis we are only interested in the effect 
of the operators (1.7) on the complete set of states 
(1.4), i.e., in matrix elements of the type 

(m- .,. m-I b+ .,. b+ bm'n' . .. bm1' 1m" .. m~) 
1 n ml ffln 1 n' . 

(2.1) 

We can then prove that the operators (1.7) define the 
Lie algebra of U(22i+l) if we can find (22i+1)2 linearly 
independent combinations of the operators (1.7) such 
that their matrices, with respect to the full set of states 
(1.4), have zeros everywhere, except at a single position 
where they take the value 1. 

The matrix whose elements are (2.1) clearly has zero 
values for all ii < n and ii' < n'. For ii = n and ii' = 
n', the matrix element (2.1) is 

om1 ... omno!!'l: ... o'!!:n: (2.2) 
ml mn ml m n 

and, thus, the submatrix with n particles in the bra and 
n' in the ket has a 1 at some position and zero 
everywhere else. From (2.1), we see that all other 
matrix elements will be zero, unless 

ii - n = ii' - n', (2.3) 

and, thus, we have only zeros when ii = n, ii' > n' and 
ii > n, ii' = n'. By enumerating the states in an order 
that follows the increasing number of particles, the 
full matrix then looks as follows: 

ii~ < n' ii' = n' ii' > n' 

: :: r: i~iiJ . (2.4) 

The blocks marked 0 contain only zeros, while the 
block marked 1 contains 1 at some position and zeros 
everywhere else. The unmarked block for ii > nand 
ii' > n' has not as yet been determined. 

The unmarked block in (2.4) is quite a complicated 
expression with, in general, values different from zero 
at those positions in which (2.3) is satisfied. On the 
other hand, the matrix representation of a generator 
of U(22i+l) would be given by (2.4) if the unmarked 
block had also the value zero. 

This suggests, then, that to get the generators of 
U(22i+l) we multiply the operator (1.7) by some type 
of projection operator which does not change the 
value of those blocks in the matrix representation (2.4) 
that have already been determined, but which makes 
the block for ii > n and ii' > n' equal to zero. This is 
easily achieved with the help of the number operator 

; 

N == I b;;'bm. (2.5) 
m=-j 

The operator 

2;+1 (N - r) II -,--, 
r=n'+l n - r 

(2.6) 

when acting on a state with a number of particles 
ii' > n', clearly gives zero, while for ii' S n' it gives 
the same state multiplied by a constant which for ii' = 
n' is just 1. It is clear, therefore, that the operators 

(2.7) 

are precisely the generators of the group U(22i+1). 

While the explicit expression of the generators is 
very simple, they are not yet in normal form, i.e., 
they are not expressed as linear combinations of 
products of creation and annihilation operators in 
which all the creation are to the left of the annihilation 
operators. Before proceeding to put them in normal 
form, we change our states, and thus our generators, 
from the basis (1.4) to the one in which they are 
characterized by seniority and total angular momen
tum. This new basis is much more relevant to the 
physical applications we are contemplating. 

3. THE GENERATORS OF U(22i+1) IN THE 
SENIORITY-ANGULAR-MOMENTUM BASIS 

If we are working in a single shell of angular 
momentum j, the physically relevant classification of 
our states5 includes the number of particles n, the 
seniority v, the total angular momentum J, and 
projection M. These states are linear combinations of 
the states (1.4) given by 

Inv{JJM) == P~vPJM 10), (3.1) 

with 

where the A's are appropriate coefficients.2 The index 
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(3, not yet defined, distinguishes between the possibly repeated states of given J corresponding to a definite 
seniority v. 

The states (3.1) are characterized by the following chain of groups, below each one of which we give the 
I R to which they correspond: 

U(22i+1) ~ 0+(4j + 3) ~ 0+(4j + 2) ~ U(2j + 1) ~ Sp(2j + 1) ~ 0+(3) 
(3.3) 

[1] (t2i+1] [tt···t(_l)nt] [In] W] J 

The fact that the state (3.1) belongs to the IR J, [F], 
[1 n] of the ordinary proper rotation group 0+E3), the 
symplectic group Sp(2j + 1), and the unitary group 
U(2j + 1) is well known.s Judd has shown that it also 
belongs to the IR [t t ... t( _l)nt] of the 0+(4j + 2) 
whose generators are given by (1.3) when we exclude 
b+ and bm2 • We have already mentioned that all 

nll 

states (1.4) belong to the IR [t2i+1] of 0+(4j + 3). 
Finally, we see from the representation of the gener
ators (2.7) of U(22i+l) , given by (2.4) when we put 0 
in the unmarked block, that the states (1.4) belong to 
the IR [I] of U(22Hl). This would, then, also apply to 
the states (3.1) which are linear combinations of (1.4). 

Let us now designate, by vectors x and y, respec
tively, the full sets of 22i+1 states given by 0.4) and 
(3.1). From (3.2), these two vectors are related by a 
unitary matrix A which has only elements different 
from zero on blocks along the diagonal that correspond 
to the same number of particles n in (1.4) and (3.1). 

Thus, we have y = Ax. (3.4) 

Then we denote by B the matrix of operators whose 
elements 

(3.5) 

are given by (2.7). Clearly, the matrix of generators of 
U(22Hl) in the basis (3.l) is obtained from B through 

the transformation ABA+. (3.6) 

Before applying this transformation, we note that the 
operator N is unaffected by it. This can be seen from 
the fact that the representation of N with respect to 
the basis (1.4) or (3.1) is given also by a matrix with 
blocks along the diagonal, but these blocks are unit 
matrices multiplied by the number of particles. Thus, 
the matrix of N and A commute, and we can write 

ABA+ 

= II L L A':v,ij;';nb;;'l' .. b;;'nbm'n' ... bm1
' 

tnl'" ffln ml"" m'n' 

2Hl II Am,"" m' ,,'* IT (N - r) X n'v'p'J'M' , 
r=n'+l n - r 

= Ilp~vPJMpn'v,p'J'M' If (~ - r)ll, (3.7) 
r=n'+l n - r 

where 
n'v'p'J'M' (+ )+ 

P = Pn'v'P'J'M' . (3.8) 

Denoting now the generators of U(22i+I) in the basis 
(3.1) by Cr with y == nv{3J M, we see that they can be 
written in the form 

2i+l-n'(N ' 
Cn'v'P'J'M' = p+ II ----=..!:)pn'V'P'J'"'f' (39) 

n v P J 11I nvpJ Jl , . 
r=l -r 

where we put the projection operator between the 
creation and the annihilation polynomials, making 
use of the relation 

(3.10) 

We now return to the question raised in the previous 
section, concerning the possibility of expressing the 
generators (3.9) of U(22HI) in normal form, i.e., as 
linear combinations of the (22i+1)2 independent normal 
operators 

(3.11) 

For this purpose, we first express the projection 
operator in (3.9) in normal form. Since the operator N 
is a Casimir operator of the group U(2j + 1), whose 
generators are 

(3.12) 

the projection operator in (3.9) can be expanded only 
in terms of normal operators (3.11) with n = n' that 
are contracted with respect to the quantum numbers 
D, fl, J, and M that characterize the n-particle state. 
In fact, we prove by induction that 

2ifin'(N - r) =2i1;-n'c_ 1)" .2 P:;'PJMpsvPJ.1I. 

r=l -r s=O v{JJM 

(3.13) 

For n' = 2j the equality obviously holds, taking into 
account the definition (2.5) of N. Assuming that it 
holds for a given n', we proceed now to prove that it is 
also valid for n' - 1. The operator in the latter case is 

[
2ifin'(N - r)] (N ~ n' -. 2j - 2) 

r=l - r n - 2J - 2 

2j+l-n' ( l)S( +' 2' 2) _ '" - s n - J - '" p+ psvPJ M 
-.:.. (' 2' 2) .:.. 8VPJ.M 

8=0 n - J - vpJ M 

2i+l-n' (1)' 
+ L (' -2' 2) L P:;'PJMb;;'bmpsvPJ1"I. 

8=0 n - J - v{JJM 
m (3.14) 
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We can now use the relation 

V;;'PJJ[b;' = L (s + l)i(JjMm I J'M') 
v' fJ' J' ,'II' 

x </v{JJ;j I} p+1v'{J'J')P-;-+lv'P'J'M" 
(3.15) 

where (I), (I} ) are, respectively, a Clebsch-Gordan 
and a fractional parentage coefficient (fpc) and the 
factor (s + l)! comes from the fact that6 we are dealing 
with anticommuting creation operators and not anti
symmetric states. Substituting (3.15) in the last part of 
(3.14) together with a similar relation for the Her
mitian conjugate operator bmpsvpJM and using the 
orthonormality properties7 of fpc's and Clebsch
Gordan coefficients, we can immediately prove that the 
projection operator (3.14) has again the form (3.13), 
but with n' replaced by n' - 1. 

Now, replacing the projection operator in (3.9) by 
(3.13) and using a generalization of the development 
(3.15), i.e., 

P~vPJMP-:-rpjJl 

= L (n + S)!)\JJMM I JM) 
~,pJ,~l n! s! 

x (rv{JJ;pvpJ I} r+s(jPJ)P!+s~pJM , (3.16) 

where (I}) is now an s-particle fpc and the term 
[en + s)!/n! s!]! appears for the same reasons6 as 
(s + I)! in (3.15), we can express the generators (3.9) 
of U(22;+1) in the following norma(form: 

Cn'v'Il'J'"vI' 
n vp J M 

= L L [(_1),.!.(n + s)! (n' + S)!)! 
,.,' sl n l n'l s vll~l\~ . •• 

~'P'J'"'l' 

x L [(JJMM I JM)(J'JM'M I JIM') 
"pjli 

X <rv{JJ; pDPJ I} r+s(jPJ) 

X (/'V'{J'J' ;/vpJj} /'+s(j'P'J'>]O :::f':'~'~J 
(3.17) 

The s-particle fpc can be expressed in terms of the 
single-particle fpc by well-known procedures,7 and so 
the expansion of the generators of U(22i+1) in terms of 
normal operators can be given explicitly, if we know 
the single-particle fpc in the j shell. 

Using properties of the fpc and Clebsch-Gordan 
coefficients, we could invert the relation (3.17), but it is 
actually much simpler to note that an alternative form 
of the generator (3.9) is given by 

C~'~Trtf = InvfJJM) <n'v'fJ'J'M'1 
= PtvPJM 10) (01 pn'v'P'J'M'. (3.18) 

On the other hand, the normal operator (3.11) can be 
written, when introducing a unit operator between 
p+ and P, as 

on'v'p' J' llf' 
nvp.Tl1f 

= PtvPJ.v( 4 IsvPJM) (SvPJMI)pn'"'fJ'J'"lI' 
s#JM 

= ~ p+ P+. - _ 10) (01 p sl1tlj,f£ pn'v'p' J'.ll' 
L nvfJJM srpJM . 

sftlJ,'il 

Using (3.16) again, we obtain 

Dn'v'P'J'M' 
n v fJ J ;1[ 

= L L [l(n + s)! (n' + S)!)! 
S v;3J''M s ! n! n I ! 

~'PIJ'-,it' 

x L «JJMM I JM)(J'JM'M I J'M') 
BtlJ'M 

X (j"v{JJ; j"vpJ I} r+S(jPJ) 

(3.19) 

x (/'v'{J'/; /vpJ i} /'+S(j'P'J'»)c:~:st:jtJ 

(3.20) 

The relations (3.17) and (3.20) between the gener
ators of U(22i+1) and the normal operators (3.11) are 
the basic ones for the applications we want to present 
in this paper. Before proceeding with their discussion, 
we introduce the concept of complementary group 
and indicate those of its properties that will be useful 
in the following discussion. 

4. THE CONCEPT OF COMPLEMENTARY 
GROUP 

The concept we want to introduce appears implicitly 
in the relations between the noninvariance group 
O+(4j + 2) and its subgroups Sp(2j + 1) and SUQ(2), 
where the latter is the quasispin group. 

As mentioned above, the generators of O+(4j + 2) 
are given by 

The symplectic group Sp(2j + 1) is a subgroup of 
O+(4j + 2) and its generators are2

•
3 

A:::~ = e:::~ + (_I)ml+m2e=:::~. (4.2) 

If we now consider all the invariants with respect to 
the symplectic group Sp(2j + 1) that we can form from 
the generators (4.1) of O+(4j + 2), we arrive at the 
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generators of the quasispin group SUQ(2), i.e., 

Q+ = t ~(-l)i-mb;;;b~m' 
m 

Qo = t[~ b;;;bm - (j +~)l (4.3) 

Q_ = -t I (_I)i-mbmb-m, 
m 

which satisfy the usual commutation rules of the 
spherical components of angular momentum. 

The generators of Sp(2} + 1) and SU(,)(2), of 
course, commute. Their direct product 

Sp(2j + 1) X SUQ(2) (4.4) 
is a subgroup of 0+(4) + 2), and we could characterize 
alternatively the states (3.1) by the IR of this subgroup 
rather than follow the chain 

0+(4} + 2) ::::> U(2} + 1) ::::> Sp(2} + I) 
of (3.3). The important point to note is that the 
IR of SUQ(2) and Sp(2} + 1) contained in the IR 
[t t··· i(_l)nt] of 0+(4} + 2) are fibt independent 
but have the I-to-l correspondence4 

Q = H(J + t) - v], (4.5) 

where v is the seniority and Q the value of the quasi
spin, as can be seen easily from the Casimir operators 
of both groups. This relation suggests the following 
definition of complementarity for groups.s 

Let us consider a direct product of two groups HI 
and H2 , which are subgroups of a larger group H. We 
refer to the groups HI and H2 as "complementary" 
within a definite IR of H, if there is a I-to-I corre
spondence between all the IR of HI and of H2 con
tained in this IR of H. Thus, for example, SUQ(2) 
and Sp(2j + 1) are complementary within the IR 
[t t·· . H -I)"t] of 0~-(4} + 2). 

We proceed to discuss the complementarity relation 
when the larger group H is U(22i+1). All states (3.1) 
belong to the single IR [1] of U(22i+l), and we could 
ask ourselves which are the complementary groups 
H2 when HI is taken as any of the subgroups of 
U(221+1) in the chain (3.3). We saw above that the 
complementary group to Sp(2j + 1) was obtained by 
considering all symplectic invariants formed from the 
generators of 0+(4} + 2). This suggests, then, that 
we consider all possible invariants, with respect to the 
group HI that we can form from the generators of 
U(22Hl), and identify the resulting group, trying to 
prove at the same time that it satisfies the comple
mentarity definition with respect to HI . 

We proceed to implement this program for all the 
groups of the chain (3.3) starting with its last member 
0+(3). 

If we look at the generators (3.9) of U(22i+1), it is 
immediately clear that invariants with respect to 

0+(3) can be formed when we put J = J', M = M', 
and sum over M, i.e., the operators we get can be 
denoted by 

(4.6) 

Now from the matrix expression of the operators 
C(, y == nv(JJM, we conclude that they satisfy the 
commutation relations of the generators of the unitary 
group, i.e., 

[C y ' cY"'] - Cy'" Soy' - cY' Soy'" (4.7) Y , y" - Y Uy" y"U y , 

where the o's are symbolic expressions for the product 
of Kronecker o's in all the quantum numbers. Then, 
looking at the definition (4.6), we conclude from (4.7) 
that two operators C~'~'f~ commute when they belong 
to different J's and that, when they have the same J, 
they satisfy a commutation relation of the type (4.7) 
in the remaining indices. It is clear, therefore, that the 
operators (4.6) are the generators of a direct sum of 
unitary groups associated with each possible value of 
J, whose dimension d(J) is the same as the number 
of states in the shell of angular momentum} that have 
total angular momentum J, divided by the degeneracy 
2J + I of these states. The group of invariants with 
respect to 0+(3) that we can form from the generators 
of U(221+1) is then 

4 EB U(d(J». (4.8) 
J 

The generators of the group (4.8) commute, of 
course, with the components of angular momentum2 

Lq = [j(j + I)]! ~ (jlm'q iJm)C;::' 
m,m' 

= Uj(j + 1)]1 I (jIm' q I jm)A;::', 
m,m' 

q = 1,0, -1, (4.9) 

which are the generators of 0+(3). It remains to see 
whether there is a l-to-l correspondence between the 
IR of the group (4.8) and those of 0+(3), when the 
states we are analyzing all belong to the single IR [1] 
of U(22i+l). 

The answer to this question is immediate. The IR of 
the group (4.8) can be characterized by the set of all 
the IR of the groups in the direct sum. Now, if we are 
dealing with states belonging to a definite IR J of 
0+(3), we see that they belong to the IR [I] of 
U(d(J» for the same J and to the IR [0] of all the 
other groups in the direct sum. Thus, there is a I-to-l 
correspondence between the IR of 0+(3) and that of 
the group (4.8) and so, if we identify 0+(3) with HI' 
we could denote (4.8) by H 2 • 

The complementary groups for the other groups in 
the chain (3.3) follow now by a similar reasoning. 
For Sp(2j + 1), the invariants we can form from the 
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generators of U(221+1) are clearly 
n'v _ ~ n'v{JJ M 

Cnll = k CnvPJM' (4.10) 
(JJM 

These generators commute with those of the group 
Sp(2j + 1) given by (4.2). They are the generators of 
the direct sum of unitary groups 

2 EB U(d(v», (4.11) 
v 

whose dimension d(v) is the same as the number of 
states in the shell of angular momentum j that have 
seniority v divided by the degeneracy of the states with 
this seniority. By the same arguments as in the case of 
0+(3) we conclude that (4.11) is the complementary 
group to Sp(2j + 1). Since the quasispin group is the 
complementary group to Sp(2j + 1) within the IR 
[i i ... ! (- I)n!] of 0+( 4j + 2), which is a subgroup 
of U(221+1) , it is clear that the quasi spin group is a 
subgroup of (4.11). Moreover, the generators of (4.11) 
can be written as linear combinations of powers of the 
quasi spin operators of the type Q++Q;oQ~-. 

For the group U(2j + 1) the invariants we can form 
are clearly 

Cn - ~ Cnv(JJM 
n = k nv{JJM, 

v{JJM 

and so the complementary group is 

2 EB U(l). 
n 

(4.12a) 

(4.13) 

For the group 0+(4j + 2), the complementary group 

is U(1) EB U(1), (4.14) 

where the generators for these two unitary groups 
are 

C+
+ =_ ~ ~ Cnv{JJM C- - ~ ~ Cnv{JJM 

k ~ nv{JJM' - = k k nv(JJM' 
,,(even) v(JJ M n(odd) v(JJ M 

(4.15a) 

respectively. Finally for 0+(4j + 3) the complemen
tary group is just U(1) with generator 

2i+l 

C - ~ ~ Cnv(JJM (4.16a) = ~ ~ nv(JJM' 
n=O vPJM 

Note that alternative forms for (4.I2a), (4.l5a), and 
(4.l6a) are respectively 

2i+l (N - r) 
C n - IT --n - , 

r=O n-r 
r*n 

2i (N - r) c::: = II -- , 
r=l n - r 

r odd 

C = 1, 

(4.12b) 

c= = 2fi (N - r), (4.15b) 
r=O n-r 

r even 

(4.16b) 

where 1 is the unity operator. 
We have thus obtained the complementary groups 

to all the subgroups in the chain (3.3) within the 
single IR [1] of U(22i+1). The IR of the complementary 

group H 2 , together with those of a canonical9 set of its 
subgroups, would then completely characterize the 
states associated with a given IR of the original group 
HI' 

We make use of the concepts developed in this 
section in the following applications. 

5. APPLICATION TO MANY-BODY FORCES 

In the SQP the operator associated with the Hamil
tonian is in general a sum of operators associated with 
0-, 1-,2-, 3-, ... , (2j + I)-body forces, i.e., 

21+1 
H=2 H (1}), 

1'=0 
(5.1) 

whose explicit expressions are given by 

H(1') = 2 (pv{JJI H(1') Ipv'{J'J) D;~'f~, (5.2) 
vllv'Il'J 

where 
D1'v'P'J - ~ p+ p1'v'P'JM (5.3) 1'V P J - k 1'vpJ M . 

M 

We have implicitly assumed that all H(p) are in
variant under rotations, so their matrix elements are 
diagonal in J and M and independent of M. Thus, the 
operators (5.2), instead of being linear combinations2 

of the normal operators (3.11) with n = n', are given 
in terms of the contracted operators (5.3). 

The operator associated with the Hamiltonian H in 
the SQP can also be written as 

H = 2 2 Inv{JJM) (nv{JJMI H In'v'p'J'M') 
nv{JJM n'v'p'J'M' , 

X (n'v'{J'J'M'I. (5.4) 

Taking into account that the matrix element of H 
only connects states with the same number of particles , 
i.e., n = n' , and that H is invariant under rotations, we 
can, using (3.18) and (4.6), write 

~ ~ '{J' nv'p'J H = k k (nv{JJI H Inv J) Cnv (J J' (5.5) 
" vpv'P'J 

Now, from the relation (3.17) between the genera
tors (3.9) of U(221+1) and the normal operators (3.11), 
we can derive a similar relation between the generators 
(4.6) of the complementary group to 0+(3) and the 
normal operators (5.3). Using this relation, we write 
H in terms of D;~'f ~ as 

H = L «nvPJI H Inv'p'J) ! (_l)p-n 
nvpv'(J'J 1}~p;j'p,j 

x p! 2 (rv{JJ; jp-nvpJ I} rvpJ) 
n! (p - n)! v(JJ 

x <j"v'{J'J;jP-nijpJ I} /v'P'J)D1J~'rf). (5.6) 
1}V I' J 
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Comparing (5.6) with (5.1) and (5.2), we arrive at 
the following relation between the matrix elements of 
the p-body Hamiltonian and the matrix elements 
of the full Hamiltonian H: 

(pv{3JI H(p) Ipv'{3'J) = i [(_l)1J-n p! L 
n~O n! (p - n)! ~pv'p'J 

x Ct </,vpJ; jP-nvp! I} Fv{3J) 

x <rv'P'J;F-nvPJ I} Fv'{3'J) 

x (nvpJ/ H Inv'P'J») 1 (5.7) 

The matrix elements of H appearing in (5.5) could 
be taken, in many cases, directly from experience, if 
we assume that the single-shell description is appro
priate. They could be given, for example, by the 
binding energy of nuclei with closed shells of protons 
and a single open shell of neutrons, as well as by the 
energy levels of excited states of these same nuclei. If 
a full set of matrix elements of H can be obtained in 
this way we could, from (5.7), determine the contri
butions of effective p-body forces in the shell under 
consideration. An analysis for nuclei with either 
protons or neutrons in an open f~. shell has been 
presented elsewhere.1o 

6. APPLICATION TO THE STATE-LABELING 
PROBLEM 

When classifying states by the IR of a noncanonical9 

chain of groups such as (3.3), the labels provided by 
these IR may not be sufficient. For example, we 
generally need, for a given seniority v [IR of 
Sp(2j + 1)], extra quantum numbers {3 to distinguish 
between repeated states of definite J [IR of 0+(3)]. 

We need, therefore, extra operators whose eigen
values provide new quantum numbers of the {3 type. 
The procedure for obtaining these operators has been 
discussed elsewherell and, for the particular case just 
mentioned, they can be derived as follows: Consider 
the generators A:~ defined by (4.2) and form linear 
combinations of powers of them that are scalars with 
respect to the rotation group 0+(3). As examples, we 
have 

~ [(-l)q ~ «jkm1q Ijm2)A:~) 
q mlm2 

X m~.,«jkm~ - q Jjm~)A:~:) 1 (6.1a) 

~ A::A~;A%,., (6.1b) 
mlm2ma 

etc. The operators of the type (6.l), when applied to 

an arbitrary state (3.1),obviously cannot change the 
quantum numbers n, v, J, M of the state. Clearly, 
then, their matrix with respect to the full set of states 
(3.1) breaks into blocks characterized by v and J and 
of dimension equal to the number of different values 
of {3 we have. Diagonalization of these submatrices 
then characterizes the states by the eigenvalues of the 
operators of the type (6.1). 

We may require one or more12 operators of the 
type (6.1) to completely characterize the states. It is 
interesting, therefore, to analyze the properties of this 
family of operators. We note first that the set of 
linearly independent operators of the type (6.1) is 
finite, since in the SQP we have no more than (22i+1)2 

operators of all types. Furthermore, the commutator 
of two operators of type (6.1) is again of type (6.1), as 
it is a polynomial function of the A m2 and is invariant , mt 

under 0+(3). Thus, the set of all linearly independent 
operators of this type form a Lie algebra. 

To find what the type of Lie algebra is, we recall 
that the operators (6.1) do not change the quantum 
numbers n, v, J, M of the states, and also that their 
matrix elements are independent of M [because the 
operators are scalars with respect to 0+(3)] and of n 
[because the matrix element of A m2 with respect to the 

mt 

states (3.1) is independent of n and this also applies to 
any function of the generators of the symplectic 
group]. Thus, all operators of the type (6.1) can be 
expressed as linear combinations of 

2Hl J 
Cv/J' J = '" '" CnvP' J M 

v{J J - k k nv{J J M . 
n~O M~-J 

(6.2) 

By a similar analysis to the one presented in Sec. 4, 
we see that the operators (6.2) are generators of the 
direct sum of unitary groups 

~ EEl U(d(v, J», (6.3) 
(v,J) 

where the dimension d(v, J) stands for the number of 
independent states of definite J that we have for a 
given seniority v. In this enumeration we regard as 
identical all states that differ only by M or n. 

We have identified the group to which belongs the 
full set oflinearly independent state-labeling operators. 
Had we decided to use one or more of these operators 
in the actual characterization of the states, it would 
have been quite convenient to expand them in terms of 
the operators (6.2), in which we use some arbitrary 
labeling procedure for the {3's. This would facilitate 
the determination of the eigenvalues of these opera
tors, as the matrix elements of the generators (6.2) 
with respect to the states (3.1) can be obtained 
immediately. 



                                                                                                                                    

1638 M. MOSHINSKY AND C. QUESNE 

7. APPLICATION TO THE QUASIPARTICLE 
PICTURE 

In recent years, the concept of quasiparticle13 has 
played an important role in many branches of physics. 
While the quasispin group (4.3) is related to it, the 
concept itself has not yet been discussed within a 
general group-theoretical framework. With the help 
of the noninvariance group U(22i+1) and its subgroups 
in the chain (3.3), we shall initiate this discussion. 

We note first that our creation operato"ts b~ and 
annihilation operators b'" are given respectively in 
covariant and contravariant components. We can 
raise or lower indices, 14 using the metric tensor 
(-I)i-mom,_m" and thus obtain 

b+m = (-l)i+mb~m' bm = (_l);-mb-m. (7.1) 

The Bogoliubov-Valatin transformation (BVT) 
gives us the new creation and annihilation operators 
b~ and b"', related to the previous ones by 

b;:; = ub;:; + w( -l)i-mb-m, (7.2a) 

(7.2b) 

where U and ware arbitrary complex numbers satis
fying the condition 

llU* + ww* = 1. (7.3) 

We could, if we so wished, write II and w in the form 

U = e-li'P cos to e-lix, w = eli'P sin to e-lix, (7.4) 

where cp, 0, and X are Euler angles in some abstract 
space. 

The operators b~ and bm
' satisfy the anticommuta

tion rules (1.2) and so, in terms of them, we can 
construct the generators of a new U(22i+1) group given 
by (3.9) when b~ and bm

' replace b! and bm
'. It is 

obvious, though, that these new generators will be 
linear combinations of the old ones, and so the new 
U(22iH) is identical to the one whose generators are 
(3.9). From (1.3), it is clear that the new and the 
original 0+( 4j + 3) groups are also identical and that 
this continues to hold for 0+(4j + 2). 

Furthermore, one can easily see from the BVT 
(7.2) that the generators of the symplectic group 
remain invariant under it, i.e., 

b;;',bm2 + (_1)ml+m2b~m2b-ml 
= bt.,bm2 + (-1)ml+m2b~m2b-m,. (7.5) 

From the expression (4.9) for the generators of 0+(3), 
we conclude that they remain invariant under the 
BVT, as can also be seen from the fact that 0+(3) is a 
subgroup of Sp(2j + 1). 

Thus, in the chain (3.3), all the groups transform 
into themselves under the BVT, except for U(2j + 1). 

As the IR of this group [1 n] is characterized by the 
number of particles n, it is clear that the states asso
ciated with the new creation and annihilation opera
tors (7.2) will be linear combinations of the states 
(3.1) with the same v, f3, J, and M, but different n. 
In fact, this combination is very easily determined 
when we notice that the states (3.1) can also be 
written4 in terms of the quasispin and its projection, 
i.e., 

Invf3JM) = IQMQf3JM), (7.6) 

where Q and v are related by (4.5) and 

MQ = Hn - (j + t)]. (7.7) 

Clearly, then, the BVT carries the original states 
(3.1) into new ones of the form 

I IQMQf3JM)'D~f'Qll1icp, O,X), (7.8) 
.11'Q 

where the 'D's are the familiar15 Wigner functions 
associated with the angles introduced in (7.4). This 
result becomes obvious when we note that the BVT 
gives rise to a rotation of the generators (4.3) of the 
quasi spin group. 

The advantage of the quasiparticle picture is that 
now the Hamiltonian (5.5) can be expressed in terms 
of generators of the complementary group to 0+(3) 
associated with b ~ and bm

' with coefficients that depend 
on the matrix elements of H, as well as on the param
eters II and w. We could manipulate these param
eters to achieve simplifications in the Hamiltonian 
that allow us to determine the eigenstates in terms of 
(7.8). Then, we have a solution to the problem in 
terms of states in which the number of particles is not 
conserved. Standard projection techniques13 permit 
us to derive from this state a solution with a definite 
number of particles. 

8. GENERALIZATION TO MORE COMPLEX 
CONFIGURATIONS 

So far, our SQP has been restricted to a shell where 
all the I-particle states have total angular momentum 
j. It is clear, though, that generalizations to more 
complex configurations are obvious. Thus, if we have 
two types of particles in the shell, e.g., protons and 
neutrons, we just introduce the isotopic spin projec
tion T and have the creation and annihilation oper
ators 

b;;'T' bm'T', m, m' = j, ... ,-j, T, T' = ±!. 
(8.1) 

In the case of several shells, we can introduce for 
these operators the index p that takes the values 

p = nlmlm.T, p = nljmT, (8.2) 
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etc., depending on whether we use /-s coupling, for 
which ml , ms are the projection of orbital angular 
momentum and spin, or j-j coupling, or other ways of 
characterizing the states. 

All the steps in the previous sections can be ex
tended to these generalized operators, though ex
pansions such as (3.17) would require the knowledge 
of more complex fpc's. 

A generalization of particular interest concerns all 
the states in a single level of the harmonic oscillator 
for which 

p = lmlmsT, / = v, v - 2, ... ,lor 0, (8.3) 

where v is the total number of quanta in the given 
level. The U(2j + 1) group now becomes2 

U(2(v + l)(v + 2» 

which, among its subgroups, has the symmetry group 
U(3) of the harmonic oscillator. Applications of the 

JOURNAL OF MATHEMATICAL PHYSICS 

noninvariance group U(22(v+1)(v+2» of this problem 
are planned in a future publication. 
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Conservation laws which are customarily obtained by invoking the invariance of a Lagrangian 
density under the transformations of some intrinsic symmetry group may be given a completely geo
metrical treatment within the context of the theory by Yang and Mills. The formalism is extended from 
unitary transformations to general linear transformations and the concepts of parallel transfer, covariant 
differentiation, and intrinsic curvature tensor are discussed. Conservation laws follow from the assumed 
invariance of the Lagrangian under parallel transfer defined with a general affine connection which is a 
direct sum of intrinsic and space-time affinities. Conservation of generalized charge is a consequence of 
the arbitrariness of that part of the affinities which operates in the intrinsic space, and conservation 
of energy and momentum is related to the arbitrariness of the part of the affinities which operates on the 
space-time indices. Some comments on Palatini's derivation of Einstein's equation of general relativity 
are made. 

I. GEOMETRY IN THE INTRINSIC SPACE 

Unitary transformations in three dimensions can be 
defined by the invariance of a Hermitian form 

(1) 

under linear transformations. In this paper, we use 
geometrical concepts which can be cast in a familiar 
analytical form, even for complex-valued vectors, if 
van der Waerden'sl distinction between tensor indices 
is used. The notation 1>", instead of 1>: is obviously 

more general, since higher tensors with any number of 
dotted and undotted indices can be considered. The 
difference lies, of course, in the transformation laws 

tp~ = S~tpP' 1>~ = S~1>p = (S~)*1>p. (2) 

The most general method for constructing invariants 
makes use of a dual space which can be formulated in 
terms of contravariant vectors with the transforma
tion laws 

1pa' = (S-l)ptpP, 1>"" = (S-l)~1>P = (S-l)''p*1>p. (3) 

The familiar rules for contraction of indices holds 



                                                                                                                                    

NONINVARIANCE GROUPS IN SECOND-QUANTIZATION PICTURE 1639 

etc., depending on whether we use /-s coupling, for 
which ml , ms are the projection of orbital angular 
momentum and spin, or j-j coupling, or other ways of 
characterizing the states. 

All the steps in the previous sections can be ex
tended to these generalized operators, though ex
pansions such as (3.17) would require the knowledge 
of more complex fpc's. 

A generalization of particular interest concerns all 
the states in a single level of the harmonic oscillator 
for which 

p = lmlmsT, / = v, v - 2, ... ,lor 0, (8.3) 

where v is the total number of quanta in the given 
level. The U(2j + 1) group now becomes2 

U(2(v + l)(v + 2» 

which, among its subgroups, has the symmetry group 
U(3) of the harmonic oscillator. Applications of the 
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noninvariance group U(22(v+1)(v+2» of this problem 
are planned in a future publication. 
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Conservation laws which are customarily obtained by invoking the invariance of a Lagrangian 
density under the transformations of some intrinsic symmetry group may be given a completely geo
metrical treatment within the context of the theory by Yang and Mills. The formalism is extended from 
unitary transformations to general linear transformations and the concepts of parallel transfer, covariant 
differentiation, and intrinsic curvature tensor are discussed. Conservation laws follow from the assumed 
invariance of the Lagrangian under parallel transfer defined with a general affine connection which is a 
direct sum of intrinsic and space-time affinities. Conservation of generalized charge is a consequence of 
the arbitrariness of that part of the affinities which operates in the intrinsic space, and conservation 
of energy and momentum is related to the arbitrariness of the part of the affinities which operates on the 
space-time indices. Some comments on Palatini's derivation of Einstein's equation of general relativity 
are made. 

I. GEOMETRY IN THE INTRINSIC SPACE 

Unitary transformations in three dimensions can be 
defined by the invariance of a Hermitian form 

(1) 

under linear transformations. In this paper, we use 
geometrical concepts which can be cast in a familiar 
analytical form, even for complex-valued vectors, if 
van der Waerden'sl distinction between tensor indices 
is used. The notation 1>", instead of 1>: is obviously 

more general, since higher tensors with any number of 
dotted and undotted indices can be considered. The 
difference lies, of course, in the transformation laws 

tp~ = S~tpP' 1>~ = S~1>p = (S~)*1>p. (2) 

The most general method for constructing invariants 
makes use of a dual space which can be formulated in 
terms of contravariant vectors with the transforma
tion laws 

1pa' = (S-l)ptpP, 1>"" = (S-l)~1>P = (S-l)''p*1>p. (3) 

The familiar rules for contraction of indices holds 
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here too, provided that the indices are either both 
dotted or both undotted. A fully covariant form of (1) 
is obtained if we introduce an intrinsic metric tensor 
plxP , which is equal to the contravariant "unity" and 
which is to be distinguished from the mixed Kronecker 
deltas b~ and b~. We write instead of (1) with the usual 
summation convention 

(4) 

The Hermitian property of the metric tensor in the 
intrinsic space, 

(5) 

is an invariant property and, since plxfJ is nonsingular, 
we may introduce an intrinsic covariant metric tensor 
by 

l"plx¥ = b~, p'I.IlPPIl = bp. (6) 

We use these Hermitian tensors to raise and lower 
indices. Unitary transformations can now alternatively 
be defined as those transformations which preserve the 
special form of the metric tensors as co- and contra
variant "unities." Clearly, the notation can be simpli
fied conceptually if only unitary transformations are 
considered, but the greater generality is needed in 
later sections and is, in any case, a useful investment 
for future research. 

We base our physical consideration on a Lagrangian 
as a function of classical fields and their derivatives 
L("Pa; "Pa.n), where the Greek indices IX = 1,2,3 and 
Latin indices n = 0, 1,2, 3 are the space-time indices. 2 

The invariance under (2) and (3) will hold only if the 
coefficients in the intrinsic transformations are inde
pendent of the space-time coordinates. According to 
an analysis of the concept of a local field theory by 
Yang and MiIIs,3 one should demand that the theory 
remain invariant even with space-time dependent 
transformations S~ , and this requires a generalization 
of the derivatives of the field functions. This generalized 
derivative is called a covariant derivative, since no 
confusion with the familiar concept in Riemannian 
geometry and in general relativity can arise; in fact, 
the general affine connection is just a direct sum3 of 
the affinities of space-time, the intrinsic space, and, 
possibly, the spinor space. We introduce the concept 
of the covariant derivative via the geometrical con
cept of parallel transfer.4 We call 1fa(x + dx) parallel 
to "Pa(x) if 

1fa(x + dx) = "Pix) + r;n"P;.(x), (7) 

where 1fa(x + dx) is an intrinsic vector at x + dx. 
If scalars are to remain invariant under parallel trans
fer, i.e., 

we must have 

1fa(x + dx) = "Pa(x) - r~n"PK(x). (9) 

There are obvious analogs to (7)-(9) for vectors with 
dotted indices. The covariant derivatives are defined by 

"Pain = ["Pa(x + dx) - 1fa(x + dx)]/dxn 

(10) 

with the further assumption that the product rule for 
differentiation holds here too, which enables us to 
define covariant derivatives of tensors of higher rank. 
For the space-time-dependent transformations (2) 
and (3), the affinities transform like 

r).' = (S-1»).s/r" + (S-1»)'S" (11) an \I ex Jln v (l,n 

and can, therefore, be transformed to zero at one 
point, but unitary transformations do not suffice 
for this purpose. The affinities can be transforthed 
away everywhere if the integrability conditions for 
S;.n in (11) are satisfied, i.e., if the intrinsic curvature 
tensor 

Remn = - rem,n + ren,m + r~mr:n - r~nr:m (12) 

vanishes. The tensor character of (12) follows from 

"Palmn - "Palnm = R~mn"PfJ' (13) 

The last equation holds only in flat space-time, since 
a covariant derivative with respect to a space-time 
index occurs. We do not record the additional terms 
needed for a curved space-time, since the complete 
expression would require a specification of the be
havior of "Pa under general transformations of space
time. 

It can easily be shown that the intrinsic metric tensor 
PIx{J can always be transformed to the standard form 
everywhere, if we remain within the framework of 
classical field theory. This can be shown by Taylor 
expansions of PIx{J and a nonunitary S~ around an 
arbitrary point of space-time or, alternatively, by a 
diagonalization of PIx{J with the help of a unitary S~ 
and a subsequent reduction of the space-time de
pendent diagonal elements to unity by appropriate 
scale transformations. We mention the second alter
native for later reference, and now assume that the 
metric tensor is equal to the unit matrix everywhere. 
It follows that the covariant derivative of the metric 
tensor is proportional to the Hermitian part of the 
affinity, distinguished by a bar under the indices 

PlxfJln = -Plxllr;n - P_fJr;n = -2r ~n' (14) 

Thus, the latter must be an intrinsic tensor under 
unitary transformations. This can be verified directly 
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from (11), using the invariance and coordinate inde
pendence of PII.{3 and the expression 

( S-I)(J = P .p(JvSI< 
C( I%/J v) (15) 

which is valid for unitary transformations. Another 
fundamental intrinsic tensor or, rather, tensor density 
is needed later. The alternating symbol €~(Jy with 
vanishing covariant derivatives is numerically in
variant and we may assume that its values are 0 or 
± 1. Covariant derivatives of densities are defined as 
usual. 

We return now to the question of transforming PII./! 

to standard form. With the help of unitary trans
formations, we can only diagonalize PII./! with space
time-dependent diagonal elements. To complete the 
reduction, we can use nonunitary scale transforma
tions, or we can make a suitable space-time coordinate 
transformation, using general covariance of the theory. 
In the second case, we remain within the group of 
unitary transformations, but, in either case, the 
Hermitian part of the affinities will be modified. We 
conclude with a comment on general covariance. It is 
generally agreed5 that this principle does not have the 
character of a fundamental law of nature, since al
most any theory can be expressed in a generally co
variant form and whether or not the generality is 
preferred is only a matter of convenience or practical 
necessity. But the analysis by Yang and Mills6 presents 
an important argument in favor of general covariance, 
since the assumption of a special frame of reference 
for all space-time points is difficult to reconcile with the 
local character of a theory. 

II. PARALLEL TRANSLATION AND 
CONSERVATION LA WS7 

According to (8), any intrinsic scalar is left in
variant if all its parts are parallel- translated an 
infinitesimal distance dxn. This invariance holds for an 
arbitary set of affinities. If the intrinsic symmetry 
group expresses a fundamental symmetry of physics, 
any proposed Lagrangian must be an intrinsic scalar 
and thus must satisfy 

[(x n + dxn ) - L(xn) = O. (16) 

We show that this invariance gives rise to the same 
conservation laws as would be obtained in the usual 
way by an application of Noether's law. Since parallel 
transfer has only been defined for tensors and not for 
their ordinary derivatives, it is imperative that the 
Lagrangian be expressed in a manifestly covariant 
form. In particular, the anti-Hermitian part of the 
affinities and their derivatives may appear in the 
Lagrangian only in the form of the covariant deriv-

atives and in the curvature tensor. However, it will be 
convenient to consider the whole affinities, rather than 
their Hermitian and anti-Hermitian parts, as the 
fundamental elements of the theory and to replace 
the Hermitian part, wherever it occurs separately, by 
the covariant derivative of the metric tensor. Writing 
then8 

f. = L( 1p~; 1p~1 n; pll.(J; P/~; Rpmn), (17) 

the procedure is to express the invariance of f. in the 
form 

bf. = cPr~ dxn + c~ri dxn 
~ (In II. ~n (18) 

and to conclude on the basis of the arbitrariness of 
the affinities and of the displacements dxn that 

c~ = 0, c~ = 0, (19) 

since the affinities in (18) are not related to those 
which are contained in the covariant derivatives and 
in the curvature tensor in (17). We get now 

~ +~ _ of. icp_~ K(J 
::l 1p~ ::l 1p~lm ::l Krz P ::l Ka Plm 
u1p(J u1pPlm up uPlm 

+~R" -~RP =0 (20). 
oR" .mn oR'" Amn , 

pmn Amn 

but we observe that of./01pp stands here for the partial 
derivative with 1pPlm kept constant. The derivative 
or:..(01pp with 1pp.m kept fixed is given by 

~-~rp 
01pp o 1p/l I n /lU' 

(21) 

Adding and subtracting (of.j01pPln).n, we obtain, for 
the derivative of.j01pp in (20), 

~+(~) 
b1pp 01pPln In' 

(22) 

This shows, incidently, that the Euler-Lagrange deriv
ative is a covariant expression. We perform the same 
transformation for the derivative with respect to pi<P 

and get, instead of (20), 

+ (~1p~ - 0:. PKP) = O. 
G1pPlm GPlm 1m 

(23) 

The term containing the curvature tensor can be 
transformed, by substitution of (12), 

~R" -~R(J =2(~) (24) aRK «mn ::a Cl Amn G '" . 
pmn uRAmn Rpmn Imn 

If the Euler-Lagrange derivatives with respect to 
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1pP and pKP vanish, we obtain a covariant conservation true conservation law follows from (26), (28), and 
law (30): 

with 

Jp m - 0 
" 1m - , (25) 

JPm= ~ 1p _ o~ /P + 2(~) . (26) 
a 01pPlm" opi~ oRpnm In 

The current vector, which is an intrinsic tensor of the 
second rank, will not be real; but if the Lagrangian is 
real, the complex conjugate of (26) is also conserved 
and we can construct a real current vector, as well as a 
purely imaginary one. Before discussing this point 
further, we derive another identity and a second form 
of the conservation law. We have already mentioned 
that, in a manifestly covariant theory, the affinities 
can appear in the Lagrangian only implicitly in the 
form of the covariant derivatives of tensors and in the 
curvature tensor. If equations of no higher order than 
the second are desired, the derivatives of the affinities 
appear only in the curvature tensor. Thus, 

oe 
--= 

(27) 

and 

~=-2~. 
orpm,n aRpmn 

(28) 

The Euler-Lagrange derivatives with respect to the 
affine connections are 

be --= -JP . or" am pm 

(29) 

We find from (28) that 

ae --=--- (30) 

and we derive from (23), (24), and (29) an identity 
between the various Euler-Lagrange derivatives, 

~ 1p _ b~ p"P _ (~) = 0 (31) 
b1pp" bp"'1. brpm 1m ' 

which is a consequence of the general covariance of the 
theory. Of course, (31) does not go beyond (25); since 
it is customary to consider the affinities as field vari
ables [thUS setting (29) equal to zero], the conservation 
law (25) is not very meaningful and (31) says only that 
the metric must also be a field variable, i.e., its 
Euler-Lagrange derivative must vanish. 

Omitting now the Euler-Lagrange derivatives, a 

J'p m = 0 ex ,m , (32) 

/ m = 2(~) = (~) (33) 
" oRpmn ,n arpn,m ,n' 

where the currents are defined by 

/" m = ~ 1p" _ a~ /P 
01pPlm oPI~ 

+ 2 (~pt -~ r p ) (34) aRfJ. an aRIZ vn' 
pmn vmn 

Real and purely imaginary combinations can be 
formed as mentioned earlier. The expression (34) is not 
covariant in the intrinsic space, i.e., not gauge in
variant, and this is true for the real as well as the 
imaginary combination. However, the integral of jto 
over a spacelike hypersurface is .gauge invariant, as 
the first expression (33) shows. 9 This is quite sufficient 
for the interpretation of the generalized charges, but 
it is interesting to observe that (34) is modified under 
a general transformation (2) by the addition of a 
term 

oe [(S-l)PSfJ.] 
ORfJ. v ",n' vmn 

(35) 

and that this term does not occur if ae/oRernn is 
proportional to b;, which can be true only for the real 
part of the said derivative. Tentatively assuming then 
that 

~ +~""'bv (36) 
oRemn aR/ mn /l' 

the Hermitian part of the current vector will be gauge 
invariant under unitary transformations, i.e., it will be 
an intrinsiC tensor. The anti-Hermitian part of the 
current vector will have the same transformation 
property as in the theory of Yang and Mills. Equation 
(36) is, of course, not necessary for the interpretation 
of the conservation laws. 

III. THE AFFINE COMPLEX 

The geometrical concepts used for the intnnslc 
space are familiar from the application of differential 
geometry to space-time, as used in general relativity. 
We will discuss here briefly the extension of the geom
etry of the intrinsic space, when space-time is curved 
and the space-time affinities are needed. In particular, 
we show that the derivation of the conservation laws 
given in the previous section can be extended to give 
conservation of energy and momentum. Such a deri
vation should be contrasted with the usual appeal to 
the invariance of the Lagrangian under certain sym
metry operations, one of which invariably is space and 
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time translations and rotations in the general sense in 
space-time, whereas any other symmetry operations 
are coincidental. In the following derivation, conserva
tion laws follow from invariance under parallel trans
lation in space-time and the multitude of conserved 
quantities has its origin in the fact that the affine 
complex is a direct sum of mutually independent 
affinities, operating in different spaces, like space
time on the one hand and the unitary intrinsic space 
on the other hand. 

The Lagrangian (17) is now assumed to be a space
time scalar density, rather than a scalar, and we will 
assume that e now also depends on the metric gm" and 
the space-time curvature tensor through the con
tracted form. We omit a dependence on gmnl p , since 
these covariant derivatives vanish in Riemannian 
geometry. However, the ordinary derivatives of gmt! 
enter in the space-time affinities, which cannot be 
considered as independent variables, since parallel 
translation cannot be defined for them. Therefore, we 
begin our considerations by assuming independence 
of the space-time affinities and the metric, as in the 
affine theories and in the approach by Palatini.1o The 
link with the metric theory will be established later. 

Because e is a scalar density, parallel translations 
lead to 

[(x + dx) - L(x) = r~me dxm (37) 

instead of (16). We now assume again that (37) holds 
for parallel translations with completely arbitrary 
affine connections and conclude that 

_ ~ riS _ oe sn + ~ R + ~ R a ms g a sm g oR ms oR sm g g ns sn 

oe oe &.p 2 oe W +-::l- "Palm + ::l &.p Plm + ::lRa pms 
U"Paln UPln U pns 

- Cd::' = O. (38) 

Besides (38), there is still another identity associated 
with the invariance under parallel translation. Clearly, 
e cannot depend explicitly on the coordinates x". This 
can be derived formally from (37) by assuming such a 
dependence and conclude from the fact that dxn is also 
completely arbitrary that, in fact, 

(~) =0. axm 
pxpliC'it 

(39) 

We rewrite all ordinary derivatives in terms of co
variant derivatives. Here we need (13) and 

&.p _ &.p - _ R &. r/'fJ _ RfJ "v 
Plmn Plnm - timnt' vmnP (40) 

and the Bianchi identity for the intrinsic curvature 
tensor, which is obtained just as in Riemannian 

geometry by covariant differentiations of (I 3): 

(41) 

With the covariant energy-momentum tensor 

T~, = 

(42) 

we can write the identity (39) as 

r fJ 
( 

d[ d[ .a) 
- -11l __ p/.l =0 

am fj T P fj tiP , 
"Pa P 

(43) 

where use has been made of (38). On physical grounds, 
it is obvious that we have to demand that the Euler
Lagrange derivatives with respect to the intrinsic 
affinities vanish. Since the latter are not uniquely 
determined by the intrinsic metric, they would be 
arbitrary and the physical system under consideration 
would not be closed. The field equations for the 
space-time geometry are more difficult because of the 
dependence of the affinities on the metric. We need 
the total Euler-Lagrange derivative with respect to 
gmn. A somewhat lengthy calculation givesll 

ae oe ae (ae) (ae) 
~ mn := ::l mn + ::l nm + gmK ~rn + gnK ~rm 
ug ug ug U KI II U KI II 

This is, in essence, the fundamental equation of 
Palatini. If the Lagrangian depends only on scalar 
fields, apart from the space-time metric, one finds 
that 

and this would vanish for the usual Lagrangian of 
general relativity. More generally, the last three terms 
in (44) cannot contribute, as can be seen by recalling 
the derivation of (44) from an action principle. 
Multiplying (44) with ag rnn

, whose covariant deriva
tives vanish, and integrating over a space-time domain, 
assuming that agmn vanish at the boundary, each of 
these terms becomes a divergence of a contravariant 
vector density. Using Gauss' law, they are seen to 
cancel. The identity (38) can now be written with (42) 



                                                                                                                                    

1644 J. L. ALDERMAN AND O. BERGMANN 

and (44) as 

_~_ T - ac R. g 
Jgmn nm aR

i
,,'" mn 

at: + a- (R mqglln + Rnqgpm) = 0, (46) 
Rpq 

which is equivalent to Einstein's equation if the appro
priate Lagrangian is inserted. It should be noted that 
many of the equations in this section are not correct if 
the Lagrangian contains space-time spinor or tensor 
fields. It should also be pointed out that the relation 

~ = - ~ Jq + ~Jn (47) 
ar::'n,q oRmn p aRmq p 

can be used to derive an ordinary divergence con
servation law of energy and momentum. 

We conclude this section with a few general remarks. 
Looking at the formalism from the point of view of 
unitary symmetry, the essential extension consists in 
the addition of a Hermitian tensor and a space-time 
vector to the affine connection. If such a field exists, it 
could carry a mass field without destroying gauge 
invariance. The mass terms in the Lagrangian would 
have the form 

1M2 II.fJ pv mn (48) 
!" PlnPlmg PII.VPfJfJ.' 

which reduces in a standard reference frame in the 
intrinsic space to a mass term for the Hermitian part 
of the affinities f pn . The characteristic feature of such 
fields is their coupling with other intrinsic tensor 
fields, viz., bilinear in the fields and additive to the 
ordinary derivative of the tensor field. It is suggestive 
to call this coupling the general form of a minimal 
coupling. Finally, we would like to say that the 
assumption of a direct sum of the affinities may be 
too narrow and other assumptions, like an affine 

complex which is not separable in space-time spin 
and intrinsic spin, should not be disregarded with our 
present knowledge of elementary particles. We hope 
to return to this possibility in a forthcoming paper. 
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The Lorentz-invariant perturbation theory of classical nonlinear field theories, notably the fast-motion 
approximation for a system of gravitationally interacting particles, is used to illustrate the appearance 
of generalized Green's functions (GGF's) in physics. The (retarded) GGF's are defined as the convolu
tion of the usual (retarded) Green's function with certain other linear functionals. A manifestly 
Lorentz-invariant technique for the evaluation of the convolution integral is described and applied to two 
important classes of GGF's. Time-symmetric GGF's are also discussed briefly. The technique exhibited 
provides the tools for the calculation of the higher-order approximations in a Lorentz-invariant 
perturbational approach to the classical n-body problem. 

1. INTRODUCTION 

In order to introduce the concept of a generalized 
Green's function, by way of exampie we start with the 
wave equation in flat space-time! R4 , 

D4>(x) = f(x). (l.l) 

The retarded solution of Eq. (l.l) is obtained as the 
convolution of the source termf(x) with the retarded 
Green's function DR(X): 

4>(x) = DR(X) * f(x) = -.l Jd4Y DR(X - y)f(y). 
41T 

(1.2) 

f(x) is usually taken to be a locally summable func
tion. However, in many applications one allows f(x) 
to be a generalized function itself.2 For example, if 
f(x) is to describe a line source generated by a moving 
particle with world line aIL = a/s), 

f(x) = L+",,"" dsw(s)b4(x - a(s», 

then Eq. (1.2) is rewritten to give 

(+"" 
4>(x) = 1"" dsw(s)DR(x) * b4(x - a(s». 

(1.3) 

(1.4) 

By virtue of the properties of the Dirac 15, DR(X) * 
b4(x - a) = DR(X - a), Eq. (1.4) reduces to the 
familiar retarded solution of Eqs. (1.1) and (1.3) 
(Lienard-Wiechert potential). 

There are physical situations where the generalized 
function ofEq. (1.3) does not have pointlike support.3 

For example, b4(x - a) might be replaced by 
DR(X - a) itself. By using the relation' 

over into 
(+00 (BR 

4>(x) = t 1-00 dsw(s)(;)(x - a(s» = t )-00 dsw(s). (1.6) 

Indeed, nontrivial examples are provided by a 
Lorentz-invariant perturbation approach to the 
description of the motion of interacting particles in 
classical nonlinear field theories. Schieve5 has discussed 
a method of successive approximation for the solution 
of the field equations for the coupled electromagnetic 
and charge-symmetric scalar meson fields in which 
the GGF's appear implicitly.6 Similarly, Einstein's 
equations of gravitation are reduced to wave equations 
by a Lorentz-invariant perturbation theory, with only 
the source term f(x) changing in successive orders 
of approximation.7 In the linear approximation,J(x) 
takes the form (1.3). In second approximation, 
however, in addition to such terms the inhomogeneity 
of the wave equation contains expressions of the 
structure 

5: (+00 dskw(Sk) (+00 dsjw(sj)O (~,~) 
/0 )-00 )-00 oak oa j 

x DR(X - a(sk»DR(x - a(sj»' (1.7) 

where O(%a~, %af) stands for a linear differential 
operator and the sum runs over the various particles 
generating the gravitational field. As a formal solution 
of the wav~ equation with source (1.7), one obtains 

DR(X) * DR(X _ a) = iB(x _ a), (1.5) With the convolution DR (x) * DR(X - a)· DR(X - b), 
one of the objects appears to which the name 

which will be derived in Sec. 4, Eq. (1.4) then goes generalized Green'sfunction (GGF) is assigned. 7 

1645 



                                                                                                                                    

1646 HUBERT GOENNER 

In Sec. 2 a definition of such GGF's is given as 
well as a description of their mathematical nature. 
Section 3 develops a Lorentz-invariant technique for 
evaluation of the convolution integral of the GGF's 
which, in Sec. 4, is applied to two special classes of 
GGF's. In a final Sec. 5, time-symmetric GGF's are 
discussed briefly. 

2. THE GENERALIZED GREEN'S FUNCTION 

A. Definition 

With retarded GGF GR(x), we define the convolu
tion of the retarded Green's function with another 
generalized function F(x) E !y: 

(2.1) 

As indicated, F(x) will be selected from a special set 
jJ of generalized functions,the construction of which 
(by the help of Dirac's 15 and the retarded Green's 
function) will be described below. (Fx) has to be 
well behaved so that the rhs of Eq. (2.1) exists 
(Sec. 28). 

The definitions of the advanced and symmetric 
GGF's GA(x) and G8(x) are obtained from Eq. (2.1) 
by replacing DR(X) by DA(X) and D8(X), respectively.s 
In general, the GGF's are no longer elementary 
solutions of the wave equation, but satisfy 

oGH(x) = F(x), F(x) E ty (2.2) 

B. Construction of the set \'5' 

First we consider the infinite-dimensional vector 
space 5U over the ring 9\ of COO-functions, with 
bounded support in R4 , whose basis elements are the 
functionals 

n 

do = r54(x), d~(x, aI' ... ,an) = II DR(x - aiSk»' 
k~l 

n=1,2,3,"', (2.3) 

with Xa - aka' k = 1,2,'" ,n, in R4 • The general 
element of 5U is 

BN(x,fu ... ,fN) 
N 

= "if;Cx, aI, ... , aj)df(x, aI' ... ,a;) 
j~O 

withf; E 9\. The elements d~ of (2.3) have a two-sided 
nature, as well as the test functions cp(x, Sl' ... , sn) 
by which the corresponding linear functionals are 
defined. 

(1) For fixed x E R4 , d~ is a generalized function on 
the space :n!(Sl, •.. , sn) of all COO -test functions 

cp(x, Sl' ... , sn) with bounded support in the 
product space Rn = R x R x ... x R (n factors, 
R is the real line). d~ itself has pointIike support 
in Rn. 

(2) For fixed variables Sl"", Sn (or fixed aka' k = 
I, ... , n), d~ is a Lorentz-invariant generalized 
function in R4 , its support being the intersection 
of n half light cones. It is defined on the space ~(x) 
of all Coo -test functions with compact support in 
R4 

In general, then, the linear functional d~ is defined 
on the product space :1)n = :1): x ~. The multiplica
tion with a Coo-functionf(x, Sl' ... ,sn) on R4 X Rn 
is well defined. The same holds for the direct product 
(with respect to the variables Sk) d~(x, aI' ... ,an) X 

d!(x, bl , ... , bm) on 

:1)n.m = (:1): x :1)!) x ~ = :1):+m x fl. 

Next, one introduces the convolution product in 
space-time R4 as a multiplication for the elements BN 
of 5U: BN(x,h,'" ,fy) * BM(x, gl' ... , gM)' One 
notes that Bo(x,fo = 1) serves as (left and right) unit 
element with regard to this multiplication. In order 
that the convolution 

is defined on R4, the supports of d~ and d! have to 
satisfy one of the following sufficient requirements9 : 

(a) Either d~ or d! has bounded support, (b) the 
supports of both are on the same half df the null cone 
through x. The second condition is satisfied by defini
tion of the d~. 

Obviously, the introduction of the convolution 
product for the elements of 5U does not construct an 
algebra over 5U. In general, 

BN(x,h,'" ,/.y) * BM(x,gl"" ,gM) 

~ BL(x, bI , ... , bL)· 

For generalized functions built up from elements 

d~ = DS(x - aijk»' 
k~l 

where DS(x) is the symmetric Green's function (Sec. 5), 
the condition (b) fails to hold. Moreover, the support 
of d~, being the intersection of n full light cones, 
might be unbounded. The situation is illuminated by 
the following criteria: d~(x, aI' a2) has bounded 
support if ala - a2a is timelike; d~(x, aI' a2 , a3) has 
bounded support if the 2-flat spanned by ala - a2a 
and ala - a3a is timelike or null; d~, n ~ 4, has 
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bounded support if none of the Grammian determinants 

(ap - ai )2 (ap - ai' ap - aj ) (ap - au ap - ak) 

Cap - aj , ap - ak) 

(a p - ak)2 

/:1(p, ijk) = (ap - ai' ap - aJ (ap - aj )2 (2.4) 

(ap - ai' ap - ak ) Cap - aj , ap - ak ) 

has rank < 3 (apa , aia , aja , aka are any four different 
vectors out of the set ala' ... , ana). The convolution 
d~ * d! may not be defined if the listed conditions are 
not met. 

C. Two Special Classes of GGF's 

The first of the special classes of GGF's contains 
the so-called generating GGF's of order n, gn(x, 

aI' ... , an) of Bertotti and Plebanski.7 They may 
be obtained by the following recursive construction: 

gl(X, a l ) = dr(x, a l ) = DR(X - a l ), for n = 1, 

gnix, aI' ... , at.) = DR(x) * [gjpJx, aI' ... , aj) 

X gn-jq;(X, a j+1' ... , an)], 

for n ~ 2, (2.5) 
with 

j = 1,2, ... , I n , 

for n even, 

= ten - I), for n odd, 

Pj = I, 2, ... , mj ; qj = I, 2, ... , mn- j , 

K = 1,2, ... , m
n

, 

and 
J n-q{n) 

mn = ~ mjmn_ j - tq(n)JmJn(JmJn - 1), 
j~l 

where 
q(n) = I, for n even, 

= 0, for n odd. 

mj is the number of generating GGF's of order j 
(mi = 1). The generating GGF of order j contains 
j - 1 convolutions. Since mj = 1 for j ::;; 3, we put 
gjl = gj for j ::;; 3. 

The second class of GGF's is defined by taking one 
of the basis vectors of IE as F(x) of Eq. (2.1): 

DR(x, aI"", an If) 
= DR(x) * d~(x, a l , •.. , an) 

X f(x, aI' ... , am, Cl , .. ". , Ce) 

= J.. Jd4Y DR(X - y) 
47T 

n 

X II DR(y - ak)f(y, a l , ..• , am, Cl , ... , Ce), 
k~l 

(2.6) 

with f of class Coo. We know that f could carry tensor 
indices. However, we prefer to work with Lorentz 

scalars; these must be constructed from (x - ai' 
x - aj ), i =;6 j, (x - aj' Cp ), (Cp, Cq ), Ix - aj l2 , with 
i,j = 1,2, ... , m and p, q = 1,2, ... ,e. The Cil" 

... , Cel' are constant vectors [for example, daa(s)jds] 
which do not depend on the variable of integration in 
Eq. (2.6). 

Both types of generalized functions (2.5) and (2.6) 
will appear in the solutions of nonlinear classical 
field equations in the various orders of the Lorentz
invariant perturbation theory mentioned in Sec. I. 
The field of the interacting particles is expressed as a 
functional of the motion of the particles. This func
tional formally is written as -an integral over the 
particles' world lines, the kernel of which is given by 
GGF's. Consequently, one would like to evaluate the 
convolution product [Eqs. (2.1), (2.5), and (2.6)] by 
actually carrying out the integration over R4 . It is of 
special interest to know whether the appearing GGF's 
are regular or Singular generalized functions on the 
space n~ of test functions r/J(x, Sl, ... , sn). In the 
latter case, expressions like Eq. (l.8) will have only 
symbolic meaning. One cannot use them to calculate, 
for example, the equations of motion of the system 
of particles without first providing for a suitable 
regularization.lo Examples of both kinds will appear 
among the two classes of GGF's treated in Sec. 4. 

3. MANIFESTLY LORENTZ-INVARIANT 
EVALUATION OF GGF's 

Bertotti and Plebanski7 have devised a graphical 
method in order to easily write down the GGF's 
appearing in Eq. (2.5). By carrying out the integration 
in a special coordinate system and subsequently 
recasting the result into Lorentz-covariant form, they 
evaluate DR(x, a l ,'" , an 11) for n = 2,3. This 
approach seems to be practical only in the evaluation 
of GGF's of low orders. 

A. Tetrad Technique 

In order to evaluate the GGF by manifestly Lorentz
covariant operations, we span flat space-time by an 
in general not orthogonal tetrad n~(1) : 

Yo: - Xo: = Kn~l) + J.n~2) + fln~3) + vn~4). (3.1) 

The integration variables introduced instead of yare 
K, J., fl, and v and the element of 4-volume equals 

d4y = [-G]! dK dJ. dfl dv, (3.2) 
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with G being the Grammian determinant of the tetrad 

G = det (n~~)n(P)"). 

In the following, the tetrad legs are picked from 
among the vectors Rk~ = x~ - a~ and Cka occurring 
in Eqs. (2.5) and (2.6). Depending on how many 
linearly independent timelike vectors are available, 
we shall work with tetrads of 3, 2, or I timelike legs. 
Discussing these cases separately we start with the 
following. 

1. (3, 1) Tetrad 

n (A) - R n(4) - E A-I 2 3 
Q: - Act' a: - IX' -", 

n~)E~ = 0, E2 = -1. (3.3) 

RA~ are any three linearly independent timelike vectors 
from among the RklX , k = 1, 2, ... , n. E~ is spacelike 
and normed and need not be specified any further.l1 

Upon introduction of new integration variables u 
and VA by 

u = Ix - y12, VA = Iy - aA12, (3.4) 

one obtains from Eq. (3.2) 

d4y = U -Griy-l(u, VA) du dVI dV2 dv3 , (3.5) 

withl2 

y2 = !(XA + r A)HA1(XB + rB) - u. (3.6) 

Here the 3-vectors 

(

VI - U) (Ri) 
XA = V2 - U , r A = - R: 

V3 - U R3 

(3.7a) 

and the 3 X 3 matrix 

HAB = «RARB,,», H = det HAB = -G, (3.7b) 

have been introduced. We note that 

r AHA1rB = tH-In, (3.8) 

where Q agrees with the quantity defined in the foot
note on p. 197 of Ref. 7 and is displayed in Appendix 
A. 

The quantities appearing in the weight function f 
of Eq. (2.6) have to be expressed as functions of the 
variables u and VA: 

(y - ai' Y - a,) 

= u + (RiR,) + i(XA + r A)HA1(g~) + giP) 

- y(u, VA)[(g~)HA1g~) - R~)i 

+ (g(;)H-I g(;) R2)i] AABB-" 
with 

(3.9) 

Equation (3.9) is valid for 1 ~ i, j ~ m. It is advan
tageous to use the relations 

HA1g~) = 151), if 1 ~ i ~ 3, 
and 

(;)H-I (;) (R R )s,c 'f 1 / .. < 3 (3.10) gA ABgB = C i u" 1 .::, l,j _ . 

In the case of 1 ~ i, j ~ 3, Eq. (3.9), for example, 
reduces to 

(y - aA'}' - aB) = i(vA + VB) - !R~B' (3.9') 

where 

RAB~ = RA~ - RB~ = aB~ - aA~' 

Finally, we list 

(y - ai' C,) = (RiC,) + !(XA + rA)HA1s~) 

with 
- y(u, vA)(s;f!HA1sjP - C~)i, (3.11) 

s<J.) = (~~:~:~). 
(RaC,) 

(3.7d) 

We cannot achieve greater generality since the most 
convenient choice of tetrad legs depends much on the 
special GGF to be evaluated. In addition, the trans
formation K, A, ft, y ~ u, V A might have to be replaced 
by a more suitable one. 

2. (2, 2) Tetrad 

n~j) = R,~, n~3) = E~ll, n~4) = E~2), i,j = 1,2, 

n~j)E(i)~ = 0, E~llE(2)~ = 0, E~i)EW" = -1. (3.12a) 

It is convenient to introduce plane polar coordinates 
p, 1> in the spaceIike 2-flat spanned by E~ll and E~2): 

ft = p sin 1>, v = p cos 1>, p ~ 0, ° ~ 1> < 27T. 

(3.13a) 

If no timelike R,~ are available, we take two linearly 
independent spacelike vectors Ria and choose the 
following legs: 

n~j) = Ri~' n~3) = E~l), n~4) = E~2), i, j = 1,2, 

n~ilE(;)" = 0, E~I)E(2)~ = 0, E~I)E(I)" = -1, 

(3.12b) 

The vectors E~l) and E~2) span a timelike 2-flat in which 
we are going to use pseudopolar coordinatesl3 

ft = p sinh cp, v = p cosh cp, 
p~O, -oo<CP<+oo. (3.13b) 

Next, for both cases, the integration variables u and 
(3.7c) VA of Eq. (3.4) are introduced, but only for A = 1,2: 

K, A, ft, y ~ K, A, p, cp ~ U, Vl , V2 , cp. (3.14) 
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By use of Eqs. (3.12), (3.13), and (3.14) the four
volume element Eq. (3.2) becomes 

with 
d4y = i[Ea12]-! du dVl dV2 dcp, (3.15) 

E = +1, for tetrad Eq. (3.12b), 

= -1, for tetrad Eq. (3.12a), 

au = R~Ri - (RIR2)2. (3.16) 

An alternative to the (2, 2) tetrad (3.12) for which 
R and C1 have been selected as timelike legs is l~ ~ 

treated in Appendix B2. 
Corresponding formulas for the case of a (l, 3) 

tetrad may be worked out without difficulty. However, 
this case is not treated here since we will have no use 
for it in the applications of Sec. 4. 

B. Range of Integration 

In order comfortably to evaluate the GGF's (2.6), 
the defining integral is rewritten in terms of the time
symmetric Green's function ~(Ix - yI2). The sup
ports of the retarded Green's functions DR (x - y), 
DR(al - y),' ", DR (an - y) are called a!, a~l' 
.. " a~, respectively. Then, DR(X, al , .•. ,anI!) 
will be n~nvanishing only if the intersection 

ar = a~ n a,;; n ... n a:;. ;of cp (3.17) 

is not empty. 
A discussion of all possible locations for the points 

ak , k = 1, 2, ... , n, with respect to the field point x 
shows that Ol ;of cp only if (Fig. 1) 

(1) Rkl.( is not spacelike, k = 1, 2, ... ,n, and pointing 
into the future, 

(2) Rijl.( is not timelike (i #- j). 

Both conditions take care of the label "retarded" 
for the Green's function and may be expressed by the 
product of step functions15 

Using DR(X - y) = 20(x - y)~(lx - y12) and Eqs. 
(3.17) and (3.18), we may reformulate Eq. (2.6) as 

DR(x, a l , ... , anI!) 
n l~i.i~n 

= 2n+l IT O(Ri) IT 0[-R;j]D(x, al' ... , anl!), 
i=1 i~ i 

i¢ i (3.19) 
where 

D(x, aI' ... , a • .!!) 

= J.... r d4yt5(/x - yI2)f(y, a j , Ck ) IT t5(ly - a;12). 
41T JU(O[) i=1 

(3.20) 

U(a[) labels the range of integration: it is such a 
neighborhood of 121 that U(al ) n a; = {x}. This 
condition eliminates contributions from the future 
half of the lightcone. 

In general, -00 < U < 00, -00 <"VA < 00 for the 
new integration variables. However, these ranges have 
to be modified depending on the nature of 0 1 (com
pare Appendix C). 

4. APPLICATION OF TECHNIQUE OF 
INTEGRATION TO SPECIAL GGF's 

In applying tne manifestly Lorentz-invariant tech
nique of integration presented in Sec. 3, we keep in 
mind that the results to be expected depend on the 
assumption that neither the Grammian determinant 
of the tetrad nor the Jacobians of the coordinate 
transformations made [Eqs. (3.4) and (3.14)] vanish. 
This requirement imposes restrictions on the location 
of the field point16 x. We first deal with the GGF's of 
Eq. (2.6). 

(1) Case n = I: We shall choose two special classes 
of functions f 

(a) f = f(lx - bI 2). Applying formulas (3.12a), 
(3.I3a), and (3.15) for the (2, 2) tetrad and Eq. (3.19), 
one arrives at 

(4.1) 

with 

WI = (R2R21) - (-a12)!, W2 = (R2R21) + (-aI2)! 

[compare Eq. (C4)]. With f = lone obtains the 
result quoted in Eq. (1.5). 

(b) F = f{(x - a, d)]. Although this case could 
be treated as in Sec. 4A, it is convenient to introduce 
timelike tetrads RIa.' al.( in place of RIa' R2a. (Appendix 
B). Then 

DR(X) * DR(X - a)f(x - a, a)] 

= !O(R1)p-l (ka dkf(k), (4.2) 
Jkl 
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with kl = H(Rla) - p] and k2 = H(Rla) + p] where 
p = [(RI a)2 - a2R~]i-. Especially, if f[(x - a, a)] = 
(x - a, a)-!, one obtains 

DR(X) * DR(x - a)(x - a, or! 

(p, Il(~~) + p I I - 1 

= 2 (x - a p 221-2(1 _ l)-l(d2R~l-1 (4.3) 
~() ) _l!log (RIa) - p' -, 

X {[(RIa) + p]1-1 

- [(RIa) - p]I-1}, 1> 1. 

Fori;;::: I, Eq. (4.3) is valid only if R~ ~ O. TheGGF's 
DR(X) * DR(x - a)(x - a, a)-I are singular linear 
functionals. As a consequence, it is not possible to 
apply the wave operator to the rhs of Eq. (4.3) in 
order to verify Eq. (2.2). The resulting expression 
does not exist. The integrals (4.3) have been eyaluated 
for 1 = I and 1 = 3 by Stephani l7 by a different 
method. 

(2) In the case 0/ n = 2 we consider 

/ = f[(x - aI' a1), (x - a2, a2»). 
Again one applies the formulas (3.12a), (3.l3a), and 
(3.15) for the (2,2) tetrad and Eq. (3.19). However, 
now (y - aI' 01) and (y - a2 , a2) have also to be 
expressed by the integration variables u, VI' v2 , and f. 
The calculation leads to 

(y - aI' a1) = c + d cos f + e sin f, 
(y - a2 , O2) = a + b cos f, (4.4) 

with constants a, b, ... , e listed in Appendix E. There
fore, 

DR(X) * DR(X - a1)D
R(x - a2) 

X f[(x - aI' a1), (x - a2' 02)] 

= ()(R1)()(R2)()( -R~2)( - 012ri-

X - dff[c + d cos f + e sin f, a + b cos 4>]. t 12lT 
47T 0 

(3) In the case n ;;::: 3 we restrict the application of 
the technique of integration to / = 1. This is done 
only for reasons of avoiding lengthy general formulas; 
Eqs. (3.3), (3.5), (3.6), (3.9), and (3.19) lead to19 

n 

DR(X) * II DR(X - ak ) 

k=l 
1 n lSk.ISn 

=-2n
-

2Q-i II()(Rk ) II ()(-R~;) 
7T k=l k.; 

k*1 
n 

X IIo[R2 + r H-1 g(j) lQi(g(j)H-1 g{j) r2)i-] 1 AABB-2 A ABB-j' 
j=4 

(4.7) 

For n = 3 the result Y3(X, a, b, c) of Ref. 7 is regained 
(except for a factor of 2). 

(4) Next, we try to evaluate the generating Green's 
function of third order: 

gaCx, aI, a2, a3) 

= - yD x - y)D (y - a3)g2(y, aI' a2)' (4.8) 1 Jd4 H( R 
47T 

Applying (4.6), we use the fact that 012(X) of Eq. 
(3. 16) can be rewritten as 

-012 = (R1R12)2 - R~R~2' 

The vectors Ril~ do not depend on the integration 
variable y. Hence, Eq. (3.11) with Cj~ = R12~ can be 
used to derive 

-012 = (y - aI' Y - a2)2 - /y - a1/2 ./y - a2/ 2 

= t[Vl + V2 - R~2]2 - V1V2. (4.9) 

Furthermore, the step functions in Eq. (4.6) may be 
expressed by help of the timelike vector20 R3~ : 

()(y - a1)()(y - a2) 

= ()[(y - aI' R3)]' ()[(y - a2 , R3)]. (4.10) 

Finally, it turns out to be convenient to transform 
VI and V2 into two new integration variables x and y 
by 

VI = x( -013)1 + (R1R13) , 

V2 = y(-023)1 + (R2R23), ( 4.11) 
(4.5) 

in order to simplify the limits of integrations (compare 
The choice / = 1 leads to the generating GGF of Appendix C). The (3, 1) tetrad formulas, together 
order18 2: with Eqs. (4.9)-(4.11), then lead to 

g2(X, aI, a2) = DIt(x) * DR(X - a1)D
R(x - a2) 

= t()(R l )()(R2)()( -R~2)( -012r
t , 

012 ~ O. (4.6) 

In Appendix E [Eqs. (E3) and (E4)] the further special 
choices /= In (x - aI' a1),/= In (x - a2, a2),/= 
(x - aI' 01)-I(X - a2, a2)~m, I, m ;;::: 1 are discussed. 

ga(x, aI' a2, aa) 

= (87Tr1()(R3)()( -Ri2)()[(Rl R3) - tRi]8[(R2R3) - tRi] 

X 1:1dX 1:1dY(X2 + l + 2P2XY + po)-i 

X (q2x2 + q~l + 2ihxy + 2q1X + 2q{y + qo)-i, 
(4.12) 
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with 

P2 = -t12«(1l3(123)-l, Po = -Ri«(1l3(123rlH, 

q2 = (113' q~ = (123' ih = «(1l3(123)!, 

ql = -( - (113)! R12(r<2R~ - RD, 

q{ = (_(1Z3)l RIZu(2R~ - RD, 

qo = 4R;lRlRI3) - [R12uC2R~ - RD]2. 

As discussed further in Appendix D, the remaining 
integrations in Eq. (4.12) cannot be expressed by 
elementary functions but lead to an integral of a 
Jacobian elliptical function. However, in the case of 
R3a being a null vector, Eq. (4.12) shows that P2 = 
-l,po = 0, and 

f+l f+l 
~ -1 dx -1 dy(x - yr

1 

X (q2x2 + q~l + 2ihxy + 2qlX + 2q{y + qor!, 

so that at least one integration can be carried through 
explicitly. In general, already in the third step of the 
Lorentz-invariant perturbation expansion, one will 
have to deal with either an integral representation or 
a series expansion for the GGF's. 

5. TIME-SYMMETRIC GGF's 

From the construction of the GGF's (Sec. 2B), 
especially from the form of the elements (2.3), it is 
clear that the time-symmetric GGF is not just a 
linear combination of the retarded and advanced 
GGF's. This is most easily exemplified by the time-

symmetric GGF corresponding to Eq. (2.6): 

DS(x, aI' ... , an If) 
= Z7T f d4y fI DB(y - an)DS(x - y)f(yu, cu)' (5.1) 

With DS(x) = t[DR(x) + DA(X)], one may rewrite 
Eq. (5.1) to be 

DB(X, aI' ... , an If) 
= DR(x, aI' ... , an If) + DA(x, aI' ... , an If) 

where21 
+ Dmix(x, aI' ... , an I f), (5.2) 

Dmix(x, aI' ... , an If) 

= (47Tt l
]: f d4Y l.l3i( DR(x - y) II DR(y - a l ) 

X ",!il DA(y - am) )f(Yu, C,,). (5.3) 

Eq. (5.2) reflects the nonlinearity of the underlying 
field equations which has been used to construct the 
set ~ of Sec. 2B. 

As in the integral (2.6), we have to deal with the 
intersection of a number of half light cones in Dmix. 

However, the two conditions listed in Sec. 2B are no 
longer valid: one discovers that there may be a non
empty intersection of the half light cones even if some 
of the vectors Ria are space/ike. 

Also, as already mentioned in Sec. 2B, it is to be 
expected that the support of the integrand in Eq. (5.1) 
becomes unbounded if the variables aka are free to 
assume all possible space-time position~ with respect 
to the field point Xa' This may be illustrated by 
example of the GGF g2(X, aI' az) of Eq. (4.6). A 
detailed examination22 shows that Eq. (5.1) can be 
rewritten as 

DS(x, aI, a2, 11) = ([6(Rl)6(R2) + 6( -Rl)e( -R2)] + O( -R~) 

X [O(Rz)O(R2l) + O( -R2)O(R I2)) + O( -R~)[6(Rl)O(R12) + O( -R1)O(R2I )]} 

X D(x, al, a211) + 20( -R~)O( -R~)O( -Ri2)D(x, aI' a2 1l), (5.4) 

with D(x, aI' a211) from Eq. (3.20). The terms 
resulting from the first and second lines are 
finite. In this case, D is calculated by use of a (2,2) 
tetrad with timelike legs Rza , RIa; R2a , R21a ; RIa' 
R12a , respectively, and displayed in Eq. (4.6) (step 
functions disregarded). However, as already indicated 
by the step functions, D(x, aI' a211) in the last line 
ofEq. (5.4) has to be calculated by help ofEqs. (3.l2b), 
(3.13b), and (3.15). One arrives at an integral S:::: de/> 
instead of glT de/> for the previous cases, that is, one 
obtains an infinite contribution to Eq. (5.4). 

In order to avoid the difficulties encountered, one 
might propose a change in the definition (5.1) and 
(5.2) to 

Do~x, aI' ... , an \ f) = DR(x, aI' ... , an I f) 

+ DA(x, aI' ... , a n I f). (5.5) 

However, the use of such expressions in the Lorentz
invariant perturbation theory of Einstein's theory of 
gravitation (Sec. 1) amounts to a further truncation of 
the nonlinearity of Einstein's equations. On the other 
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hand, adoption of Eq. (5.5) frees one from the diffi- are 
culty that necessary conditions for the existence of 
symmetric GGF's defined by Eq. (5.1) are not known. 

(JAB = R~R1 - (RARB)2, 

tAB = (RARo)(RBRo) - (RARB)R~, 

6. CONCLUSIONS 

The weak-field (fast-motion) approximation for a 
system of gravitationally interacting point particles 
has been used to illustrate the appearance of general
ized Green's functions in physics. The character of the 
interaction of the particles in an n-body system, as it 
appears in various stages of approximation, may be 
read off from the GGF's. The objectives of the ensuing 
discussion have been threefold: 

(1) to describe the mathematical nature of GGF's; 
(2) to exhibit a manifestly Lorentz-invariant tech

nique for the evaluation of the convolution repre
sentation (2.1) of the GGF's; 

(3) to discuss time-symmetric GGF's. 

The technique exhibited provides the tools for the 
calculation of higher-order approximations in a 
Lorentz-invariant perturbational approach to the 
classical n-body problem. Actual calculations going 
beyond the second approximation (i.e., beyond the 
first approximative step taking into account the non
linearity of the theory) will have to cope with the 
rapidly increasing complexity of the GGF's. Further
more, the example (4.3) shows that the GGF's can be 
singular generalized functions (with singularity at the 
retarded point) so that integrals over the particle's 
world lines of the type of (1.8) may not exist. Con
sequently, in order to write down the field of the 
interacting particles (or equations of motion, etc.) 
one will first have to provide for a suitable regular
ization. This situation is found already in the second 
order of the fast-motion approximation for gravita
tionally interacting particles. 
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APPENDIX A: SUPPLEMENTARY FORMULAS 
FOR THE TETRAD TECHNIQUE 

(I) The explicit components of the matrix 

(AI) 

A, B, C cyclic permutations of 1, 2, 3. 

(2) By use of Eq. (3.1), one concludes from Eq. 
(3.4) that 

u = PAHABPB - '1'2, 

VA = PBHBOPo + 2HABPB + R~ - '1'2 (A2) 

and by subtraction 

XA = 2HABPB - rA , A = 1,2,3, (A3) 

with XA' rA , HAB defined by Eq. (3.7) and 

If (A3) is solved for PA and the result entered into the 
first equation (A2), then Eq. (3.6) follows. Explicitly, 

H(xA + rA)H"A1(XB + rB) 

= (J2a(Vl - U)2 + (Jla(V2 - U)2 + O'12(Va - U)2 

+ 2t12(Vl - U)(V2 - u) + 2t1a(Vl - u)(va - u) 

+ 2t2a(V2 - u)(va - u) 

- 2(R;0'2a + R~t12 + R;t1a)(Vl - u) 

- 2(R;t12 + R~O'la + R;t2a)(V2 - u) 

- 2(R;tla + R:t23 + R;(J12)(V3 - u) + tn, (A4) 

with 

tn = (Ri)2(J23 + 2R;R~t12 + 2RiR;t13 
+ (R~)2(J13 + 2R~Rit2a + (Ri)2(J12' (AS) 

In Eq. (4.7), '1'(0,0,0,0) has been used, whereas in 
Eq. (4.12), '1'(0, VI' V2, 0) has been used. 

(3) For the case of the (2, 2) tetrad, we list another 
useful formula which expreSses the coordinate p of 
Eq. (3.13) as function ofu, VA' A = 1,2: 

l(u, VA) 

= €U + H -€0'12rl[R~(V2 - U)2 + R~(VI - U)2 

- 2(RIR2)(Vl - U)(V2 - u) - 2R:(R1R12)(V1 - u) 

+ 2Ri(R2R 12)(V2 - u) + R~RiR~2]. (A6) 

[€ is defined after Eq. (3.15), Sec. 3A.] 

APPENDIX B: ALTERNATIVE (2,2) TETRAD 
FOR CALCULATION OF (4.2) 

In (3.12a) the leg n~2) = R21Z is replaced by 

(Bl) 

with all other relations of (3.12a) being unchanged. 
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The transformation (3.14) is changed to 

K, A, 1-', v -+ K, A, p, ~ -+ K, U, Vl'~. 

Therefore, Eq. (3.1S) has to be replaced by 

(B2) 

system of six nonlinear (quadratic) equations for the 
unknowns I, m, n, S, t, and u. In order to perform the 
integration with respect to x in Eq. (D2), one observes 
that 

d4y = -HR101)-lp1 dK du dVl d~, (B3) (1 + x + ji)-l = -x[(1 + ji)2 - x2t l 

with PI = [(RA)2 - o;R;]t. The range of the + (1 + ji)[(l + ji)2 - x
2t l 

variable K on u = VI = 0 is and obtains 

and 

(y - aI' 01) = l(R1ol )-I[Vl - U + Ri + 2pi(1 - K)]. 

(BS) 

APPENDIX C: RANGE OF INTEGRATION 

The range of integration - 00 < u < + 00, - 00 < 
VA < 00, A = 1, 2, 3, has to be modified according to 
the various possible intersections of half light cones. 

Case of (3, 1) Tetrad, Eq. (3.3) 

(1) On u = 0: 
-00 < VA < 00. (Cl) 

(2) On u = V3 = 0: 

(R1R13) - (-0'13)t::;; VI::;; (R1R13) + (-O'13)t, 

(R2R23) - (-0"23)t ::;; V2 ::;; (R2R23) + (-0'23)t, (C2) 

and similar formulas for exchange of variables. 
(3) On u = VI = V2 = 0: 

(-0"12)-1[Rit13 + R:t23 + R:O'12 - (-HRiR~Ri2)!] 
::;; V3 ::;; (-0'12r1[Rit I3 + R;t23 

+ R~0"12 + (-HR~R:R;2)t]. (C3) 

Case of (2, 2) Tetrad, Eq. (3.12) 

On u = V2 = 0: 

(R1R12) - (-0"12)t ::;; VI ::;; (R1R12) + (-O'12)t. (C4) 

Equation (C2) has been used for Eq. (4.12). 

APPENDIX D: FURTHER DISCUSSION OF 
g3(X, ai' a2, as) 

The substitution 

[ + mx + nji s + tx + uji 
x = 1 + x + ji , y = 1 + x + ji , (D1) 

with free parameters I, m, n, s, t, and u, may be used to 
transform the integral of Eq. (4.12) to 

J = r:t'dx r~'dji(1 + x + jirl 

J:tl Jill 
X [(exx2 + (3ji2 + y)(bx2 + eji2 + ~;)]-!, (D2) 

where 

with 
R = ex{3[x2 + l-'(y)][x2 + v(y)], 

I-'(y) = ex-1({3ji2 + y), 

v(y) = b-l (eji2 + n 

(D3) 

The x integration in the first term can be carried 
through explicitly. The second integral can be reduced 
to Jacobian elliptic functions. The transformations 
needed depend on the signs of I-' and v, respectively.23 
The coefficients ex, {3, ... , ~ have not been worked out. 
They are rather lengthy rational functions of the 
original P2' ... ,qo of Eq. (4. I 3). 

APPENDIX E: LISTING OF FURTHER 
SPECIAL GGF's 

In this Appendix we are going to further evaluate 
the GGF's of Eq. (4.S): 

DR(X) * DR(X - a1)DR(x - a2) 

X flex - aI' 01), (x - a 2 , O2)] 

= (J(R1)O(R2)O( -R;2)( -O'12)-t 

1 f2" X - dcpf[c + d cos cp + e sin cp, a + b cos cp], 
47T 0 

with 

a = t( -0"12)-I[RWRI2) + Ri2(lR2)], 

b = t( -0"12)-I[RiR:Ri2( -0"120: + [2)]*, 

c = t( -0"12)-1[ -Ri(kRI2) + Ri2(kR1)], 

(E1) 

( 
R2R2R2 )* 

d = +H -0"12)-1[ +0"12(0102) + (Ik)] 2 1 2 1\ ' 
I - 0'12a2 

e = -t( -0"12r1{(12 - 0:0"12)(k2 - 0;0"12) 

( 
R2R2R2 )t 

- [0"12(a1a2) + (lkW}i 12 ~ 2 12.2 ' (E2) 
0"12a2 

where the notations 

kl' = -R1u(R1201) + R12i Rl al)' 

where the constants ex, ... , ~ depend on P2' ... ,qo II' = R2u(RI2d2) - R12i R2d2) 
of Eq. (4.13). To achieve this, one has to solve a have been used. 



                                                                                                                                    

1654 HUBERT GOENNER 

For f= In (x - aI' al) or f= In (x - a2 , a2), the 
integral in Eq. (El) .reduces to the standard integral 

(2Ir {IC + d cos 1> + e sin 1>1 
Jo d1> In la + b cos 1>1 

The same holds forf= (x - aI' al)-I(x - az, a2)-m, 
I, m ~ 1, because 

r"d1>(C + d cos 1> + e sin 1>rl(a + b cos 1>rm 

dl+m- Z 
= (_1)l+m-2 ___ _ 

dClr-1 dam- 1 

x f" d1>(c + d cos 1> + e sin 1>rl(a + b cos 1»-1. 

It may suffice to list the following results explicitly: 

DR(X) * DR(X - al)DR(x - a2) In (x - a2 , d2) 

= T\-( -O'12r! In Ii( -0'12r1 

x [( -0'12)!Pa2 + R~(lRI2) + R;2(lR2)]I, (E3) 

DR(X) * DR(X - al)DR(x - a2)(x - a l , d1rn 

x (x - a2' d2rm 

P;;"\ n = 0, m = 1, 

-40'12P;;.3, n = 0, m = 2, 

20' 12( M p;;.1 + N P;;ll) 

= O(R
1
)6(R

2
)6(Ri2) x {M[ -Ri(kRl2) + Riz(kR1)] 

+ N[RWR12) + Ri2(lR2)] 

- (12 - diO'12)(k2 - diO'12) 

+ [0'12(dld2) + (lk)]Z}-l, 

n = 1, m = 1. 

(E4) 

By interchanging of alII and a2a.' nand m, respectively, 
we get further expressions (dla and dza. have to be inter
changed, too). In (E4) the following abbreviations 
have been used: 

Paz = ([R~(R12d2) + Ri2(R2d2)]2 - d:RiR~Riz}i, 
Pal = {[Ri(R2ldl ) + Ri2(R1d1W- diRiRiRi2}t, 

M = - [+a12(at a2) + (lk)J[R~(lR12) + R~2(IR2)] 
+ (12 - a;0'12)[-RiCkR12) + Ri2CkRI)], 

N = -[0'12(at d2) + (lk)J[ -Ri(kR12 ) + Ri2(kR1)] 

+ (k2 - diaI2)[Ri(lR1z) + Ri2(lR2)]. 

APPENDIX F: SUPPLEMENT TO THE 
DISCUSSION OF DS(x, a, b \ 1) 

The possible relative space-time .locations of the 
points x,,, a",(sa)' and bisb) are described by the 

following list of products of step functions: 

(1) O( R 1)6( Rz)O( R 12), 

(2) O( -Rl)O( -R2)O( -R12), 

(3) O(R1)O( -R2)O(R12J, 

(4) O(R1)6(R2)6( - Ri2)' 

(5) O( -RI)O( -Rz)O( -Riz), 

(6) 8(R2)8( -R12)8(-Ri), (Fl) 

(7) 0(-R2)6( R12)O( -' RD, 

(8) O(RI)O( -R~)O( -Rf2), 

(9) O( -RI)O( -R2)O( -Ri2)' 

(10) O(R12)()( - Ri)O( - R~), 

(11) O( -R~)O( -Ri)O( -R;2), 
" 

and seven expressions obtained by interchanging in
dices 1 and 2 in the above. The integral of DS(x, a, b 11) 
is-according to Eq. (5.l)-made up of eight different 
products of retarded and advanced Green's functions, 
the intersection O[ of the supports of which is empty 
except for just one out of the listed combinations in 
(FI). Writing the numbers (K) of (Fl) before the corre
sponding term, we obtain as the only non vanishing 
contributions 

(6) DR(x - y)DA(y - a)DR(y - b), 

(7) DA(X - y)DR(y - a)DA(y - b), 

(1) DR(x - y)DR(y - a)DR(y - b), 

(2) DA(X - y)DA(y - a)DA(y - b), 

(11) DA(X - y)DR(y - a)DR(y - b), 

(11) DR(x - y)DA(y - a)DA(y - b), 

as well as two further terms following by interchange of 
a" and b". This then leads to Eq. (5.4). 
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t Present address: Institut fUr Theoretische Physik, Bunsenstrasse 
9, 34 Giittingen, Germany. 

1 Notation used: Minkowski metric 1],,/1 with signature -2. x or y 
stand for all four coordinates in R4. Integrals are to be taken over 
all of R. if not indicated otherwise. Positions of particles are 
described by a, b, ... or byaka(s.), k = 1,2, ...• n. The proper time 

Sa of a particle with world line a" = a"Js.) is defined by ds! = 
1]ap daada fl . The radius vector pointing from the particle's location 
to the field point is R k" = x~ - aka' We further use Rill< = R." -
R;fT.' A dot means differentiation with regard to proper time. 
o'(x) = nf_o O(Xi) is the 4-dimensional Dirac O. The Green's 
function satisfies 0 D(x) = 41T04(x) with the wave operator 0 = 
1]afl(o·,oxaoxP). Greek indices run from 0 to 3. For them (as well as 
for capital Latin indices running from 1 to 2 or 3) the summation 
convention is used. Small Latin indices usually refer to particle 
numbers. The inner product in space-time is abbreviated by 
(A - B. C), (AB), and A', respectively. 
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• In its simplest form, such a generalization goes back to P. A. M. 
Dirac. 

3 The support of a generalized function is the smallest closed set 
of points outside of which it vanishes. For concepts concerning 
linear functionals, consult L. Schwartz, Theorie des distributions 
(Hermann, Paris, 1957), I. M. Gel'fand and G. E. Shilov, Generalized 
Functions (Academic, New York, 1964), Vol. I, Chap. I, Sec. 1, 
and W. Guttinger, Fortschr. Physik 14, 483 (1966). 

4 Step function 

6(x - a) = I, for Xo - 00 > IXk - akl, 

= 0, for Xo - 00 < IXk - akl. 

oW. C. Schieve, thesis, Lehigh University, Bethlehem, Pa., 1959. 
• The generalized Green's functions dealt with in this investigation 

are defined with the help of Lorentz-invariant Riesz distributions. 
See M. Riesz, Acta Math. 81, I (1949). 

1 B. Bertotti and J. Plebanski, Ann. Phys. (N.Y.) 11, 169 (1960). 
8 Obviously, GGF's can be defined for other hyperbolic differ

ential equations as well. One just has to substitute for DR(x) the 
corresponding solution in Eq. (2.1). We deal here, however, only 
with the wave equation. 

S See W. Guttinger, Ref. 3, p. 505, and L. Hormander, Linear 
Partial Differential Equations (Springer, Berlin, 1964). 

10 Even if the GGF is a regular generalized function, the operation 
on it by differential operators [as in Eq. (1.8)] might generate a 
singular linear functional. 

11 In the following, capital Latin indices run always from I to 3. 
I. Consult Appendix A for Eq. (3.6) as well as Jor .the explicit 

components of H:t1. 
13 The coordinization (3.l3b) does cover only that part of the 

timelike 2·f1at which can be reached from the origin by timelike 
directions. The other points may be obtained by taking 

It = P cosh <P, jI = p sinh <P, p ~ 0, -00 < <P < 00. 

14 Compare Eq. (AI). 
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15 For scalar argument u, 

6(u) = I, if u>O, 

= 0, otherwise. 

,. For example, if the motion of three or more particles is co· 
planar, the field point x cannot be chosen to lie in this plane, etc. 

'7 H. Stephani, Acta Physica Polon. 26, 1045 (1964). 
18 It seems worthwhile to note that D(x) * D(x - a,) . D(x - a.) 

-with D(x) being the retarded, advanced, symmetric Green's 
function or the Feynman propagator-may be evaluated by help 
of the Fourier representation of D(x). Then 

1 J: eikaR ," 
D(x) * D(x - a,)D(x - a.) = - 1611" J (J d4k ~ 

J. eik' p.R.'" 
X j (J' d

4
k' k'2(k + k')' • 

The loops C, C' around the poles of (k2)-I, (k")-" and [(k + k')']-1 
have to be chosen properly (64 possibilities i). However, the calcula
tions are much longer and cannot be kept Lorentz invariant in each 
step. 

19 We define n;~! ( ); = I, if l' < I. 
20 In the coordinate system in which R3a = Raob~, one finds 

6(yo - 0 0) = 6[(yo - ao)RaoJ 
due to Rao > o. 

n The symbol \lJ; means: Form all combinations of j + 1 elements 
out of the given set x,, 0 1 ' ••• , an; use them as arguments in the 
retarded Green's functions, fill in the arguments of the advanced 
Green's functions with the proper remaining a;, and add up all such 
terms to give just one term I;;. (n~_l == 1.) 

.2 See Appendix F. 
23 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals 

(Springer, Berlin, 1954). 
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We present a systematic study of the processes by which the original Euclidean invariance of a quantum 
statistical theory can be broken to produce pure phases with a lower symmetry. OUf results provide a 
rigorous basis for Landau's argument on the nonexistence of critical point in the liquid-solid phase 
transition. A classification of the possible residual symmetries is obtained, and its connection with 
spectral and cluster properties is established. OUf tools are those of the algebraic approach to statistical 
mechanics; in particular, we make an extensive use of the KMS condition. None of our proofs involves 
the separability of the algebra of quasi local observables. 

INTRODUCTION 

The problem to which we address ourselves in this 
paper is that of giving, within the realm of statistical 
mechanics, a consistent interpretation of the following 
empirical fact: Whereas all fundamental interactions 
so far known are at least Euclidean invariant, matter 
does exist in crystalline equilibrium states which 

exhibit only a much lower symmetry. A proper 
understanding of this fact is a prerequisite to any 
theory of the liquid-solid phase transition. 

Therefore, we are faced with the problem of finding 
a mechanism whereby the original Euclidean sym
metry of the theory can be broken in such a manner 
that the residual symmetry is that of a crystalline 
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k' k'2(k + k')' • 

The loops C, C' around the poles of (k2)-I, (k")-" and [(k + k')']-1 
have to be chosen properly (64 possibilities i). However, the calcula
tions are much longer and cannot be kept Lorentz invariant in each 
step. 

19 We define n;~! ( ); = I, if l' < I. 
20 In the coordinate system in which R3a = Raob~, one finds 

6(yo - 0 0) = 6[(yo - ao)RaoJ 
due to Rao > o. 

n The symbol \lJ; means: Form all combinations of j + 1 elements 
out of the given set x,, 0 1 ' ••• , an; use them as arguments in the 
retarded Green's functions, fill in the arguments of the advanced 
Green's functions with the proper remaining a;, and add up all such 
terms to give just one term I;;. (n~_l == 1.) 

.2 See Appendix F. 
23 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals 

(Springer, Berlin, 1954). 
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We present a systematic study of the processes by which the original Euclidean invariance of a quantum 
statistical theory can be broken to produce pure phases with a lower symmetry. OUf results provide a 
rigorous basis for Landau's argument on the nonexistence of critical point in the liquid-solid phase 
transition. A classification of the possible residual symmetries is obtained, and its connection with 
spectral and cluster properties is established. OUf tools are those of the algebraic approach to statistical 
mechanics; in particular, we make an extensive use of the KMS condition. None of our proofs involves 
the separability of the algebra of quasi local observables. 

INTRODUCTION 

The problem to which we address ourselves in this 
paper is that of giving, within the realm of statistical 
mechanics, a consistent interpretation of the following 
empirical fact: Whereas all fundamental interactions 
so far known are at least Euclidean invariant, matter 
does exist in crystalline equilibrium states which 

exhibit only a much lower symmetry. A proper 
understanding of this fact is a prerequisite to any 
theory of the liquid-solid phase transition. 

Therefore, we are faced with the problem of finding 
a mechanism whereby the original Euclidean sym
metry of the theory can be broken in such a manner 
that the residual symmetry is that of a crystalline 
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group. We propose here such a mechanism and show 
that our interpretation provides a rigorous basis for 
Landau's argument according to which there is no 
critical point in the liquid-solid phase transition. 

We work in the thermodynamical limit of a quantum 
system originally enclosed in a finite box. From the 
knowledge available in the case of "finite statistical 
mechanics," we infer that the following situation 
prevails in the thermodynamical limit: (i) the time 
evolution commutes with all rigid transformations of 
the 3-dimensional real space; (ii) the usual (grand) 
canonical ensemble theory provides, via the traditional 
limiting procedure, a (grand) canonical equilibrium 
state for the infinite system; (iii) this (grand) canonical 
equilibrium state is invariant with respect to the time 
evolution and the entire Euclidean group of trans
formation of the 3-dimensional real space; and (iv) 
this state satisfies the Kubo-Martin-Schwinger con
dition. 

We refine the concept of pure phase and show that 
there exists, under very general conditions, a unique 
decomposition of the (grand) canonical equilibrium 
state in its pure phase components (Sec. 1). We 
study the residual symmetry inherited [rom Euclidean 
symmetry when this decomposition is performed 
(Secs. 2 and 3), and we analyze the related cluster 
properties in space (Sec. 4). The relevence of our 
results, for the understanding of the liquid-solid phase 
transition, is then underlined in Sec. 5. 

For general orientation purposes, we now briefly 
review the antecedents to our Secs. 2 and 3. More 
detailed references will be provided in the main text. 
Kastler and Robinson1 restrict their attention to the 
translation group IR 3 only, and distinguish between 
three classes of extremal IR 3 invariant states: EI , En, 
and Em. Their classification is based on the properties 
of the discrete part of the spectrum of the momentum 
associated with the state considered. They then notice 
that their En states present the particularity that they 
can be uniquely decomposed into states which are 
extremal invariant with respect to a discrete (evidently 
normal) subgroup of IR 3. An extension of their results 
was worked out by Robinson and Ruelle2 who, 
however, place themselves in a position where they can 
only analyze the cases where the residual symmetry 
is a normal subgroup of the Euclidean group, a 
situation which is unacceptable from the crystallog
rapher's point of view. Moreover, the physicist might 
object to the fact that the preceding investigations are 
purely kinematical and, therefore, ignore the dynami
cal aspect of the theory. The "central decomposition" 
carried out later by Kastler, Haag, and MicheP was 
at the origin of the considerations of our Sec. I, where 

we replace the rather dubious thermodynamical 
arguments of these authors by a systematic exploita
tion of the KMS condition. We further show that the 
physically undesirable separability assumptions essen
tial to their considerations can be bypassed by the 
assumption that the (grand) canonical thermodynami
cal equilibrium state is locally normal. Finally, our 
analysis of the symmetry breaking process goes much 
further than theirs (see, in particular, Secs. 4and 5). We 
also could mention that our earlier contributions4•5 •6 

now appear as particular cases of the theory presented 
here. In this respect, we might remark that, whereas 
the generalizations considered here are certainly 
genuine from a mathematical point of view, their 
actual physical value will ultimately depend on the 
detailed study of the models. We, nevertheless, want 
to point out that the paucity of the information 
available to date on the specifics of the interactions 
responsible for crystallization makes it worthwhile to 
give the theory in as general a form as possible, so as 
to offer maximal freedom to the prospective model 
builders. 

1. KMS STATES 

The importance of the Kubo-Martin-Schwinger7•8 

boundary conditions for the rigorous theory of 
equilibrium statistical mechanics has recently been 
the object of many speculations.9- 19 In this section, 
we first recall the definition of this condition and then 
sum up those of its consequences which we use in the 
sequel. 

Let A be a C*-algebra with unit and '6 be the set 
of all states on A; an element cp of 6 is said to satisfy 
the KMS condition for the natural temperature 
f3 (= l/kT) if 

J dtf_p(t)(cp; Bat[A]) = J dtfo(t)(cp; at[A]B) 

holds for all A, B in A and all "test functions"] in ~ 
(i.e., ] is infinitely differentiable and has compact 
support). In the above condition, at denotes the auto
morphism of A describing the time evolution A-
(Xt[A], and the function/it) is defined, for each! in 
~, by 

flt) == J dw](w)eiW(HiY>. 

We denote by 5 p the set of all states satisfying the 
KMS condition for the natural temperature fJ. The 
fundamental physical assumption of this paper is to 
interpret 6 p as the set of all equilibrium states corre
sponding to the natural temperature fJ. This identifi
cation rests on the following facts. 
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First, upon writing B = I in the KMS condition, 
we conclude from the continuity of (4); oct[A]) in t 
and from the fact that this function is bounded (namely 
by IIAII) that any state 4> satisfying the KMS condition 
is invariant in time. 

Second, in the traditional (i.e., finite) quantum 
statistical mechanics, the KMS condition is satisfied 
by the canonical equilibrium state (4); A) = Tr e-/lHAj 
Tr e- /lH , and this is the only state satisfying the KMS 
condition. The second part of the latter assertion has 
to be understood as follows: We suppose that A is the 
C*-algebra of the canonical (anti) commutation rela
tions for a finite region of the space IR 3 ; if 4> is sup
posed to be such that only a finite number of particles 
can simultaneously be in this "box," then 20.21 4> 
can be represented by a density matrix in Fock space. 
Furthermore, since A acts irreducibly on Fock space, 
p is uniquely determined by 4>. If now 4> is supposed to 
satisfy the KMS condition, one sees easily that p is 
e-/lHjTr e-/iH where H is the generator of the time evo
lution. Hence, in finite statistical mechanics, the KMS 
condition determines uniquely 4> as soon as OCt is given. 
We should notice in this connection that the grand 
canonical formalism can be obtained in the same way 
by replacing in the above reasoning H by H - /-IN. 

Third, in all cases \Yhich have been treated explic
itly,11.16.22 the thermodynamical Gibbs state (for a 
truly infinite system) still satisfies the KMS condition. 

Once the use of the KMS condition as a mean to 
recognize equilibrium states corresponding to the 
natural temperature fl is agreed upon, the identification 
of pure phases is straightforward: These are the 
equilibrium states (corresponding to the natural 
temperature fl) which cannot be decomposed into 
equilibrium states (with the same (J); hence we inter
pret the set t;p of the extreme points of 6/1 as the set of 
all pure phases existing at the natural temperature fl. 
There are some immediate points of contact between 
this interpretation and some of the properties one 
would naturally expect to hold for a pure phase. For 
instance, we saw above that in the case of finite 
statistical mechanics, 6/1 consists of only one state, 
the latter being then extremal in 6/1 and accordingly 
interpreted as the ,unique pure phase available in this 
situation. This fact is related .to Yang and Lee's 
result23 according to which the thermodynamical limit 
(V, N -+ <X) V/N = ete) is an essential ingredient to 
the proper description of coexisting pure phases. We 
shall, furthermore, indicate later in this section that 
states in t;/I satisfy some cluster properties in space 
which reinforce the interpretation of these states as 
pure phases; ergodicity (in time) will also be touched 
in the course of this section. 

In order to make this paper reasonably self-con
tained, we now want to review the properties of 6/1 
which we shall use in the sequel and present them in 
as economical a way as possible. The reader will notice 
that all results stated below are established without 
assuming A to be separable. 

We first notice that 6/1 is a convex set. Furthermore, 
upon using the norm continuity of oct[A] and the 
fact that fy(t) is absolutely integrable for every 1 in ~, 
one can prove straightforwardly that the integrals 
appearing in the KMS condition are continuous on 
6, the latter being equipped with the topology it 
inherits from the w* topology24 of A*. From this 
fact it follows that 6/1 is closed in this topology; 6/1 
is bounded in the metric topology and is hence w* 
compact. Then, we get from the Krein-Milman 
theorem: 

Lemma 1.1: 6/1 is the w* close~ convex hull of t;/I' 
Physically this means that there exists always enough 

pure phases (in t;/I) so that their ordinary mixtures 
(i.e., finite convex combinations) can approximate any 
equilibrium state (in 6(1) as close as one wishes. One 
of the aims of this paper is to establish a canonical 
decomposition of any 4> in 6/1 into its pure phase 
components. 

The next lemma is a slight generalization of results 
found in Araki13 and Araki and Miyata.14 

Lemma 1.2: Let A be a concrete C*-algebra acting 
on some Hilbert space Je, U(IR) be a weakly contin
uous representation of IR on Je, and let Eo denote the 
projector on the subspace of all vectors of Je which 
are invariant with respect to U(IR). For every 
(normalized) vector '¥ in EoJe, we form the state 1p 
on $(Je) defined by (1p; B) = ('¥, B'¥) and denote by 
the same symbol1p its restriction to A H, A, or EOAHEO' 
If the automorphisms B ---+ oct[B] = U(t)BU( -t) map 
A onto itself, and if 1p is KMS on A with respect to OCt' 

then 
(i) 1p is KMS on At/ , 

(ii) 1p is a vector trace on the von Neumann algebra 
EoAt/Eo· 
If, furthermore, '¥ is cyclic for A in Je, then 

(iii) 1p is a faithful trace on EoAt/Eo. 

Proof: (i) follows directly from the KMS condition 
and Kaplanski's density theorem (for details, see 
Araki,13 Lemma 2.4; one should notice that his proof 
indeed does not depend on the cyclicity of'Y). For (ii) 
we first notice that oct[A] = A for all t in IR implies 
that EoAt/Eo = Eo.N'Eo,where.N' is the von Neumann 
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algebra generated by A and U (IR ); since Eo E .N' , 
EoA" Eo is then indeed a von Neumann algebra. We next 
recall from Araki and Miyata14 (see their Theorems 
2.1 and 3.4, with the same remark as above on the 
irrelevance of the cyclicityof'Y) that the von Neumann 
algebra $ = A" n U(IR)' satisfies the following 
conditions: 

(a) (1jJ; [A, BJ) = 0 for all A in A" and B in $ 

(which can be seen immediately from the KMS 
condition); 

(b) Eo$ £ EoA"Eo (which is trivial); 
(c) Eo$ ;2 EoA" Eo (which can be obtained from 

the fact that the time average 'rJ: A" -+ $ satisfies 
'rJ(A)Eo = EoAEo). We have then from (c) that every X 
in EoA" Eo can be written as X = YEo = Eo Y with Y 
in $, so that [X*, X] = Eo[Y*, Y]Eo; we have then 

(1jJ; [X*, Xl) = ('Y, Eo[Y*, YJEo'Y) 

= (1jJ; [Y*, Y]) = 0 

due to (a). Hence, 1jJ is indeed a vector trace on EoA"Eo. 
If now 'I" is cyclic for A in Je, it is cyclic and, hence,25 
separating for EoA"Eo. Consequently, (1jJ; X*X) = 0 
for X in EoA"Eo implies IIX'YII = 0 and, hence, 
X = 0, which is to say that '/jJ is a faithful trace on 
EoA"Eo. QED 

Lemma 1.3: Let A be a C*·algebra and 4>, 1jJ in 6/1 
with 1jJ S A4> for some A ~ 1; denote by 1T", the GNS 
representation associated to 4> and by <I> the corre
sponding cyclic vector. Then 

(i) there exists a unique positive Z in the center 
of 1T",(.tf;)" such that (1jJ; A) = (<I>, Z1T",(A)<I» for all 
A inA; 

(ii) 4> belongs to Eli if and only if 1Tq,(A)" is a factor. 

Proof: Since 4> and 1jJ satisfy the KMS condition, 
they are invariant with respect to the time evolution 
entering in this condition; there exists then a unique 
positive X in .N'~ == 1Tt/>(A)' n Ut/>(IR)' such that 
(1jJ; A) = (<I>, X21Tt/>(A)<I» for all A in .It. <I> and 
'Y == X<I> satisfy then the assumptions of Lemma 1.2 
so that 1jJ is a vector trace on Et/>1Tt/>(A)"Et/> and is 
dominated by the faithful vector trace c/> on this 
algebra. There is, therefore,26 a unique positive ele
ment Zo in the center 3 of Et/>1Tt/>(A)"Et/> such that 
(1jJ; P) = <4>; ZoP) for all (positive) P in Et/>7Tt/>(.It)"Et/>. 
Since Et/>7Tt/>(A)"Et/> = Et/>.N't/>Et/> , we have27 that 

3 = Et/>(.N't/> n .N'~)Et/> = (.N't/> n .N'~)E", 
= (7Tq,(A)" n 1Tq,(A)' n U(IR)')Et/> = 3t/>(A)E",. 

The last of the above equalities is due to the fact28 

that the center 3t/>(A) of 1Tt/>(A)" is left element-wise 

invariant by ii t , the natural extension of rJ. t to 7T t/>(A)". 
Furthermore, from the cyclicity of <I> for 1Tt/>(A) (and, 
hence, for 91t/» it follows that the mapping 

X[ E 91~] -+ XEt/>[ E 914,E",] 

is an isomorphism. There exists then a unique positive 
element Z in 3t/>(A) such that 

('Y, Et/>7Tt/>(A)Et/>'Y) = (<I>, ZEt/>7Tt/>(A)Et/><I» 

for all A in A. 

Since'Y and <I> are in Et/>Jet/> and Z (in 91~) commutes 
with E", (m 91",), the above equality reduces indeed to 
the first statement of the lemma. The second state
ment follows then from the first one by the usual 
ad absurdo arguments. QED 

The first part of this lemma will be instrumental in 
the mathematical reasoning to be presented below. 
The second part has been known29 (though not proved 
quite satisfactorily) for some time; it gives a mathe· 
matically handy criterion for recognizing pure phases: 
An equilibrium state is a pure phase if and only if it is 
primary. The latter observation has some immediate 
physical consequences which we now want to mention, 
as they confirm further our interpretation of extremal 
KMS states as pure phases. Let, indeed, G be any 
amenable symmetry group leaving invariant the pure 
phase 4> and acting 'rJ asymptoticaHy30 on .4;. Then 
the pure phase 4> has the cluster property 

'rJ(J<4>; BrJ.g[A]e) = <4>; A)(4); Be) 

for every A, B, C in A. Furthermore, the pure phase 
4> is extremal invariant with respect to G, which is to 
say that a pure phase cannot be a mixture of states 
invariant under the same symmetry group G, provided 
that the latter acts rJ asymptotically on k 31 However, 
in spite of the heuristic argument sketched in Ruelle,32 
we do not see any compelling reason for believing 
that 'rJ~[A] = <4>; A)/ implies, in general, that 4> is a 
pure phase. Actually, we will see that whenever 
crystals do exist, there is at least one extremal 
IE 3_( or IR 3~ invariant state which is not a pure phase. 

We might notice that this remark also bears some 
incidence on ergodicity. Specifically, if the time 
evolution were to act 'rJ asymptotically on A, then 

'rJT(4); B*~i[A]B) = <4>; A) 

for all A and B in .It with <c/>; B*B) = 1; i.e., "local 
perturbations would die out in time" and c/> would be 
ergodic, and, in particular, extremal T invariant. We 
now want to emphasize that the latter property rests, 
however essentially, on some weakened version of 



                                                                                                                                    

SYMMETRY BREAKING IN STATISTICAL MECHANICS 1659 

1]-asymptotic behavior in time. Suppose, indeed, that 
the equilibrium state 1> is extremal T invariant (and 
not only extremal KMS). The fact that 1> satisfies the 
KMS condition implies rather trivially that the vector 
<I> is separating for 7T </>(A),,; this, together with the fact 
that 1> is extremal T invariant, implies in turn that the 
projector E</> on the T-invariant vectors of Je</> is 1-
dimensional. Consequently, 1]HA]<I> = E</>1]HA]<I> = 
A<I> for all A in A; upon using again the fact that <I> 
is separating for 7T</>(A)", we get 1]~[A] = <1>; A)/. 
This now implies, indeed, the following weakened 
version of 1] asymptotic behavior in time: 

1]T(1); C*[lXi[A], B]C) = 0, A, B, C E A; 

this condition is referred to by saying that T acts 
1]-asymptoticallyon 7T</>(A). We now anticipate the 
final result of this section, which is that every equilib
rium state can be "decomposed" into pure phases. 
If it were true that every pure phase were not only 
extremal KMS but also extremal T invariant, then 
one would see that the time evolution would have to 
act 1]-asymptotically on every 1> in 6 p . This might be 
an appealing assumption, although there is little 
evidence for it from exactly soluble models. We shall 
therefore not assume in this paper this otherwise 
reasonable condition.33 

To show the existence of a canonical decomposition 
of an equilibrium state into its pure-phase components 
we shall need the mathematical concept of "central 
measure," which we now recall with the generality 
required by our purpose. 

Let A be a C*-algebra, 7T </> be the representation 
associated to 1> E 6, and 3</>(A) be the center of 7T</>(A)". 
We denote by ~ the canonical extension of 1> to 7T</>(A)". 
There exists a unique34 ,35 measure on 6, calIed the 
central measure of 1> and denoted p</>, such that there 
exists a a-continuous isomorphism qJ from 3</>(A) onto 
\:00(6, fl</» with the property 

<~; ZA) = J qJz(VJ)('p; A) dfl</>(VJ) 

for all A in A and all Z in 3</>(A). Furthermore,3s this 
measure is concentrated in the Baire sense on the set 
:F of all primary states of A; i.e., fl</>("6) = 0 for 
every Baire set36 1) in 6 with "6 n :F = 0. Finally, 
if we denote by 7T V': A -->- $(JeV') the GNS representa
tion associated to any VJ in 6, we reca1l3s that there 
exists an isometric mapping U from Je</> onto Jell = 
J JeV' dfl</>(VJ) which establishes a unitary equivalence 
between 7T </> and the representation 7T 1137 and trans
forms the center3</>(A) of 7T</>(A)" into the von Neumann 
algebra of all diagonal operators38 on Jell' These 

facts show the connection between the above decom
position of 1> and the familiar central disintegration 
of a representation.39 It should be noted, however, 
and this is the fundamental contribution of Wils,3s 
that the definition of the central measure, its existence 
and uniqueness, as well as the above-mentioned 
properties do not depend on the separability of .A:. 
This is important, as A turns out to be nonseparable 
in several physical situations.40 The price paid for 
this generality is that fl</> is concentrated on :F in the 
Baire sense only, rather than in the Borel sense.41 

We have to compensate for this by the condition that 
the states with which we start our analysis are "locally 
normal." We shall come to this later. First, we want 
to establish some results showing the relevance for our 
purpose of the concept of central measure. 

Lemma 1.4: Every state in the "support of the 
central measure of a state in 6 p also belongs to 6 p • 

Proof' Let F be any fl</> measurable subset of 6 and 
XF' in L 00 (6, fl</» be its characteristic function. Define 
for all A in.it 

<1>h'; A) = JsXF'(VJ)(VJ; A) dfl</>(VJ) 

= <~; qJ-l(XF)A) 

= (<I>, (qJ-l(XF'»7T </>(A)<I». 

Since (qJ-l(Xh'» belongs to 3</>(A), it is then invariant28 

under the natural extension 5.t of IX t to 7T</>(A)"; 1>F is 
therefore T invariant. From Lemma 1.2(i), the 
extension ~ of 1> to 7T</>(A)" again satisfies the KMS 
condition, and hence so does 1> F', whatever F fl</> 
measurable in 6 is; the conclusion of the lemma 
follows then straightforwardly from Fubini's theorem 
and from the fact that f /rCt)(VJ; BlXt[A» dt is weak* 
continuous in VJ. QED 

In plain language, this lemma means that we do 
not lose the KMS property in the course of the above 
"central decomposition." We now want to make use 
of Choquet's theory.42 For the sake of completeness, 
we first recall some of the definitions pertinent to this 
part of our investigation. 

Let (£ (e.g., 6 or 6 p; for the latter, see Lemma 1.1) 
be a compact convex subset of a locally convex linear 
space X (e.g., A*). A real-valued function f on (£ is 
said to be convex (resp. affine) if 

f[A1>l + (1 - ,1.)1>2] S (resp. =) Af[1>l] 

+ (1 - ,1)/[1>2]' for all 1>1 , 1>2' 

in (£ and 0 S A S 1. For instance, the function 
/[cp] = <cp; A) defined on 6 by any self-adjoint A in 
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A is affine. We denote by C«(£) [resp. A«(£)] the set of 
all convex (resp. affine) continuous functions on (£. 

For any measure I-' on (£, and any fin C((£), we denote 
by (I-';f) the integral S /(rp) dl-'(rp). Let I-' and v be two 
measures on (£. We say that I-' and v have the same 
resultant, which we denote I-' ,...., v, whenever (I-'; a) = 
(v; a> for all a in A«(£). In particular, we say that I-' 
represents a point cP in (£ whenever 1-''''''' (j4J [i.e., 
I a(rp) dl-'(rp) = a(cp) for all a in A«(£)]. v is said to be 
majorized by 1-', a fact which we denote '1'< 1-', if 
('1';1> ~ (1-';1> for all / in C«(£). This introduces a 
partial ordering on the set of all measures on (£. A 
measure I-' is said to be maximal if it is maximal with 
respect to this ordering. Our interest in maximal 
measures arises heuristically from the feeling that 
v < I-' should imply that the support of I-' is closer 
to the extreme points of (£ than is the support of v, 
making then maximal measures candidates for the 
decomposition of an equilibriu.m state into its pure
phase components. 

We say43 that a nonempty compact convex subset 
(£ of a locally convex linear space 1 is a simplex if for 
each cp in (£ there exists a unique maximal measure 
representing cp. 

Theorem 1.1: The set 6 p of all states satisfying the 
KMS condition for the natural temperature (J is a 
simplex, and, for each cp in 6/1, the unique maximal 
measure 1-'41 representing cp on 6/1 is the central measure 
of this state. 

Proof" Since 6/1 is clearly bounded, we conclude 
from Lemma 1.1 that 6 p is a compact convex subset of 
the locally convex linear space A*. Let cp be any state 
in 6 p , fl4J be its central measure, and v be any measure 
on 6 p representing cp. We want to show that v < fl4J' 
For every / in C(6p) and E > 0, there exists44 a 
discrete measure VI •• = I7=1 oci (j4I, (with OCi > 0 
Ii OC j = 1, cpj E 6 p) which represents cp and satisfies 
('1';/) - ('1'1 •• ;/> > E. Since VI •• represents cp, we have, 
in particular, for all A in A (considered as affine 
functions on 6 p), 

(cp; A) = (VI .• ; A) = (I oc;cp/; A), 
i 

i.e., cp = Ii OCiCPi' From Lemma 1.3 we conclude that 
there exists, for each CPi in this decomposition, a 
unique positive Zi in 3,;(,A:) such that 

(CPi; A) = (<1>, Z;7T4J(A)<1» for all A in A. 

Clearly I:=l Zi = I. Upon using the decomposition 
of cP with respect to its central measure fl4J' we get 
cP; = Ie;p tp dl-';(tp) with dl-'i = rpz, dfl4J' where rp is the 
homomorphism from 34J(A) onto \:""(6, 1-'.) associated 

to cp. For every convex continuous function / on 6/1 
and every E > 0, we have then 

n n 

('1';/) - E ~ ('1'1 •• ;/) = I OCi«(j.l;/) = I oct/[cp] 
i=l i=l 

~ ;~ ocJe; /( tp) dl-'tC tp) 

= Ie;p rp(E~=laiZi)( tp)/( tp) dl-'i tp) 

= Ie; f(tp) dl-'.p(tp) = (I-'.;!). 
p 

Since E > 0 is arbitrary, we have indeed for every 
fE C(6p) (v; I> ~ (fl.p;f), where v is an arbitrary 
measure on 6 p with v,...., o.p. This proves that the 
central measure fl. of cP E 6 p is the unique maximal 
measure representing cp and defined on 6 p • QED 

We now proceed further and introduce explicitly 
the fact that A is the algebra of all quasi local observ
abIes on the physical system of interest. Specifically, 
we associate with every cube V in IR 3 the F ock space 
Je~, the von Neumann algebra A(V) of all bounded 
operators on Je~, and the (separable, closed, two
sided) ideal .'B(V) of all compact operators on Je~ . 
The natural isotony property [namely, Vl S; V2 

implies A(Vl) S; A(V2)] makes it possible to define 

the C*-inductive limit A = U A(V), which is our 
algebra of quasi/ocal observables. 

We may say that a state cp on A is locally normal if, 
for every cube V, the restriction of cP to A( V) is a 
normal state. We denote by m the set of all locally 
normal states on .it. We recall that CPIAW) normal is 
equivalent to any of the following conditions: (i) 
CP/AW) is ultraweakly continuous4s ; (ii) the norm of 
cP $(V) is one46 ; (iii) there exists a (unique) density 
matrix Pv such that <cP; A) = Tr PvA for all A in 
A(V).47 As a consequence of property (i) above, and 
from the fact that the injection A(Vl) S; A(V2) (for 
Vl S; V2) is ultraweakly continuous, we see that 
CPIA(2) normal implies CPIA(1) normaL Therefore cP 
belongs to m if and only if its restrictions to A(vn) 
are all normal, where vn denotes the n-fold dilation of 
afixed cube V and n = 1,2,3,' ... 

Lemma 1.5: Let I-' be a positive normalized measure 
on the set 6 of all states on the quasilocal algebra A. 
If I-' ,...., (j.p for some cp in 6, then the Borel set m has 
I-' measure 1 if and only if cp belongs to m. 

Proof: From Lanford and Ruelle,'8.49 we know 
that the lemma holds when m is replaced by 

mn(V) == {cp E 61 II cpl$w") II = I}; 
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the lemma, as stated here, follows then directly from 
this and from the fact that 91 is the countable inter
section of the 91n (V). QED 

We now come back to our central decomposition. 
From Theorem 1.1 we know that,for every ifJ in G p , 

flq, is maximal and hence50 is concentrated, in the 
Baire sense, on the set ep of the extreme points of Gp • 

If 6 p were metrizable (and, in particular, if .4 were 
separable), this would be equivalent to saying that flq, 

is concentrated, in the Borel sense, on ep , since then 
the concepts of Baire and Borel set coincide. 36 The 
additional restriction ifJ E 91 is physically justified2o,21 
by the assumption that the total number of operators 
for all finite volumes exist; this will now be used 
to bypass any global assumption of separability on 6 p • 

Theorem 1.2: (i) The central measure flq, of any 
locally normal equilibrium state ifJ (for the natural 
temperature (J) is concentrated, in the Borel sense, on 
the set ep n 91 of all locally normal pure phases for 
this temperature. Furthermore, (ii) flq, is the only51 
(regular) measure on 6 p which represents ifJ and is 
concentrated, in the Borel sense, on ep • 

Proof: We adapt to our purpose a similar argument 
given by Ruelle49 ; our proof differs from his in the 
fact that we use Theorem 1.1 instead of any assump
tion of 7J-asymptotic behavior in time. To this effect 
we use the remark preceding Lemma 1.5. We first 
recall52 that there exists a countable sequence {Ai} of 
self-adjoint elements Ai of A which separates 91 from 
6. We then define the continuous mapping 7T from 
6 p to fR 00 by 

7T[ifJ] = {(ifJ;Ai) I iEZ+} 

and associate to each ifJ in 91 n 6f1 the measure vq, 

on 7T[6pJ, defined by (vq,;f) = (flq,;fo 7T), for allfin 
C(7T[6p]). 

Since flq, is maximal on 6 p (Theorem 1.1), vq, is 
maximal on the compact, convex metrizable set 7T [6 p] 

and hence is concentrated, in the Borel sense, on the 
extremal points of 7T[6p]. flq, is then concentrated on 
the inverse image of this set and then, by Lemma 1.5, 
on 91 n 7T-1 [e(7T[6pJ)]. We now use the fact that 
{Ai} separates 91 from 6 to conclude that 91 n 
7T-1[&(7T[6p])] S 91 n 6 p , so that fl", is concentrated 
on 91 n Gp • This proves the first part of the theorem. 
To prove the second part, we have only to verify that 
if fl "" ~q, and fl is concentrated, in the Borel sense, on 
Ep , then fl = flq,. From the Corollary 9.8 in Phelps,42 
we see that fl is maximal; fl = flq, follows then from 
Theorem 1.1. QED 

The last step of this section is to find a condition 
under which not only flq, is concentrated on ep n 91 
in the Borel sense but, moreover, the support of flq, 

is actually contained in ep n 91. Such a condition 
turns out to be that ifJ be "transitive" in addition 
to the previous conditions. 

We now suppose that the 3-dimensional Euclidean 
group [E 3 is a symmetry group for the theory, i.e., that 
there exists for each g in [E 3 an automorphism OCg of A 
such that (ifJ; ocg[AJ) is continuous in g for each ifJ and 
each A in A. We assume further that OCgOC t = OCtOCg for 
all times t and all g in [E 3. We denote by oc; the action 
of g in [E3 on 6: (ifJ; ocg[AJ) == (oc;[ifJ]; A). We call 
orbit (with respect to £3) of a state 1p in ffi the set 

0: = {oc:[1p) I g E [E3}. 

We now say that a state ifJ in 6 is transitive (with 
respect to [E3) whenever there exists a 1p in 6 such 
that flq,(OIJ!) = 1. We anticipate from the next section 
[Theorem (2.1)] that this implies 0 IJ! compact. 

We can now prove the final theorem of this section, 
namely: 

Theorem 1.3: Let ifJ be a transitive, locally normal 
equilibrium state for the natural temperature (J. Then 
the support of its central measure flq, is contained in 
ep n 91. 

Proof: By the definition of transitivity, there exists 
1po such that fl(0lJ!o) = 1. ifJ locally normal implies then 
011'0 n ep n 91 ¥- 0. Suppose, indeed, that this were 
not the case; since 011'0 is compact and hence Borel, 
the preceding theorem would imply that fl(0ll' ) = 0, 

o 
which contradicts the assumption. There exists, 
therefore, at least a 1p in 011'0 n ep n 91. We have then 

01J!0 = 011' = {oc; [1p]g E [E3} s; ep n 91. 

Since fl(0ll'o) = 1 and 01J!0 is compact and hence 
closed, we conclude that supp (fl",) S 0lJ!o' QED 

Incidentally, we might mention that transitivity is 
strong enough by itself to allow the dropping of local 
normality in this theorem. 

TheoremsI.2(ii) and 1.3 together give the result we 
want: There e~ists a unique decomposition of any 
transitive, locally normal equilibrium state ifJ into its 
pure-phase components, and this decomposition is 
provided by the central measure flq, of ifJ. Furthermore, 
Theorem 1.3 helps in understanding the physical 
meaning of the condition of transitivity: All the pure 
phases 1p which enter into ifJ are obtained from anyone 
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of them, say "Po, by a transformation "P = OCg ["Po] with 
g in [E 3, and therefore the symmetry 

H~ =: {g E [E31 OC;("P) = 1p} 

that "P inherits from c/> is a conjugate, with respect to 
[E3, of the symmetry H~o inherited by "Po' 

2. STRONG TRANSITIVITY AND SYMMETRY 
BREAKING 

In this section we concentrate on the particular 
class of "strongly transitive" equilibrium states. We 
first motivate the introduction of this concept in our 
context and give its precise definition. We then 
establish a classification of these states, based on the 
symmetry that their pure-phase components inherit 
from the Euclidean in variance of the theory. 

The analysis of transitive states, started in the 
preceding section, is now carried further in order to 
show the necessity of strengthening this notion for a 
proper understanding of the occurrence of crystalline 
phases. 

We first notice that a Euclidean-invariant, transitive 
equilibrium (i.e., KMS) state c/> is necessarily extremal 
Euclidean invariant. Indeed, c/> transitive implies that 
/1-", is [E3 ergodic, ~.e., that /1-",(K) is either 0 or 1 for 
all [E3-invariant, /1-",-measurable subsets Kin 6 p; the 
latter condition is, in turn, equivalent53 to the fact 
that c/> is extremal [E3 invariant. This remark suggests 
the introduction of the class P of all states c/> on A 
which are locally normal, extremal invariant with 
respect to the Euclidean symmetry, and satisfy the 
KMS condition. We notice incidentally that c/> in P is 
either transitive or is such that /1-",( O~) = 0 for all "P 
in 6 p • For the time being, we restrict our attention 
to the class P. This restriction is not of a serious nature 
since every ([E3-invariant) equilibrium state can be 
decomposed into extremal [E3-invariant states. We 
notice that it can be hard to tell, in general, which 
states "occur" in a decomposition (the support of the 
measure seems often to be too large); in this case, 
however, one expects a discrete decomposition (gas
liquid-solid) where this problem does not arise. 

The following theorem establishes relations between 
transitivity and symmetry. 

Theorem 2.1: Let 4> be in P and /1-4> denote its central 
measure. The following three statements are equiva
lent: 

(i) 4> is transitive; 
(ii) [E3/H~ is compact for all "P in supp (p,,,,); 

(iii) 0: is compact and homeomorphic to [E3/H: 
for all "P in supp (p,,,,). 

Proof" Clearly (iii) implies (ii). To prove the con
verse implication, we form the mapping ~tp from 
[E3/H: onto 0: defined by ~tp[g] = oc;["P] where 
g [E [Pl---* g [E [E3/H:l is the canonical mapping. (ii) 
implies (iii) follows then from the fact that a.1f 
is continuous and bijective. We now prove that 
(i) implies (ii). To this effect, we notice that there 
exists a compact subset C of [E3 and a countable 
sequence {gn} of elements in [E3 such that the union 
of all Cn = gnC covers [E3. By assumption, there 
exists at least one "Po such that /1-",(0:') = 1. Since 
the sets a.~'o[Cn] are the images of compact sets 
under the continuous mapping ~tpo' they are compact 
sets covering 0:'. We reca1l54 that c/> Euclidean in
variant implies that the central measure p,,,, is invariant 
under the action of the Euclidean group. Hence 
/1-",(0:') can differ from zero only when /1-q,(~tpo[Cn]) = 
/1-"'(~tpo[C]) is different from zero. Consider the set 
Dl = C2 = {cl c2 1 Cl' C2 E C}.- If [E3/H:o were not 
compact, there would exist an element h in [E3/H:o 
which would not be contained in Dl , Consider now 
the compact set D2 = D U (flD) - ; there would again 
exist an element 12 in [E3/H:' which would not be 
contained in D2 • We could then construct in this 
manner an infinite sequence {fo (= e), h ,h, ... } 
such that In rt Dn = U;;;:~ (fmD)-. We now notice55 

that the compact sets (fnCn)- would be all disjoint, 
and so then would the compact sets ~v,JfnCnr 1 
since ~tpo is bijective. Upon using again the invariance 
of ft", under [E3, we conclude that all these sets would 
have ftq, measure equal to ft",(a.lfJC]), the latter being 
different from zero whenever fttf>(O~o) =;6 0 (as we 
mentioned above). This would then contradict the 
boundedness of the measure of O~o' so that [E 3/ H~~ 
must be compact. Since the orbit is the image of this 
compact set under the continuous mapping ~tpo' we 
conclude that this orbit is closed and compact. It 
coincides, therefore, with the support of p,tf>. Every 
state "P in supp (fttf» has for stabilizer a group H~ 
which is therefore conjugate to H~o; consequently, 
rE 3/H: is compact for all "P in supp (ftq,). This con
cludes the proof that (i) implies (ii). 

We now prove that (iii) implies (i). Since 4> IS 

Euclidean invariant, we can write56 

(4); A) = r ("P; A) dfttf>("P) = 'YjE(c/>; ocg[AJ) J6p 

= 'YjE r ("P; ocg[AJ) dp,,,,("P) J6p 

=f 'YjE("P; IXg[A]) dp,tf>("P)' 
6p 
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Let, now, F denote an arbitrary Borel subset of 6 p 

and define 1> F by 

(4)F; A) = r 'Y)E(1{J; IX'(AJ) dl1,/1{J). JF g 

This positive functional is then invariant with respect 
to lE 3 and is majorized by 1>. Since the latter is extremal 
Euclidean invariant, we conclude that 1>[;' = l1iF )1>; 
i.e., 

We recall that this holds for all Borel sets Fin 6 p , so 
that, for each A separately, 

'Y)E(1{J; IXg[A]) = <1>; A), 114> almost everywhere. 

Since 1> is locally normal, there exists52 a countable 
family {An} separating 4> from all other states. Let Dn 
be the Borel set of those 1{J in 6 p for which the above 
equality holds for A = An' We have then 11t/>(Dn) = 1 
and, consequently, 11t/>(nn Dn) = 1. Consider now the 
Borel set B = supp (Pt/» n {n n D n}; clearly, 114>(B) = 
1. Since 11t/> is concentrated (see Theorem 1.2) on 6p, 
there exists at least one extremal KMS state 1{Jo con
tained in B. Since, in particular, 1{Jo belongs to nn Dn , 

we have 

E <1>; An) = 'Y) <1{Jo; IXg[An]), for all An· 

Since {An} separates 1> from all other states, we con
clude that 1> = 'Y)E1{Jo. We now use (iii), specifically 
that O~ is compact, to prove that 'Y)E can be written 
as an integral over 0:;'. To this effect, we define the 
measure v on O~o by 

(v;f) = 'Y)Ef, 

where! runs over the set C(O~) of all continuous _ 0 _ 

functions on O~o and f in C(lE3) is defined by f(g) = 

!(~'fJg]). The measure v then satisfies 

r <1{J; A) dV(1fJ) = 'Y)E(1{J; IX [A]) = <1>; A). 
JOE'fO g 

Hence, v is a measure which represents 1> and is 
concentrated on 6p (2 O~o since 1{Jo E 6p). From 
Theorem (1.2), we conclude, therefore, that v = 11t/>' 
and, in particular, 11t/>(0~) = v(O~o) = 1. This con
cludes the proof of the theorem:57 

In the sequel we are mainly interested in state 1> 
for which the stabilizers H~ of the pure phases which 
occur in the decomposition of 1> contain at least three 
noncoplanar translations, a necessary condition for 
Hfj to qualify as a symmetry of crystalline type. This 
requirement is equivalent to the compactness of 

1R3/H!} (H!) =- {a E 1R3\ g =- (I, a) E H:}) which is, 
however, not necessarily implied by the compactness 
of E3/H:. The next theorem shows in which sense 
the condition of transitivity has to be strengthened 
to ensure that rFP/H!} is compact. We introduce to 
this effect the following concept: A state 1> will be 
said to be strongly transitive if it is transitive and if 
there exists at least one 1{J in supp (114)) such that the 
orbit O~ of 1{J under the action of the group IR 3 of all 
translations is c~osed. • 

Theorem 2.2: Let 1> be in P and 11t/> denote its 
central measure. The following two statements are 
eq ui valen t : 

(i) 1> is strongly transitive; 
(ii) rK 3/ H!} is compact for all1{J in supp (11t/». 

Proof' We first show that (ii) implies (i). Since the 
compactness of 1R3/H!} implies that of E3/H!} for all 
1fJ in supp (11t/», we know from Theorem 2.1 that 1> is 
transitive. Furthermore, since 0: is the image of IR 3/ 
H!} through a continuous mapping, (ij) implies that 
O~ [with 1{J in supp (11t/»] is compact and hence closed. 
Hence 1> is indeed strongly transitive. Suppose now 
that O~o is closed and hence compact, for some 1fJo 
in supp (11t/». The first step in our proof of (i) implies 
(ii) is to construct an invariant measure on O~. For 
each! in C( O~o), we define 

lea) = !(IX:[1{JO]), 

which is a continuous and bounded function on IR 3. 

Let 'Y)R denote an invariant mean over IR 3 and define 
(v;f) = 'Y)RJ; this yields a finite Radon measure on 
O~o which is invariant under IR 3. An argument 
similar to the one used in the proof of Theorem 2.1 
leads to the conclusion that 1R3jHf}. is compact for 
alllp in supp (11t/». QED 

As announced in the beginning of this section, we 
shall restrict our attention to strongly transitive 
states. We denote by SP the subclass of P consisting 
of all strongly transitive states. Since an SP state 1> 
satisfies in particular the assumptions of Theorem 
1.3, we know that the respective stabilizers of the 
pure phases occurring in the decomposition of 1> are 
conjugate to one another. We shall refer to this con
jugate class as the intrinsic symmetry of 1>. We now 
undertake the classification of SP states according to 
their possible intrinsic symmetry. 

The first possibility is that the SP state 1> is already 
primary and, hence, is a pure phase. In this case its 
intrinsic symmetry is the full Euclidean group E 3, 

(e.g., gas and liquid). When this occurs, we say that 
1> belongs to the class SP1 • 



                                                                                                                                    

1664 EMCH, KNOPS, AND VERBOVEN 

A second possibility is that the rotation symmetry 
is broken in the decomposition, but that H!} = IR 3; 
i.e., the pure phases still possess the original transla
tion symmetry. This occurs in a system exhibiting 
spontaneous magnetization. 58 We denote this type of 
states by SP 2 • 

In the third place, it can happen that H{j is con
tinuous in one or two dimensions and discrete in the 
remaining dimension (rotation symmetry is then 
certainly broken). This type of states is denoted by 

SP3 • 

Finally, there is the possibility that H!} is discrete 
(in three dimensions). Since rp is an SP state, we recall 
that H!} are closed and 1R3/H!} are compact for all 1p in 
supp (ft.p). From these facts it follows that each H!} is 
generated by three noncoplanar translations (i.e., H!) 
is a lattice) and the intrinsic symmetry of rp is that of a 
crystallographic group. This type of states is denoted 
by SP4 • 

Clearly SP1 , SP2 , SP 3' and SP4 exhaust the class 
of all SP states. In Sec. 4 we shall show that each of 
the four types satisfies characteristic cluster properties 
in space. 

3. SPECTRUM PROPERTIES 

The aim of this section is to establish a connection 
between the classification of SP states and certain 
spectral properties of representations of the transla
tion group IR 3 which occur naturally in the study of 
these states. Aside from its intrinsic interest, this 
connection will be used in the next section to obtain 
an alternate characterization of SP .. (n = I to 4) 
states in terms of cluster properties. 

We first notice that, if rp is an Euclidean-invariant 
state and 0/ is a vector in Je.p such that U.p(l, a)o/ = 
eia.Po/ for all a in 1R3, we have then, for each A in 0 3 , 

U.p(1, a)U.p(A, 0)0/ = eiA-'[a)'PU.p(A,O)o/. 

Whenever p ¥: 0, there exists an arbitrary small 
rotation A such that A-1[a]. p ¥: a· p (mod 27T) and, 
hence, (U.p(A, 0)0/,0/) = 0; i.e., II U.p(A, 0)0/ - 'YII = 
2, which contradicts the continuity of U.p. For ref
erence purposes we take formal notice of this appar
ently well-known result in the following lemma. 

Lemma 3.1: Let rp be an Euclidean-invariant state 
on A and U</>(1R3) = {U</>(a) = eIP",.a I a E 1R3} the 
representation of 1R3 obtained via the GNS construc
tion. Then the only discrete point in the spectrum 
ofP</> is p = O. 

Now, let 1p be one of our pure phases [i.e., 1p E 

supp (ft",) where <p is an SP state]. In general, 1p is not 
'F3 invariant. We can, however, restore the translation 

invariance by considering the state X = 1JR1p where 
1JR is an invariant mean over IR 3. It is interesting to 
see that X still retains a precise memory of the trans
lational symmetry H!} of the pure phase 1p. This fact 
is more precisely expressed by the following theorem 
of which, incidentally, the preceding lemma restricted 
to SP1 states is a particular case. 

Theorem 3.1: Let rp be an SP state, 1p E supp (ft</», 
and X = 1JR1p. Then X is a KMS state and the discrete 
spectrum of Px (UxCa) == eiPx·a Va E 1R3) is identical 
with the reciprocal group * H!} of H!}, 59 and is simple. 

Proof' Since 1p is invariant with respect to H!}, X 
can be obtained from 1p by averaging the latter over 
IR 3/ H!}. This group is compact since <p ESP. It 
possesses then a unique invariant measure h, which is 
called its Haar measure. We can therefore write 

X = r 1po dh(a), 
JIR3/H~ 

where a ->- a denotes the canonical mapping from IR 3 

onto 1R3/H!}, and 1po == rx:1p. By assumption 1p 
belongs to lip (Theorem 1.3) and so then do all 1pi; 
consequently, X belongs to 6 p • This proves the first 
part of the theorem. The proof of the second part 
rests on the existence of a particular isometric iso
morphism p from the center 3.;JA) of 7Tx(A)" onto 
C<:fJ(1R3/H!}; h). We first construct our p. To this 
effect, we consider the mapping if from 1R3/H!} to 6 p 
defined by if(a) = 1pi. Since if is continuous, the meas
ure v == h . if-I is a regular60 Borel measure on 6 p , 

which is clearly concentrated on Ep. Consequently,61 v 
is maximal. Since v represents X and 6 p is a simplex 
(Theorem 1.1), v is identical with the central measure 
ftx of X. There exists, therefore, an isometric ISO

morphism x from 3x onto COO (6p, v) such that 

(i; ZA) = r xz(1p)(1p; A) dv(1p), J6p 
where i denotes the natural extension of X to B(Jex)' 

Since v is actually concentrated on if(1R3/H!}), we can 
rewrite this as 

(i; ZA) = r pz(a)(1p-; A) dh(a), 
JIR3/H : a 

with pz(ii) == xz(1p,,) satisfying our requirements. 
Now, let p be any eigenvalue ofPx ; there exists then 
a vector'Y in Jex such that U/a)'Y = eip.ao/ for all 
a in IR 3. We show now that there exists an element Z 
in 3x(A) such that'Y = ZX where X is, as above, the 
cyclic vector corresponding to X via the GNS con
struction. Since X is cyclic for 7T/A) , there exists a 
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sequence {An} of elements of A such that 

lim II7Tx(An)X - 'YII = o. 

We form En = 'f}~(riP.a(J:a [AnD which all belong to 
3/A) since, as a consequence oflocality, A is asymp
totically Abelian under the action of IR 3, One then 
verifies that {En} converges weakly, as n tends to 
infinity, to an element Z in 3/A) such thatZX = 'Y. 
We now form, for every A in A and every ao in 1R3, 

eip.aO r pz(a)(1p,,; A) dh(a) 
J[P3IH~ 

= eip.aO(7TxCA*)X, 'Y) = (i; rl_ao[A]Z) 

= r Jl Pz(ii)(1pi; rl_ao[A]) dh(a) 
JrPIHv' 

= r pz(a' + aO)(1pi'; A) dh(a'). J 1R3(H:' 

Since A runs over A, pz(a + ao) = e/P'aopz(a),from 
which we conclude that p belongs to the reciprocal 
group * H!; and that pz(a) = e/p

•
a

• Since p is an 
isomorphism, Z is unique, given p, and hence p is 
nondegenerate. To prove that p is an eigenvalue of Px' 
whenever p belongs to * H;;, we construct zp == 
p-1(jp) [where the function fp in f.CfJ(1R3/H:; h) is 
defined as h(a) = eiP.a] and then simply retrace back 
the steps of the proof just completed. QED 

The next theorem shows that states X as considered 
in the preceding theorem do occur naturally in a 
decomposition of an SP state into its IR 3-extremal 
components. We recaII62 that since A is IR 3 Abelian, 
as a consequence of locality, the set 6 R of all IR 3 

invariant states on .1t: is a simplex. There exists there
fore a unique maximal measure 11: representing 0/ in 
6 R and concentrated (in the Baire sense) on the set 
E R of all extremal IR 3·invariant states on A: 

(0/; A) = r (1p; A) d1l:(1p). J6K 

Theorem 3.2: Let 0/ be a SP state, ft", its central 
measure, and 11: the measure decomposing 0/ into its 
extremal IR 3·invariant components. For every X in 
supp (v:) there exists a 1p in supp (ft",) such that 
X = 'f}R1p. 

Proof: We noticed in the proof of the preceding 
theorem that X == 'f}R1p is IR 3 invariant for ev.ery 1p in 
6. Since p = 0 is a nondegenerate (Theorem 3.1) 
eigenvalue of P x' X is now extremal IR 3 invariant 
whenever 1p belongs to supp (ft",). We now consider 
the mapping 'f}{; obtained as the restriction of 'f}R 
to supp (ft",). Since supp (ft",) is contained in ep 

(Theorem 1.3), the range of 'f}{; is contained in ell by 
reason of the preceding remark. Since 0/ is by assump
tion an SP state, 1R3jH!, is compact (Theorem 2.2); 
from this, one can conclude63 that 'f}{; is continuous. 
We then form60 the regular Borel measure 11 = 
ft", 0 ('f}:)-1 on 6 R' This measure is concentrated, by 
construction, on eR and is therefore61 maximal. It 
clearly represents 0/, since 'f}Ro/ = 0/, and is therefore 
identical to 11: since GIl is a simplex. Consequently, 
every X in supp (v:) lies in the support of 11 and is of 
the form X = 'f}R1p with 1p in supp (ft",). QED 

This theorem allows, in particular, the characteri
zation of SPl states among SP states on the basis of 
their invariance properties with respect to translations 
alone. 

Theorem 3.3: Let 0/ be an SP state. Then the 
following conditions are equivalent: 

(i) p = 0 is a nondegenerate eigenvalue of P ",; 
(ii) 0/ is extremal 1R3 invariant; 

(iii) 0/ is a pure phase; 
(iv) 0/ is an SPl state. 

Proof: (i) and (ii) are well known to be equivalent 
since .:It is 1R3 Abelian. (iii) and (iv) are equivalent by 
definition. If 0/ is not extremal IR 3 invariant, 11: pro
vides a genuine decomposition of 0/ into KMS states 
and 0/ is therefore not a pure phase. Hence, (iii) implies 
(ii). To prove that (ii) implies (iii), we proceed by 
elimination. Let us suppose that 0/ is an SP2 state, 
and 1p be any of its constitutive phases. tp is translation 
invariant, but not rotation invariant, so that 'f}Il1p = 1p 

is not rotation invariant. Consequently, 'f}R1p is differ
ent from 0/ and then (Theorem 3.2) the decomposition 
of 0/ with respect to 'f}: is not trivial; i.e., 0/ is not 
extremal IR 3 invariant. Suppose now that 0/ is an 
SP 3 or SP 4 state, 1p E supp (ft",), and X = 'f}Rtp is IR 3 
invariant. To assume that 'f}R1p would also be 0; 
invariant would then imply that 'f}R1p is £3 invariant 
and, hence, (by Lemma 3.1) Px would admit only one 
eigenvalue, namely p = O. By Theorem 3.1 this would 
in turn imply that *H!, = {O} and, hence, H!, = 1R3, 
which contradicts the assumption that 0/ is in SP3 

or SP4. Hence, 'f}R1p is not 0; invariant. From there, 
the proof proceeds as in the SP2 case. We conclude, 
therefore, that the only possibility occurring under 
assumption (ii) is that cf> is SPl; i.e., (ii) implies (iii). 

QED 
4. CLUSTER PROPERTIES 

In this section we list several cluster properties, 
and we show that they differentiate between the 
various classes of intrinsic symmetry of SP states. 
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An rR 3-invariant state ifJ is said to be: 

(i) uniform clustering when 

V A E A V € > 0, there exists Re,A such that 

l(ifJ; AB) - (ifJ; A)(ifJ; B>I < € IIBII VB E A:(C(SR» 

- U A:(V) 

(S R denotes a sphere with radius R); 
(ii) weak mixing when 

VnSR=", 

(iii) partial weak mixing when one can choose a 
plane 0 such that, for every Cartesian coordinate 
system x, y, z with the x axis not contained in 0, 
one has 

r/t Irr<ifJ; oc. [A]B) - (ifJ; A)(ifJ; B)I = ° 
[Ii" denotes mean along the x direction and 17Y,Z 
denotes mean over the (y, z) plane]; 

(iv) weak clustering when 

17R(ifJ; oc;,[A]B) = (ifJ; A)(ifJ; B). 

Clearly, (i) -- (ii) -- (iii) -- (iv). 
In view of Theorem 3.3 it is natural to consider first 

the SPl states separately from the other possible 
classes. We have the following theorem. 

Theorem 4.1: A state ifJ E P is an SPl state if and 
only if ifJ is uniformly clustering. 

Proof' Let ¢ denote the restriction of ifJ to A(V), 
and let E be the projection on the subspace of X", 
generated by 7r",(A:(V»<D; one has then 7r4i(A(V» c:::' 

7r",(A(V»E. Since ifJ is locally normal, the representa
tion 71'4'> of A(V) is20,2l a direct sum of (irreducible) 
Fock representations and therefore64 ~ is primary of 
type I. The mapping 7rq,(A(V»" -- 7r",(A(V»"E is an 
isomorphism; consequently, 71' ",(A( V» is quasi-equiva
lent to 7r~(A(V» and therefore64 7r",(A(V»" is also a 
factor of type 1. This structure implies65 that ifJ is uni
form clustering if and only if ifJ is primary. Since ifJ is a 
KMS state, this means that c/> is a pure phase and is 
of type SP1 • QED 

We now undertake the characterization of the other 
types of SP states. As we showed in the course of the 
proof of Theorem 3.3, they can be nontrivially de
composed into extremal rR 3-invariant states. In order 
to analyze the different cluster properties of states 
occurring in this decomposition, we need the following 
lemma. 

Lemma 4.2: Let X be an extremal translation invari
ant state and let S JJ denote the discrete part of the 
spectrum of Vl(rR 3). Then 

(i) X weak mixing is equivalent to S JJ = {O}; 
(ii) X partial weak mixing and not weak mixing is 

equivalent to SJ) contains other points besides p = 0, 
and all those points lie in a plane; 

(iii) X weak clustering and not partial weak mixing 
is equivalent to S J) contains points that lie in three 
noncoplanar directions. 

Proof' The equivalence (i) is well known in classical 
ergodic theory. The proof of the present statement 
cal) be obtained66 by a slight generalization of the 
pn;)Qf67 in the classical case. Incidentally, another 
possible way to arrive at the same result is to use68 

Godement's theory of means. 
We now prove (ii). Suppose that X is partial weak 

mixing; i.e., for every direction x not in 0, one has 

17'" I17Y'ZCP\, UxCa)o/2) - (0/1 , X)(X, 0/2)1 = 0, 

0/1 ,0/2 E Xl' 

Let us denote by Do the subspace of JC of vectors . . x 
lllvanant for VlO, au' az). When we perform the mean 
over y, Z, we have by the ergodic theorem 

17'" /(0/1 ' U/a",)Doo/2) - (0/1 , X)(X, 0/2)1 = O. 

Since the subspace Do is invariant for U/a x) , we see 
that an alternative way of expressing the fact that X 
is partial weak mixing is 

i.e., U/ax ) is weakly mixing on Do. 
By (i), this is equivalent with the fact that X is 

the only eigenvector of Vx(a",) in Do. Obviously, this 
is true if and only if the equation V (a)A = eipxaxA 

l· 

(A E Xx) has as the only solution Px = 0 and A = X; 
i.e., in the discrete x direction there are no points of 
Sn. Since this holds for all directions x not in 0, we 
see that all points of S n lie in a plane. The fact that 
there actually are points in this plane is by (i) equiva
lent to X not weak mixing. This proves (ii). Statement 
(iii) now follows directly. Since X is extremal invariant, 
one has that X is weakly clustering. The fact that X is 
not partial weak mixing is by Oi) equivalent to Sn 
contains points that do not lie in one plane. QED 

This result together with the spectral properties 
derived in Sec. 3 enables us now to prove the following 
theorem which complements Theorem 4.1. 

Theorem 4.2: Let c/> be an SP state which is not 
extremal invariant with respect to translations, and let 
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vR denote the measure that decomposes rfo into ex
tiemal translation invariant states. Let X E v~;then (i) 
rfo is an SP2 state if and only if X is weak mixing; (ii) 
rfo is an SP3 state if and only if X is partial weak mixing 
and not weak mixing; (iii) rfo is an SP4 state if and only 
if X is weakly clustering and not partial weak mixing. 

Proof Owing to Theorem 3.2, there exists a 1jJ E 

supp (ft</» such that X = rJR1jJ. Since rfo is strongly 
transitive, the type of rfo is determined by the symmetry 
possessed by 1jJ. The state rfo is not extremal iR 3 
invariant; consequently, (Theorem 3.3) rfo is an SP2 , 

SP3 , or SP4 state. In view of Theorem 3.1, we have 
that the discrete part SD of the spectrum of U/iR 3 ) 

satisfies SD = *H:. Now rfo is by definition an SP2 

state when Hf; = iR3; i.e., SD = *Hv' = {O}. By 
Lemma 4.I(i) this is equivalent with X is weakly 
mixing. The state rfo is an SP 3 state when Hf; ;i: iR 3 , but 
it is continuous in at least one direction. This means 
that the points of * Hf; lie in a plane orthogonal to 
this direction. There are other points besides p = 0 
in this plane since the closed subgroup Hf; differs from 
iR 3. By Lemma 4.1 (ii), this is equivalent with X is 
partial weakly mixing but not weakly mixing. Finally, 
rfo is an SP4 state when Hf; is generated by three non
coplanar vectors. In this case the reciprocal group 
* Hf; is also a 3-dimensionallattice. By Lemma 4.1 (iii), 
this is equivalent to X weakly clustering but not partial 
weak mixing. QED 

5. CONCLUDING REMARKS 

We now want to emphasize in traditional physical 
terms the contrast between the properties of SP1 and 
SP4 states. The analysis made in this paper provides, 
in the case of the latter, a mechanism for the symmetry 
breaking occurring in crystallization. This leads to 
interpret the (grand) canonical state in the so-called 
"solid region" of the phase diagram as a mixture of 
pure phases which individually possess the intrinsic 
crystalline symmetry H: and which are transformed 
one into another by (rigid) Euclidean motions. We 
also proved that the extremal translation invariant 
state X, obtained by averaging a pure crystalline phase 
1jJ with respect to 'all translations in 3-dimensional 
space, possesses the following characteristic proper
ties. First, the discrete part of the momentum spectrum 
is nondegenerate and isomorphic to the lattice recip
rocal to Hf;. Second, it satisfies only the weakest of all 
four clustering properties considered here, namely 
weak clustering. Finally, the (grand) canonical 
equilibrium state rfo itself, which is a mixture, does 
not show any of these cluster properties. In contrast, 
for SP1 states, the (grand) canonical equilibrium state 

rfo cannot be decomposed, either as a mixture of pure 
phases or as a mixture of extremal translation 
invariant states. The discrete momentum spectrum of 
such a state consists only in the single point p = O. 
The strongest of the four cluster properties, namely, 
uniform clustering, is satisfied by these states, and by 
them only. 

The first distinction between SP4 and SP1 states 
(namely, the fact that the former are decomposable 
whereas the latter are not) should come as no surprise: 
It is necessary for the understanding of crystalization 
as a symmetry·breaking process. The second distinc
tion, in terms of the momentum spectrum, might be 
of experimental relevance. The third distinction has 
at least one immediate physical consequence: It 
provides a firm basis for Landau's argument on the 
absence of critical point in the liquid-solid phase 
transition; this argument indeed re~ts69 on the 
assumption that solid and liquid have different kinds 
of cluster properties in space. Our contribution in 
this respect is that the analysis carried in this paper 
(see, in particular, Sees. 3 and 4) justifies this assump
tion. 
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The reduction of three principal series of the most degenerate unitary irreducible representations of the 
identity component of the noncompact rotation groups SOo(p, q) with respect to the identity component 
of the inhomogeneous rotation group SOo(p - I, q - 1) 8) T. H - 2 is carried out, using the results of the· 
reduction with respect to the maximal compact subgroup SO(p) @ SO(q). 

I. INTRODUCTION 

In this paper we deal with the principal series of the 
most degenerate unitary representations of the identity 
component of the noncompact rotation groups 
SOo(p, q). As the carrier space of these representa
tions, we consider the three homogeneous spaces (of 
rank one under the action of the group) 

SOo(p, q)/SOo(p - 1, q), SOo(p, q)/SOo(p, q - 1), 

and 
SOo(p,q)/SO(p - l,q - 1) g) Tp+a- 2 • 

These are homeomorphic to the two hyper bolo ids 
H: and H~ and to the cone cg in the (p + q)-dimen
sional Minkowski space M P.q' P 2 q 2 1, 

(2) 

(for Hi, we have the additional restriction X p+! 2 1), 

Cpo 
o' (3) 

(Xp) ¥= (0), (xp) == (-xp) 

[for q the equivalence relation (xp) == (-xp) is 
replaced by condition Xp+l 2 0]. In Ref. 1 a bihar
monic coordinate system has been used on these 
manifolds so that the maximal compact subgroup 
SO(P) @ SO(q) factors out. The basis states in one 
irreducible representation are labelled by p + q - 2 
integer quantum numbers. Since these states belong to 
the Hilbert space on which the representation has been 
constructed, the proof of irreducibility, unitarity, etc., 
of the representation is relatively simple. We shall 
make use of these results. We construct the quasi
regular representation on the three manifolds; how
ever, we label the basis states of one irreducible 
representation by the quantum numbers of the 
subgroup SOo(p - 1, q - 1) ~ T p+0- 2 which is the· 

semidirect product of SOo(p - q, q - 1) with 
the (p + q - 2)-dimensional Abelian translation sub
group TpH_ 2 in M p-l,o-I' The quasiregular repre
sentations must be unitarily equivalent to those 
constructed in Ref. 1 and, thus, we call' pick out the 
different irreducible components by direct comparison. 
In this way, we obtain the reduction of the most 
degenerate irreducible representations of the principal 
series of SOo(p, q) with respect to 

SOo(p - 1, q - 1) ~ T p+o- 2 ' 

The third alternative, the reduction of the irreducible 
representations of SOo(P, q) with respect to SOo(p - 1, 
q) or SOo(p, q - 1), has already been treated.2 

On the hypersurfaces (1,2,3), we introduce the 
coordinate system 

Yp-l = xp(xp + X p+o)-I, 

ft=p+l,"',p+q-l, (4) 

ji = (xp + Xp+o)-I. 

The restriction on the coordinates is ji ¥= 0 for the 
hyperboloids and ji ¥= 0, (ji) == (- ji) for the cone, 
besides Hi, and Cf where we have ji > O. In this 
coordinate system all transformations of the group 
SOo(p, q) are most conveniently parametrized in the 
following way: 

y ~ = ALpvYv + ap, ji' = Aji, (5) 

where 
p+0-2 

y2 = L gpvYPyv, etc., 
1 

gn = g22 = ... gp-l,p-l = - gP.P = ... 

(6) 

= - gPH-2.PH-2 = 1, gpv = 0, for ft ¥= v, 
a(y, ji) = 1 - 2 by +b2(yZ + €l), 

E = +1, -1,0, for H~, H:, and C~, respectively. 

1669 
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TABLE I. Irreducible most degenerate representations of (SOo(P - 1, q - 1) ® D) 8) Tp+o-2 

p~q>2 p>q=2 p=q=2 p > 2,q = 1 p = 2,q = 1 

The all represent the translations TpH- 2 and the bll 
the "special conformal" transformations. The L llv 
represent the transformations of SO(p - I, q - I) 
and the parameter A the dilatations in such a way that 
if Lllv belongs to SOo(p - I,q - I), then 0 < A; if 
Lllv does not belong to the identity component of 
SO(p - I, q - 1), we have A < 0 (the latter case will 
not arise for q = I). 

The Riemannian metric tensor which is invariant 
under (5) and (6) gives rise to the line element 

ji-2(gllv dYIl dyv + € dji2). 

From this there follow for the invariarit norm, which 
defines the Hilbert space in which the quasiregular 
representation is constructed, 

1+""1+ 00 

'/f*'/fyt-p-q dP+q-2y dji 
-00 -00 

(7) 

for the hyperboloids (besides Hi,) and 

1+
00 1"" '/f*'/fjil-V-q dVH- 2y dji 

-00 0 
(8) 

for the cone and Hi,. Under the action of the group 

(y Il ' ji) ---+ (y ~ , ji') = g(y Il ' ji), 

'/f transforms like 

where 
'/f(y Il ' ji) ---+ '/f' (y ~ , ji'), 

'/f'(YIl' ji) == Ug'/f(YIl , ji) = '/f(g-l(yll , ji». 

The last line defines the quasi regular representation 
Ug • 

Since the refIection3 x~ = -xil or 

Y~=YIl' ji'=-ji, 

'/f'(yll,ji) == :R'/f(yll,ji) = ±'/f(YIl , -ji), 

commutes with all group elements and leaves the 

hyperboloids invariant (besides Hi, where the homo
geneous space is given by the upper sheet), we can 
divide the quasiregular representation into a series 
which contains only representations with "parity" 
:R = + 1 and a series with "parity" :R = - I. Then 
the norm is in all cases given by (8). 

II. THE REDUCTION OF THE MOST 
DEGENERATE REPRESENTATIONS 

OF THE PRINCIPAL SERIES OF 
SOo(p,q) WITH RESPECT TO 

SOo(p - 1, q - 1) 8) Tp+q_ 2 

Before we proceed with the reduction of the quasi
regular representations, we specify the irreducible 
representations of SOo(p - 1, q - 1) >D T P+Q-2 en
larged by the dilatations D {i.e., [SOo(p - 1, q - 1) ® 
D] 8) Tp+q-2} which are relevant. Since these irre
ducible representations are just a direct integral over 
the real or imaginary mass spectrum of the irreducible 
representations of SOo(p - 1, q - 1) 8) TpH- 2 , the 
further reduction to this group is quite straightfor
ward. The most degenerate or "spin-O" representations 
of mass m:;i: 0 of [SOo(P - 1, q - 1) ® D] ~ 
TpH- 2 can be characterized (see, for example, the 
analysis in Ref. 4) by the signum of m2 = -gllvPIlPv 
and, in some cases, in addition by the signum of 
PP+q-2, where Pll' f1 = 1,2, ... ,q + P - 2, are the 
momenta which specify a state in an irreducible 
representation R:~~;;:':Q_2' (For P = q = 2 we use 
besides sgnp2 also [sgnpl] written in brackets.) 

We classify the result in Table 1. 
Now we give the results of the decomposition of the 

quasiregular representations derived in Ref. 1. On the 
hyperboloids H: the second-order Casimir operator 

C = 112 - fHp + q - 2)]2 

and the reflection operator :R assumes, in general, the 
eigenvalues specified in Table II (the meaning of the 
parameter f3 given there will become clear later). 

TABLE II. Description of the eigenvalues of the Casimir and reflection operator. 

P +q Evetl Even Odd Odd 

.R ( -1)t(P-Q) ( -1)i(1'-<+2) ( -1 )i(1'-<+I) ( _1)t(1'-.-l) 

Discrete spectrum '/I = 1,3,5,'" jJ = 2,4,6,'" jJ =!, t, t,··· jJ=f,~,¥,'" 
Continuous spectrum ia) > '/I > 0 ja) > jJ ~ 0 ja) > '/I > 0 ja) > V > 0 

(J 0 !1T -!1T !1T 
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All representations are irreducible and occur with 
multiplicity 1 in the quasiregular representation. For 
H~ , we have only to interchange p and q. 

Further restrictions: For H; the irreducible repre
sentations of the discrete series are specified, in 
addition, by the eigenvalues T = ± 1 of the signum 
of the eigenvalues of the SO(2) subgroup, and so are 
the representations (in Ref. I, the question of irre
ducibility has not been considered for v = 0) charac
terized by p even, v = 0, and :it = (-I)h. The 
quasiregular representation on H~ is characterized by 
ioo > v > o. 

On the cone C~ we can use the signum of the 
operator 

s = ! [Y-~ - ! (p + q - 2)J 
i oy 2 

of the (genuine) similarity transformations 

Y; = YIP y' = Iy, 0 < I < 00, 

1p'(Y 11' y) = I!CPH-2)1p(Y 11' I-Iy), 

to specify completely an irreducible representation. [It 
should be mentioned that in Ref. I the equivalence 
relation y E (-y) has been omitted, and a simple 
parity doubling is obtained.] The operator S which 
commutes with all generators of SOo(p, q) is self
adjoint with respect to the norm (8) and obeys the 
relation 

S2 = - C - [Hp + q - 2)]2. 

On the cone C: the Casimir operator C and the 
operator sgn S have the eigenvalues C = v2 

-

[Hp+q-2)]2 and sgn S=±I, ioo> v;;::O. 
Although we need the operator sgn S on the cone C~ 
to specify a representation, the unitarily inequivalent 

representations are determined by the different eigen
values of C. 

The next and most important step is the construction 
of a complete set of eigenfunctions [i.e., a complete 
basis of the Hilbert space defined by (8)] into which we 
can expand the quasiregular representation. This 
basis decomposes into a direct sum and integral over 
the bases of subspaces which are invariant under the 
action of a definite irreducible unitary representation 
of (SOo(p - 1, q - 1) ® D) >.S> TV+a-2' The deter
mination of these representations solves our problem. 

In the coordinate system (4), we obtain for the 
second-order Casimir operator C on the three mani
folds 

(

-2 0 0 + -2 0 0 
Y Eg

llv OYI! oy, Y oy oy 

- (p + q - 3)y OOy) P = Cp, 

- 00 < Yll < + 00, 0 < y < 00. 

The eigenfunctions of C and the p + q - 2 momentum 
operators (a maximal commuting set of nonvanishing 
operators) are given by 

p = eiPIlYlly!CP+Q-2)J±.(E!my), E = ±1, 
p = eiVIlYIly!CP+Q-2\my)±V, E = 0, 

where J±v is a Bessel function of order v. Using the 
methods and results of the theory of self-adjoint 
extensions of symmetric operators,5 , we obtain the 
complete set of eigenfunctions, which for the hyper
boloids is characterized by a continuous real param
eter, the angle (3. The completeness relation for the 
orthogonal eigenfunctions is given on the hyper
boloids as follows: 

( - -,)!CVH-2)f+00 00 
~~1T)P+q-2_00 dP+Q-2peiPIl(YIl-YIl')C~02SnJ.'n(lml Y')J'n(lml y)O(Em2) 

-loodp[Jdp(lml y')f«(3, )p) - J_ivilml y')f«(3, -)p)][Jdp(lml y)f«(3, )p) - J_ivilml y)f«(3, -)p)] 

• Q roo sinh (7T)p) 9) 
X [4 smh (1T) p)t10(Em-) + Jo dpKiVilml Y')KiVp(lml y) 1T O-(Em-) 

where 

f«(3,) p) = [cos «(3 + li7T) p)/cos (fJ- ii7T) p)J!, 

si(3) = (2/1T)fJ + 2n + 1, -i7T < fJ ~ i7T, 
n = 0, 1,2,"', P = +(_v2)!, 

and Ki vip is the modified Bessel function of second kind 

= YV+Hb P
+a-

2(YIl - y~)b(y - y'), (9) 

of order i) p. In order to pick out the right expansions 
which form a basis of the unitary representation of 
the group SOo(p, q), we fix the parameter (3 in such a 
way that the discrete spectrum characterized by sn«(3) 
coincides with the discrete spectrum v derived in 
Ref. 1. These values of (3 have already been given in 
Table II. 
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TABLE III. The reduction. 

p~q>2 p>q=2 p=q=2 p > 2, q = 1 P = 2, q = 1 

discrete R- R- R[+l' R[-l R- R+,R: 
H~ 

" R!+R!+R-continuous R+ + R- R! + R~ + R"[+l + R[:.-l R- R+ + R: 

discrete R+ R!,R~ R!,R~ 
H" p 

continuous R+ + R- R!+R~+R- R! + R~ + R"[+l + R[_l R- R++R: 

CP continuous R+ + R- R!+R~+R- R! + R~ + Rr.rl + R[_l R- R++R: 
" 

The completeness relation on the cone IS given 
by (10): 

YY dP+IJ-2 peill,.(l1,.-lI,.') ( - -,)iCllH-2) f+<Xl 
(21T)1'H-l -<Xl 

X (L<Xl ds(lml yTiS(lml y)i8 + i<Xl ds(lml 1')iS(lml yriS) 

= yll+IJ-1bPH- 2(y,. - y;)b(y - 1'). (10) 

From the expansions (9) and (10), it is easy to 
see which is the maximum number of irreducible 
representations of SOo(p, q) which might possibly 
occur in the reduction for a fixed value of C, :R, or 
signum S, since the basis space for the unitary repre
sentations of [SOo(P - 1, q - 1) ® D] 8) Tp+H has 
to be irreducible. Comparing this with the number 
of irreducible representations which actually occur, 
we can derive in all cases the reduction without any 
ambiguity. The result is given in Table III. All repre
sentations of SOo(P, q) are irreducible. 

From Table III it follows that, for the discrete 
spectrum, all irreducible representations of SOo(p, q) 
are also irreducible with respect to the subgroup 
[SOo(p - 1, q - 1) ® D] 8) T P+H' The continuous 
spectrum always contains the sum of all inequiv
alent irreducible most degenerate representations of 
the subgroup [except for p + q even, 'V = 0, where the 
reduction for reflection :R = (_1)icp

-q-2) proceeds in 
analogy with the discrete case on both hyperboloids; 
this follows if we consider the limit p ---+ ° in the 
eigenfunction expansion (9) for f3 = t1T and from the 
additional restriction mentioned after Table II]. This 
concludes our analysis. 

From a physical point of view, the conformal 
group SOo(4, 2) of Minkowski space (considered as a 
group of motion of the three 5-dimensional mani
folds) and its reduction with respect to the Poincare 
group are of interest.6 Sin~e more relations 
always exist between the quantum numbers for the 
discrete representations than exist for the contin
uous ones, one expects the former to be of greater 
importance to physics. Only the discrete repre
sentations (and the representations characterized by 
'V = 0, :R = 1) on H! decompose into nothing 
other than representations of the Poincare group with 
real mass. As these representations have a direct 
physical interpretation, the more specific properties 
of (. e manifold H! may be relevant to particle 
physics.7 
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In the theory of multiply scattered partially polarized radiation, a key role is played by the integral 
equation 

J(t, x, z) = [r(o-li/o + fo'" K(lt - y/)J(y, x, z) dy, 0::; t ::; x, 

where J and K are square matrices, [ is the unit matrix, z is a parameter lying in the interval (0, I), 
and for the interval length x, 0 ::; x ::; x,, It is shown that this family of matrix integral equations can 
be transformed into a Cauchy problem that is readily solved by modern computing machines. 

1. INTRODUCTION 

A fundamental integral equation in the theory of 
multiply scattered partially polarized radiation is 

J(t, x, z) = Ie-(.,-t)/z + i" K(lt - yI)J(y, x, z) dy, 

o ~ t ~ x ~ Xl' 0 ~ Z ~ 1. 

The capital letters stand for n X f1' square matrices, I 
is the unit n X n matrix, and the matrix kernel K can 
be represented in the form 

K(r) = fe-r/z'W(Z') dz', r> O. 

The physical background is presented in Ref. 1, and 
references to earlier work are given there. The work 
by Sobolev2 is particularly valuable. 

In the first paper in this series,3 it was shown that 
the solu~ion of a certain Cauchy system provides the 
solution of the family of matrix integral equations 
for the source matrix J. There, an auxiliary matrix R, 
a function of an independent variable and two other 
parameters, is considered. The purpose of this paper 
is to present another Cauchy system that solves the 
integral equation for the matrix J. It involves two 
auxiliary matrices X and Y, which are functions of 
an independent variable and only one other param
eter. This is of great significance computationally. 

The Cauchy system is derived in the next section, 
and, following that, a validation of the initial-value 
method is given.4 A discussion of remaining points to 
be considered is then given. 

Paper III of this series will present numerical results 
for internal and external fields for partially polarized 
radiation in a finite slab with multiple scattering 
according to a Rayleigh phase matrix. Some numerical 
results for the scalar case are presented in Refs. 5 and 
6. Reference 7 contains related results for the matrix 
case. 

II. DERIVATION OF THE CAUCHY SYSTEM 

Consider the family of matrix integral equations 

J(t, x, z) = Ie-(.,-t)/z + i"K(lt - yl)J(y, x, z) dy, 

o ~ t ~ X ~ Xl' 0 ~ Z ~ 1, (1) 

where J and K are square n X n matrices, and I is the 
unit n X n matrix. The kernel K can be represented 
in the form 

K(r) = f e-r1z'W(z') dz', r > 0, (2) 

where W is a square n X n matrix. Differentiate Eq. 
(1) with respect to X to obtain the relation 

J.,(t, x, z) = _z-IIe-(.,-t)/z + K(x - t)J(x, x, z) 

+ f K(lt - yl)J.,(y, x, z) dy. (3) 

Introduce the square matrix <I> as the solution of the 
integral equation 

<I>(t, x) = K(x - t) + i" K(lt - yl)<I>(y, x) dy, 

o ~ t ~ x. (4) 

By using the principle of superposition for linear 
systems, we see that 

<I>(t, x) = fJ(t, X, z')W(z') dz', 0 ~ t ~ x. (5) 

Equation (3) may be regarded as an integral equation 
for the function J., whose solution is 

J.,(/, x, z) = -rIJ(/, x, z) + <1>(/, x)J(x, x, z), 

x ~ t. (6) 

By putting t = 0, we see that 

JiO, x, z) = -z-IJ(O, x, z) + <1>(0, x)J(x, x, z), (7) 

1673 
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which is a differential equation for the function 
J(O, x, z). Next, we obtain a differential equation for 
the matrix function J(x, x, z). 

Return to the integral equation (1) and replace t 
by x - t. The result is 

J(x - t, x, z) 

= Ie-tl• + f' K(lx - t - yI)J(y, x, z) dy. (8) 

By changing the variable of integration from y to 
x - y, Eq. (8) becomes 

J(x - t, x, z) 

= Ie-tl• + f' K(lt - yl)J(x - y, x, z) dy. (9) 

Through differentiation with respect to x, the above 
equation becomes 

~J(x - t x z) 
dx ' , 

= K(x - t)J(O, x, z) 

i'" d + K(lt - yl) - J(x - y, x, z) dy. 
o dx 

(10) 

This may be regarded as an integral equation for the 
function dJ(x - t, x, z)/dz, whose solution is 

d 
- J(x - t, x, z) = <I>(t, x)J(O, x, z). (11) 
dx 

These considerations may now be summarized. 
First, introduce the matrices X and Y by means of 
the definitions 

X(x, z) = J(x, x, z), (12) 

Y(x, z) = J(O, x, z), 0 ~ x ~ Xl, 0 ~ Z ~ l. 

(13) 

The differential equations (7) and (11) become 

X.,(x, z) = (f Y(x, z')W(z') dz') Y(x, z), (14) 

Y",(x, z) 

= -z-ly(x, z) + (f Y(x, z')W(z') dz')X(x, z), 

o ~ x ~ Xl' 0 ~ Z ~ 1. (15) 

According to the integral Eq. (1), the initial conditions 
at x = 0 are 

X(O, z) = I, 
YeO, z) = I. 

(16) 

(17) 

The differential equation for the matrix function J is 

J.,(t, x, z) = -z--1J(/, x, z) + <1>(/, x)X(x, z), 

Xl ~ x ~ t, (18) 

where 
<I>(t, x) = fJ(f, x, z')W(z') dz'. (19) 

The initial condition on the function J at x = t is 

J(t, t, z) = X(t, z), 0 ~ z ~ 1. (20) 

III. VALIDATION 

We now wish to show, conversely, that the solution 
of the Cauchy system in Eqs. (14)-(20) provides a 
solution of the matrix family of integral equations in 
Eq. (I), where the kernel K is given in terms of the 
matrix W by means of Eq. (2). Introduce the matrix 
Mto be 

M(t, x, z) = Ie-(x-t)l. + f' K(lt - yi)J(y, x, z) dy, 

O~t~X~Xl'O~Z~1. (21) 

Our task is to show that J = M. Wit accomplish this 
by showing that the matrices J and M satisfy the same 
Cauchy problem for 0 ~ t ~ x ~ Xl' It is easily 
shown that the matrix M satisfies the same differential 
equation that the.matrix J does. Verifying the initial 
condition at x = t is more lengthy, as will be seen. 

Differentiate both sides of Eq. (21) to obtain the 
equations 

M",(t, X, z) 
= _z-IIe-(x-t)l. + K(x - t)J(x, X, z) 

+ I''' K(lt - yl)[ -z-IJ(y, X, z) + <I>(y, x)X(x, z)] dy 

= -z-IM(t, X, z) 

+ (K(X - t) + So'" K(lt - yl)<I>(y, x) dY) X(x, z) 

= -z-IM(t,x,z) + (fM(t,x,Z')W(Z')dZ,)X(X,Z), 

x ~ t. (22) 

This shows that the matrix function M satisfies the 
same differential equation that the function J does 
for x ~ t. Next, we consider the initial condition at 
x = t: 

M(t, t, z) = I + EK(lt - yI)J(y, t, z) dy, 

o ~ t :::;; Xl' 0 :::;; Z :::;; 1. (23) 

Introduce the nomenclature 

P(x, z) = M(x, x, z) 

= I + f' K(x - y)J(y, x, z) dy 

= I + f'K(Y)J(X - y, x, z) dy, 

0:::;; X ~ Xl' 0 ~ Z ~ 1. (24) 
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The basic task remaining is to show that P = X, for ° ~ x ~ Xl and ° ~ z ~ 1. This is done by com
paring the Cauchy problem for P with that for X. 
Differentiate Eq. (24) with respect to x to obtain 

Pix, z) = K(x)J(O, x, z) 

1'" d + K(y) - J(x - y, x, z) dy. (25) 
o dx 

Keeping in mind Eqs. (18) and (15) and the initial 
conditions on the functions J(O, x, z) and Y(x, z), it 
is seen that 

J(O, x, z) = Y(x, z). (26) 

Introduce the auxiliary matrix function Z as the 
solution of the Cauchy system 

Zit, x, z) = (fJ(t, x, z')W(z') dz') Y(x, z), 

° ~ z ~ 1, x ~ t, (27) 

Z(t, t, z) = Yet, z). (28) 

By comparing the Cauchy systems that they satisfy, 
observe that 

Z(O, x, z) = X(x, z), ° ~ x ~ Xl' ° ~ Z ~ 1. 

(29) 

Now we obtain expressions for the partial deriva
tives J t and Zt. First, notice that the matrix function 
J t satisfies the differential equation 

[JtCt, x, z)]", = -z-lJtCt, x, z) 

+ (f[JtCt, x, z')W(z') dz')X(x, z). 

(30) 
For notational precision, introduce 

J1 = Jt , J2 = J.,. 

Then, from the equation 

J(t, t, z) = X(t, z), 

we obtain the matrix relation 

(31) 

(32) 

J 1(t, t, z) + J 2(t, t, z) = (f Yet, z')W(z') d~') Yet, z) 

(33) 
or 

J 1(t, t, z) = z-lX(t, z) 

- (fX(t, Z')W(Z') dZ')X(t, z) 

+ (f Yet, Z')W(Z') dz') Yet, z), 

° ~ z ~ 1, (34) 

which is the desired initial condition on the function 
J t at x = t. 

Next, the function'Y is introduced as 

'Y(t, x, z) = z-lJ(t, x, z) 

+ (fZ(t, x, z')W(z') dZ') Y(x, z) 

- (fJ(t, x, z')W(z') dz') X(x, z), 

° ~ t ~ x ~ Xl' ° ~ Z ~ 1. (35) 

We show tha t the function 'Y is actually the function Jt • 

By inspection, it is seen immediately that 

J1 (t, t, z) = 'Y(t, t, z). (36) 

Differentiation of both sides of Eq. (35) yields the 
equation 

'Y",(t, x, z) = Z-l( -z-lJ(t, x, z) + <1>(t, x)X(x, z» 

+ (fZ",(t, x, z')W(z') dz') Y(x, z) 

+ (fZ(t, x, z')W(z') dz') Yix, z) 

- (fJit, x, z')W(z') dz')X(X, z) 

- (fJ(t, x, z')W(z') dZ') X",(x, z). 

Through substitution, it becomes 
(37) 

'Y",(t, x, z) 

= -z-2J(t, x, z) + z-I<t>(t, x)X(x, z) 

+ [f (fJ(t, x, z")W(z") dz" 

X Y(x, Z'») W(z') dz'J Y(x, z) 

+ (fZ(t, x, z")W(z") dz") [ -z-l y(x, z) 

+ (fy(X, z')W(z') dZ')X(X, Z)] 

- (f( _(Z')-lJ(t, x, z') 

+ <1>(t, x)X(x, z'»W(z') dZ')X(X, z) 

- (fJ(t, x, z")W(z") dZ") 

x (i\(X, z')W(z') dZ') Y(x, z). (38) 

Through cancellation of like terms and use of the 
definition of the matrix 'Y in Eq. (35), the equation 
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for the matrix 'Y", becomes 

'Y.,(t, x, z) = -z-I'Y(t, x, z) 

+ (f'Y(t, X, z')W(z') dZ')X(X, z), 

x ~ t. (39) 

Since they are solutions of identical Cauchy systems, 
we conclude that 

'Y(t, x, z) = JI(t, x, z), 0 ~ t ~ x ~ XI' 

o ~ Z ~ 1. (40) 

For the matrix Z, introduce similar notation: 

ZI=Zp Z2=Z",. (41) 

Observe that for the function Zt we may write 

[Zt(t, x, z)]", = (f'Y(t, x, z')W(z') dZ') Y(x, z), 

x ~ t. (42) 

To obtain the initial condition in the matrix function 
Zt at X = t, we differentiate both sides of Eq. (28) to 
obtain the equation 

ZI(t, t, z) + Z2(t, t, z) 

= -z-IY(t, z) + (fY(t, z')W(z') dz')X(t, z). (43) 

It follows that 

ZI(t, t, z) 

= - (fX(t, z')W(z') dZ') Yet, z) - z-IY(t, z) 

+ (fY(t,Z')W(Z')dZ')X(t,z). (44) 

Introduce the new matrix 0 by means of the 
definition 

OCt, x, z) 

= -z-I Z(t, x, z) + (fz(t, x, Z')W(Z') dZ')X(X, z) 

- (fJ(t, x, z')W(Z') dz') Y(x, z), 0 ~ t ~ x. 

(45) 

By inspection, it is seen that 

O(t, t, z) = ZI(t, t, z). (46) 

Moreover, differentiation of both sides of Eq. (45) 
yields the result 

Q",(t, x, z) = -z-I Z",(t, x, z) 

+ (fZ"(t, x, z')W(z') dZ')X(X, z) 

+ (L1

Z(/, x, z')W(z') dZ')X.,(X, z) 

- (fJ",(t, x, z')W(z') dz') Y(x, z) 

- (fJ(t, x, z')W(z') dz') Y",(x, z). 

(47) 
By substitution, the last equation becomes 

0.,(/, x, z) = -z-I<I>(t, x)Y(x, z) 

+ (f<l>(/, x)Y(x, z')W(z') dz')X(X, z) 

+ (fZ(t, x, z')W(z') dZ') 

x (f Y(x, z')W(z') dZ') Y(x, z) 

- (f[_(Z,)-IJ(t, x, z') 

+ <I>(t, x)X(x, z')]W(z') dZ') Y(x, z) 

- (fl(t,x,Z')W(Z')dZ')[ -z-Iy(x,z) 

+ (fy(X, Z')W(Z')dz')X(X,Z)} (48) 

Through cancellation~ we finally obtain the relation 

O.,(t, x, z) = (f'Y(/, x, z')W(z') dz') Y(x, z), 

x ~ t. (49) 

Since the functions 0 and Zt satisfy the same Cauchy 
system, it is seen that 

Zlt, x, z) = OCt, x, z), X ~ t, 0 ~ z ~ I. (50) 

We are finally in a position to evaluate dJ(x - t, 
x, z)/dx by means of the chain rule of differentiation. 
The result is 

d 
-J(x - t x z) 
dx ' , 

= 'Y(x - t, x, z) - z-lJ(x - t, x, z) 

+ <I>(x - t, x)X(x, z) 

= z-IJ(X - t, x, z) 

+ (fZ(X - t, x, z')W(z') dZ') Y(x, z) 

- (fl(X - t, x, z')W(z') dZ') X(x, z) 

- Z-1 l(x - t, x, z) + <I>(x - t, x)X(x, z). (51) 
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The last equation simplifies to 

~J(x - t x z) 
dx ' , 

= (fZ(X - t, x, ZI)W(ZI) dZI) Y(x, z). (52) 

We next wish to show that 

Z(x - t, x, z) = J(t, x, z), 

o ~ t ::; x ~ Xl, 0 ~ Z ~ 1. (53) 

Observe that 

or 

P",(x, z) = [f (Ie-""Z' + f K(y)J(y, x, Zl) dy) 

X W(z') dZ'J Y(x, z). (59) 

Lastly, let 

Q(x, z) = Ie-""z + f K(y)J(y, x, z) dy, 

o ~ x ~ Xl' 0 ~ Z ::; 1. (60) 

We wish to show that 

Z(O, t, z) = X(t, z), (54) .Q(x, z) = Y(x, z), 0 ~ x ~ Xl' 0 ~ Z ~ l. (61) 

which follows from Eqs. (27), (28), (17), (14), and 
(16). Next differentiate both sides of Eq. (53), which 
yields 

~ Z(x - t x z) 
dx ' , 

= O(x - t, x, z) + <I>(x - t, x)Y(x, z) 

= -z-IZ(x - t, x, z) 

+ (fZ(X - t, x, ZI)W(ZI) dz')X(X, z) 

- (fJ(X - t, x, ZI)W(ZI) dZ') Y(x, z) 

+ <I>(x - t, x)Y(x, z). (55) 

This becomes, finally, 

~Z(x - t x z) 
dx ' , 

= -z-lZ(x - t, x, z) 

+ (fZ(X - t, X, Z')W(Z') dz') X(x, z), 

It is clear that 

Q(O, z) = YeO, z). (62) 

Also, differentiation shows that 

Q",Cx, z) 
= -z-le-",'zI + K(x)X(x, z) 

+ fKCY)( _z-IJ(y, x, z) + <I>(y, x)X(x, z») dy 

= -Z-IQ(X, z) + (fQ(X, ZI)W(ZI) dz')X(X, z). 

(63) 

By comparing Eqs. (62) and (63) against the Cauchy 
system for the matrix Y, it is clear that Eq. (61) holds. 

Eq. (59) for the matrix P becomes 

P",(x, z) = (f Y(x, ZI)W(ZI) dZI) Y(x, z), z ~ 0, 

(64) 

and clearly 

P(O, z) = I. (65) 

x 2 t. (56) We have finally obtained the result 

Equation (53) now follows by comparing the Cauchy 
system for the matrix function Z(x - t, x, z) in Eqs. 
(56) and (54) against that for the matrix function J 
contained in Eqs. (18)-(20). 

It follows that Eq" (52) may be rewritten as 

:x J(x - t, x, z) = (fJ(t, x, Z')W(Z') dZ) Y(x, z), 

x 2 t. (57) 

We may now return to Eq. (25), which becomes 

Pix,z) 

= (K(X) + fK(Y) lIJ(y,X,Z)W(zl) dz' dY)Y(X, z), 

(58) 

P(x, z) = X(x, z), 0 ~ x ~ Xl> 0 ~ Z ~ l. (66) 

It follows that 

M(t, t, z) = X(t, z), 0 ~ t ~ Xl' 0 ~ z ~ 1, 

(67) 

which is the desired initial condition on the matrix M. 
Since the matrices M and J fulfill the same Cauchy 
system for X 2 t, it is seen that 

J(t, x, z) = Ie-C"'-t)'z + fK('t - yI)J(y, x, z) dy, 

o ~ t ~ x ~ Xl, 0 ~ Z ~ 1, (68) 

which is the desired family of matrix integral equations 
for the function J. 
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IV. DISCUSSION 

Some corollaries follow readily from our earlier 
considerations. The matrix function <1>, defined in Eq. 
(19), satisfies the matrix integral equation 

<l>U, x) = K(x - t) + f' K(lt - y/)<I>(y, x) dy, 

0::; t::; x ::; Xl' (69) 

This follows readily by multiplying both siees of the 
integral equation (68) by the matrix Wand integrating. 

In Eq. (68) we replace t by x - t. This yields the 
relation 

J(x - t, x, z) 

= Ie-tlz + f'K('X - t - yj)J(y, x, z) dy. (70) 

Then change the variable of integration from y to 
x - y. Equation (70) becomes 

J(x - t, x, z) 

= Ie-tl• + fK('t - yj)J(x - y, x, z) dy. (71) 

In view of Eq. (53), it is seen that the matrix Z is a 
solution of the integral equation 

Z(t, x, z) = Ie-tl• + fK('t - yl)Z(y, x, z) dy, 

o ::; t ::; x ::; Xl, 0 ::; Z ::; 1. (72) 

Another Cauchy system for the matrices J and Z 
is provided by the differential equations (40), (35), 
(50), (45) and the initial conditions in Eqs. (26) and 
(29). It is assumed that the matrices X and Y have 
been precomputed. The computational utility of this 
last Cauchy system remains to be investigated. 

Finally, it remains to determine wide classes of 
matrix functions W for which the solution of the 
Cauchy problem does provide the solution of the 
original matrix integral equation, i.e., for which 
the various interchanges of the orders of limiting 
operations are valid. 
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A general definition of "cosine" and "sine" operators, C and S, for harmonic oscillator phase is 
proposed and its consequences examined. An important feature of the spectral analysis is the "chain 
sequence" condition which ensures that C and S have unit norm. The (nonunitary) operator U = C + is 
is shown to be an annihilation-type operator whose spectral properties bear a remarkable analogy to 
those of the standard annihilation operator, although its spectrum fills the unit circle rather than the 
entire complex plane. Statistical properties of the eigenstates of U are discussed briefly. 

I. INTRODUCTION 

This paper is concerned with an analysis of bounded 
Hermitian operators C and S ("cosine" and "sine"), 
whose properties are such that they may reasonably 
be associated with the classical concept of harmonic 
oscillator phase.1- 3 Since, as will be seen, there is a 
large class of such operators, it is of considerable 
interest to discuss them in terms of a general defini
tion applicable to all of them. 

This definition is arrived at in Sec. II via correspond
ence-principle-type arguments. (The operators used 
in Refs. 2 and 3 become a special case.) It is then 

state of U, when averaged over the argument of the 
eigenvalue, leads to a density operator which is very 
close to the Gaussian density operator5 (and is, in 
fact, exactly the Gaussian density operator when 
the choice of U corresponds to the special case of 
Refs. 2 and 3). The significance of this result from 
the information theoretic viewpoint is commented on. 

II. DEFINITION OF C AND S 

The oscillator with Hamiltonian 

(1) 

shown that the spectra of C and S fill the interval satisfies the equation 
(-1,1). However, an additional restriction is 
required to ensure that the spectra do not extend 
beyond this interval. This is embodied in the "chain 
sequence" theorem4 whose proof completes the 
definition and essentially completes Sec. II, the 
remainder of which is devoted to some examples of 
phase operators which meet the specifications. 

Perhaps the most interesting quantum mechanical 
aspects of oscillator phase are discussed in Sec. III, 
where the operator U = C + is is examined. Despite 
the fact that this operator cannot be unitary, it is 
shown to have many intriguing properties which are 
in striking analogy to those exploited by Glauber5 in 
the case of the annihilation operator. Thus, while 
the spectral radius of U is unity (as might reasonably 
be expected), its spectrum fills the unit circle in the 
complex plane, each interior point being an eigen
value associated with a normalizable eigenstate. These 
eigenstates are complete; in fact, "over-complete." 
Eigenvalues with magnitudes close to unity are associ
ated with large expectation values of the number 
operator. As is the case with Glauber's coherent 
states,6 the argument of the eigenvalue becomes 
identified with the phase of the oscillator in this limit. 

~ (mcoq + ip) = -ico(mcoq + ip) 
dt 

(2) 

both classically and, in the Heisenberg representation, 
quantum mechanically. Classically, the phase of the 
oscillator may be defined as 

cp = arg (mcoq + ip), (3) 

and satisfies 1> = -co. As has been noted,2 one cannot 
introduce a unitary operator which is an exponential 
function of an Hermitian "phase operator." However, 
Hermitian operators C ~nd S may be defined which 
satisfy commutation rules analogous to the classical 
Poisson bracket relations 

{cos cp, H} = co sin cp, {sin cp, H} = -co cos cpo (4) 

These commutation rules, which form the starting 
point of our discussion, are 

[C, N] = is, [S, N] = -iC, (5) 

where N is the oscillator number operator. If we write 

(6) 

However, one interesting way (among many) in the basic commutation rule becomes 
which the "U-states" differ from the coherent states 
is that the projection operator formed from an eigen- [U,N] = U. (7) 

1679 
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Equation (7) says, in turn, that 

v In) = fen) In - 1), (8a) 

where the In), n = 0, 1, 2, ... , are the eigenstates 
of the number operator and the fen) satisfy f(O) = 0 
plus such other conditions as will be appended below. 
(It may be noted at this point that V cannot be unitary 
since V 10) = 0.) We can, without loss of generality,7 
~hoose the fen) to be real and positive semidefinite 
so that 

vt In) = fen + 1) In + 1). (8b) 

Additional properties to be assigned to the f(n) are 
the folIowing: 

(i) fen) is bounded. This ensures the boundedness 
of C and S. 

(ii) fen) '=F 0 for n > ° and approaches unity 
monotonicalIy with increasing n. The nonvanishing, 
whose reasonableness will become clearer in context, 
stems from the fact that, in discussing the phase via 
the properties of V, we are making an "approximate 
polar decomposition" of the annihilation operator a.s 

Thus, we are able to write 

a = [(N + l)~I!(N + 1)]V 

= [(N + I)!I!(N + 1)](C + is), (9) 

where the operator functions of N have an obvious 
meaning. The argument for the approach to unity is 
supplied by noting that . 

C2 + S2 = Hvtv + vvt) (10) 
satisfies 

(C2 + S2) In) = Hf2(n) + f2(n + 1)] In), (11) 

so that we would expect Hf2(n) + f2(n + 1)] to 
approach unity for large n. 9 The monotonicity is a 
simplifying restriction which we shall see holds for 
physically motivated choices of the fen). 

The properties enumerated above are sufficient to 
show that the spectra of C and SIO contain every point 
on the interval (-1, 1). This may be accomplished by 
introducing the set of normalized states 

100n(4))) = 1 i eimt/> Irn), n = 0, 1,2, .... 
(n + l)! m=O 

(12) 

A short calculation then shows that the square of the 
norm of (V - eit/» 10/ n(4))) is given by 

II(V - eit/» 100n(4))) II 2 

= _1_ (1 + i [fern) - 1)2). (13) 
(n + 1) m=l 

However, [fern) - 1]2, rn = 1,2, ... , is a sequence 
of positive numbers decreasing monotonically to zero. 
Therefore, given an arbitrarily small (positive) E, we 
can always find an no(l:") such that [fern) - 1)2 < !E 
for m ;;::: no. Let n > no and write 

(14) 

We can thus choose n sufficiently large so that 

II(V - eit/» lo/n(4)))11 2 < E. (15) 

It folIows that 

II(V - eit/>)lo/n(4)))11 2 = II(vt - e-it/>)lo/n(4)))11 2 

- Pen + l)/(n + 1) ----+ 0 (16) 
n->co 

and 

II(C - cos 4» I o/n(4))) II 2 = ! II[(V - eit/» 

+ (V t - e-it/>)]\o/n(4)))112~0, (17) 

so that cos 4> is a point in the spectrum of C.Il Thus 
the spectrum of C (and S) contains alI points on the 
interval (-1, 1). 

The fact that the fen) are bounded and approach 
unity monotonicalIy is obviously not in itself sufficient 
to ensure that the spectrum of C is confined to the 
interval (-1, 1). This latter requirement places the 
most interesting condition on the fen). It is embodied 
in the following theoremI2 : 

Chain Sequence Theorem: A necessary and sufficient 
condition that the spectrum of C does not extend 
beyond the interval (-1, 1) is that the numbers 
U 2(n) (n > 0) form a "chain sequence"; i.e., that 
they can be written as I3 

if2(n) = (1 - gn-l)gn, 0 < gn < 1. (18) 

Proo!, We start with the fact that the spectral 
radius of C is eaual to its norm, which in turn can be 
written as 

IICII = sup {I (0/1 C 10/)1: III'¥)II = I}. (19) 
Let 

co 

\0/) = I Pnei6n In) (20) 
n=O 

with the Pn positive (or zero) and 1:=0 P; = 1. Then 

co 

(0/1 C 10/) = ~ Pn-lPn cos ((In - (In_l)f(n), (21) 
n=l 

and it is apparent that the maximum and minimum 
values of (0/1 C 10/) have the same magnitude which 
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is given by the maximum value of 

00 

However, if gN+1 = 1, it would follow from Eq. (27) 
with N replaced by N + I that there would be a choice 

.1 Pn-lPnf(n). 
n=l 

F or the proof of sufficiency, let 

fen) = 2[(1 - gn-l)gn]*, 

and note that 

(22) of the Pn such that feN + 2) ~ P N+2/ P N+l with PN+2 
arbitrary. This would imply the vanishing offeN + 2) 
since PN+2 could be made arbitrarily small. Thus 
gN+l < l. (The same argument holds for gl below.) 
Finally, if we choose P2 = P3 = ... = 0, Eq. (25) 
says that 

N *! 2 Z [Pn-l(1 - gn-l) - Pn(gn) ] 
n~1 

N N 

= Z p~ - gop~ - (1 - gN)PJ,; - L Pn-lPr,J(n) ~ 0, 
n~O n~1 

(23) 

so that the partial sums Z~~1 Pn-lPnf(n) satisfy 

N N 

Z Pn-lPnf(n) ~ L P; ~ 1. (24) 
n~1 n~O 

This proves sufficiency. 
In proving necessity, it is somewhat more con

venient to consider nonnormalized sequences Pn for 
which Z:=o p~ < 00, and to assume that 

00 00 

Z p~ - L Pn-lPnf(n) ~ ° (25) 
n~O n~1 

for any choice of the Pn. Our procedure consists of 
showing that: (a) If 

fen) = 2[(1 - gn-l)gn]!, n = 1,2,··· ,N ~ 1, 

(26) 

° < gn < 1, and go = 0, then 

feN + 1) = 2[(1 - Kvkv+1]! 

with ° < gN+1 < 1; (b)f(l) can be written as 

f(l) = 2(gl)!' ° < gl < l. 
Now, given Eq. (26), we have, for go = 0, 

N+l N+l 
L P~ - L Pn-lPnf(n) 
n~O n~1 

N !! 2 
= L [Pn-l(1 - gn-l) - pnCgn) ] 

71=1 

+ [PN(1 - gN)! - PN+1]2 

+ PNPN+1[2(1 - gN)! - feN + 1)]. (27) 

The quantities Po, ... ,PN+l can be chosen so that 
all but the last term on the right-hand side of Eq. (27) 
vanish. Ifwe also choose PN+2 = PN+3 = ... = 0, Eq. 
(25) then demands that feN + 1) ~ 2(1 - gN}!. 
Therefore, 

feN + 1) = 2[(1 - gN)gN+l]!, 0 < gN+1 ~ l. 
(28) 

[Po - t!(l)Pt12 + p;[l - tf\l)] ~ 0. (29) 

Choosing Po and PI so as to make the first bracket 
vanish, we have P(l) ~ 4 so that 

f('1) = 2[(1 - gO)gI]*' go = 0, ° < gl < l. (30) 

This completes the proof. 

Before examining some possible choices of fen), it 
should be noted that any sequence (of positive 
numbers) which is dominated term by term by a 
chain sequence is itself a chain sequence as is easily 
seen by considering the effect on Eq. (25) of decreasing 
eachf(n). 

The choicef(n) = 1, n = 1,2,···, is obtained by 
choosing gn = t. This is, in fact, the largest constant 
value fen) can have and still satisfy the chain sequence 
conditions.4 It follows that any sequence fen) which 
approaches unity monotonically from below will 
satisfy our conditions. A case in point is given by 

fen) ~ [n/(n + (X)]p, (31) 

with (X and {3 positive. By suitable maneuvering with 
(X and (3, fen) can be made extremely small for a 
large range of.: values of n without affecting the 
spectral properties of C and S. 

A somewhat more realistic choice is obtained by 
symmetrizing the classical expression for C, i.e., by 
writing 

C = imw[(2mH)-tq + q(2mH)-!] 

= H(N + t)-!(a + at) + (a + at)(N + i)-i]. 

(32) 
This leads to the sequence fl (n) given by 

fl(n) = t{[n/(n - i)]! + [n/(n + t)]!}. (33) 

In Ref. 1, it is shown that tn(n) is dominated term 
by term by the chain sequence (1 - hn _ 1)hn with 

hn = HI - (2n + 1)-1]. (34) 

Another possible sequence may be deduced from the 
symmetrized "polar-coordinate relation" 

mwq = H(2mH)!C + C(2mH)!]. (35) 
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This leads to 

hen) = 2(n)!j[(n - t)! + (n + t)~]' 
A simple calculation shows that 

(36) 

hen) = ![l + (~)!J > 1, (37) 
f2(n) 2 n2 - ! 

so that !n(n) is also a chain sequence. Bothh(ll) and 
hen) approach unity monotonically from above. 

III. SPECTRAL PROPERTIES OF U AND 
ASSOCIATED MATTERS 

The operator U = C + is, although not unitary, 
has interesting mathematical-physical properties in 
its own right. These stem from the following theorem: 

Theorem: The spectrum of U covers the unit circle 
in the complex plane. All points in the interior of 
the unit circle are eigenvalues of U associated with 
normalizable eigenstates. These states are complete, 
in fact, over-complete. The points on the unit circle 
(although in the spectrum of U) are not associated 
with normalizable eigenstates. 

Proof' Note first of all that a consequence of Eq. 
(16) is that the points on the unit circle in the com
plex plane belong to the spectrum of U.n Thus, the 
spectral radius of U is at least unity. We show that 
it cannot be greater than unity (and therefore is unity) 
by showing14 that 

lim II Uml1 1/m ~ 1. (38) 
m-+oo 

Start with any normalized 1'1") = I:=o Cn In). Then 

Um 1'1") = n~m Cn(gf(n - k») In - m) (39) 

and 
co n+m 

IIU m l'Y)11 2 = I ICn+m 1
2 II f2(k). (40) 

n=O k=n+l 
It follows that 

Ilumil = sup {IT f(k): n = 0, 1,2," .}. (41) 
k=n+l 

However, 

n+m 
IT f(k) = 2m[(1 - gn)gn+l(1 - gn+l) 

k=n+l 

X gn+2 ... gn+m-l(1 - gn+m_1)gn+m]l. (42) 

The product under the radical above contains m - I 
subproducts of the form x(l - x) with Os x S 1. 
Since max [x(l - x)] = 1, 

n+m 
II f(k) S 2m[4-(m-l)(1 - gn)gn+m]! S 2 (43) 

k=n+l 

and 

II um l1 1/m S 211m --+ 1. 
m-+O() 

(44) 

The next step is to write down the formal solution 
to the eigenvalue equation 

U Iz) = z Iz). (45) 

This is easily checked to be 

where A is a normalization constant. For Izl < I the 
series 

(47) 

converges by the ratio test [since the ratio of the 
(n + l)th to the nth term eventually becomes less than 
unity]. However, for Izl = 1, Eq. (43) says that 

Jl (f{ f2(k)r~ tN, (48) 

so that a normalizable eigenstate does not exist. 
"Over-completeness" follows from an argument 

of the type used by Cahill,l5 Thus, given a normalized 
state vector 1'If!) = In Cn In), the function 

A-
1('If! I z) = [ ct + J1 (gf(k)rC~znJ (49) 

is certainly analytic and regular for Izl < 1. Let Zl' 

Z2' ••• , Zk' ••• be a convergent sequence of complex 
numbers within the unit circle. If ('If! I Zk) = 0, 
k = 1,2, ... , then ('If! I z) must vanish identically for 
all z with Izl < 1. Therefore, Cn = 0, n = 0, 1,2, ... , 
and the only vector orthogonal to all IZk) is the null 
vector. It follows that the Iz) states associated with any 
convergent sequence of the above type are complete. 
This completes the proof. 

The relation between the argument of z and the 
phase of the oscillator in the state Iz) may be brought 
out by noting, first of all, a trivial consequence of Eq. 
(45), namely, 

(C) == t (zl (U + U+) Iz) = Hz + z*) = Izl cos cp, 
(50) 

where cp = arg z. Thus the expectation value of C 
approaches cos cp as Izl ~ 1. 

Now, Eq. (47) shows that the normalization factor 
IAI2, as a function of Iz12, decreases monotonically 
from unity to a limiting value of zero as Izl2 goes from ° ~ 1. Further, a short calculation gives the following 
expression for the expectation value of the number 
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operator ("mean occupation number"): 

(51) 

This results in the not unexpected conclusion that 
(N) becomes indefinitely large as Izl -->- 1. In fact, if 
the derivative in £q. (51) is nonvanishing at Izl2 = I, 
one could infer that, for Izl2 "" 1, 

(52) 

(The arguments for these conclusions are given In 

Appendix A.) 
The uncertainty in C may be found by writing 

(C 2) = t«V 2 + Vt2 + 2VtV + [V, vt]» 

= -} Izl2 (1 + cos 2cf;) + t([V, vt]), (53) 
so that 

(nC)2 == (C2
) - (C)2 = t([V, Vf]) 

= t IAI2 [f2(1) + i}f2(n + 1) - f2(n» 

X (g t(k)rllzI2n} (54) 

In Appendix B it is shown that (nC)2 becomes 
indefinitely small as Izl-->- 1. [The arguments involving 
(C) and (nC)2 hold mutatis mutandis for the operator 
S.] 

For the case fen) = 1 (n > 0) the Iz) states are 
easily seen to be 

Iz) = 1 i ( (N) )!n ein 4> In) (55) 
(l + (N»)! n~O 1 + (N) , 

where 

z = [(N)/(1 + (N»)]!i4>. (56) 

The expressions corresponding to Eqs. (50) and (54) 
are 

(C) = [(N)/(1 + (N»]! cos cf; (57) 
and 

(nC? = [4(1 + (N»]-l. (58) 

If one uses these Iz) states to form the superposition 
of projection operators 

J
21T dcf; 

p = -Iz) (zl, 
o 217' 

(59) 

the result is the Gaussian density operator. 5 As with 
the coherent states of Glauber, these Iz) states are not 
orthogonal for different values of z. However, two 
states with the same (N) but different cf; have the scalar 
product 

(Izl eW Ilzl ei 4» = (1 - IZI2)/(1 - Izl2 i(4)-4>')) (60) 

so that they become approximately orthogonal for 
large (N). In this case the factor (217')-1 in Eq. (59) may 
be thought of as approximately representing a uniform 
probability density for the distribution of cf; over the 
interval (0,217'). 

One might expect that the situation would not be 
markedly different for the Iz) states formed by using 
f1(n) or hen) of Eqs. (33) and (36). Since these 
sequences decrease monotonically to unity with in
creasing n, the quantities n;~J(n) increase monot
onically with n. However, we have seen in Eq. (43) 
that these products are bounded. Therefore, they 
converge as n -->- 00. In practical terms, the converg
ence is rather rapid. [For example, f1(1) = 1.12, 
h(6) = 1.00 to three significant figures.] Thus the 
normalization factor IAI2 should not be a substantially 
different function of Izl2 than it is for the case of Eq. 
(55) where IAI2 = (1 - IzI2). For large (N), certainly, 
Eq. (52) should hold quite accurately, which in turn 
implies the relation between (N) and Izl given in £q. 
(56). The density operator of Eq. (59) might then be 
expected to have properties very similar to those of 
the Gaussian density operator. In short, the inherent 
"statistics" of the Iz) states are not strongly dependent 
on a reasonable, physically motivated choice of C and 
S. [This would not be the caseforthef(n) ofEq. (31), 
although they satisfy our formal requirements.] 

We note also that the Iz) states are ones for which 
the Schwartz inequality 

(nC)2(nS)2;;::: I«C - (C»(S - (S»))1 2 (61) 

becomes an equality. However, the above uncertainty 
product does not reach a minimum for any Izl < 1, 
but approaches zero in the limit as (N) -->- 00.16 

From the information theoretic point of view,l? 
the Gaussian density operator represents a state of the 
oscillator in which only the mean occupation number 
is specified. The fact that it is obtained by a uniform 
superposition of Iz)(zl over arg z is suggestive, since 
such an averaging process "washes out" phase 
information. This tempts the speculation that in some 
sense the Iz) states should represent pure states of 
maximum phase resolution for given (N). However, 
such speculation runs afoul of the fact that the 
coherent states of Glauber, for example, seem to be 
just as good, if not better, as far as uncertainties in 
C and S are concerned. Thus, for a Glauber state of 
large (N),6 

(LlC)2 "" (sin2 cf;)/4(N). (62) 

[This angle dependence of (nC)2, which is what one 
would reasonably expect, is not present in Eq. (58).] 
Thus the physical significance, if any, of Iz) remains 
an open question. 
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APPENDIX A 

Let Izl2 = x and IAI2 = f(x). f(x) decreases monot
onically from unity at x = 0 to zero at x = 1. If we 
choose an arbitrarily small (positive) number E, the 
mean value theorem says that there is a 15 with 
o ::;; 15 ::;; Esuch that 

-f(I - E) = 1'(1 - b)E, (AI) 

where the prime indicates differentiation. Then 

_ (1 - b) 1'(1 _ b) = (1 - M f(1 - E) > (1 - b). 
f(1 - d) E f(1 - b) - E 

(A2) 

[The inequality follows from the monotone decreas
ing property of f(x).] This establishes the indefinite 
increase of (N) as Izl2 -+ 1. If1'(x) is finite and does 
not vanish at x = 1, we may directly write the 
approximation 

_ (1 - b) 1'(1 _ b) "" (1 - 15) . (A3) 
f(1 - b) 15 

This gives Eq. (52). 

APPENDIX B 

We show that (~C)2 in Eq. (54) becomes small for 
large (N) by considering the cases of monotone 
decreasing and monotone increasing fen) separately. 

For fen) monotone decreasing to unity, we have 
immediately 

(B1) 

The desired result follows from the behavior of IAI2. 
In the case of monotone increase to unity, write 

fen) = 1 - En with 0 ::;; En < 1. Then 

f2(n + 1) - pen) 

= (En - En+1)(2 - En - En+1) ::;; 2En, (B2) 

SO thatf2(n + 1) - pen) is dominated by a sequence 
which is monotone decreasing to zero. Equation (47) 
shows that, for a normalized Iz), 

for any No ?: 1. Given an arbitrarily small (positive) 
E, there is an No such that En ::;; E for n ?: No. It then 
follows that 

(~C)2 ::;; t IA\2 [f2(1) + 2El':~1 (gf 2(k)fJ + tEo 
(B4) 

Finally, by choosing Izl sufficiently close to unity 
«N) sufficiently large) the behavior of IA 12 ensures 
that we can always make (~C)2 ::;; E. 

Note added in proof A recent paper by Zak18 dis
cusses the phase operators which result if fen) is 
defined by means of the chain sequence generated by 
Eq. (34) above. 

1 An abbreviated, and less general, version of some of the results 
presented below was first published by one of us (E. C. L.) in Nuovo 
Cimento 56B, 183 (1968); 57B, 251 (1968). 

• The idea of "cosine" and "sine" operators was developed by 
L. Susskind and J. Glogower, Physics 1, 49 (1964). 

3 For a review of the quantum mechanical discussion of oscillator 
phase and an exhaustive list of references see P. Carruthers and 
M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968). 

'H. S. Wall, Analytic Theory of Continued Fractions (Van 
Nostrand and Co., Inc., New York, 1948), p. 79ff. 

5 R. J. Glauber, Phys. Rev. 131, 2766 (1963). 
6 P. Carruthers and M. M. Nieto, Phys. Rev. Letters 14, 387 

(1965). 
7 As far as the spectral properties of C and S are concerned, if 

f(n) = If(n) I eiOn , we may equally well work with the unitarily 
equivalent operators Bt CB and Bt SB, where 

Bin) = exp (-i .i 6;) In) 
1=0 

and 00 is arbitrary. 
8 Our basic commutation rules are consistent with writmg 

a = (N + l)f U = U(N)t. This would involve the choice f(n) = 
1 - oon. 

• Although C' + S' is a constant of the motion (i.e., commutes 
with N), there is no possible choice of f(n) consistent with the desired 
spectra such that C' + S' = 1 (unit operator). In fact, the only 
choice of f(n) which would do this is f(2n) = 0;f(2n + 1) = (2)t. 
It then follows that C In) = (2)-t In ± I) depending on whether n 
is even or odd. The norm of C would then be 2-t. 

10 It is easily checked that S = eti1TNCe-li1TN so that we may 
restrict our spectral analysis to C. 

11 See, for example, P. Hallllos, Introduction to Hilbert Space 
(Chelsea, New York, 1957), 2nd ed., p. 51. 

12 Our proof of the "chain sequence" theorem is a slightly 
modified version of that given in Ref. 4, p. 86. 

13 go can be zero. 
14 The limit on the left-hand side of Eq. (38) defines the spectral 

radius. See, for example, F. Riesz and B. Sz.-Nagy, Functional 
Analysis (Ungar, New York, 1955), p. 425. 

16 K. E. Cahill, Phys. Rev. 138, B1566 (1965), Sec. VII. 
16 See, in this regard, the paper by R. Jackiw, J. Math. Phys. 9, 

339 (1968), especially Sec. IV. 
17 A. Katz, Principles of Statistical Mechanics (W. H. Freeman 

and Co., San Francisco, 1967). 
18 J. Zak, Phys. Rev. 187, 1803 (1969). Note that Zak'sf(n) is not 

to be confused with our f(n). 
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The situation where a normally incident plane monochromatic electromagnetic wave is reflected by 
an expanding dielectric slab is analyzed by means of the invariant-imbedding concept. An approximate 
expression for the spectrum of the reflected radiation is obtained. 

INTRODUCTION 

In recent years considerable work has been done in 
the area of the electrodynamics of moving media. 
Much of this work involves an integrated moving 
region; that is, there exists a single Lorentz frame in 
which all of the medium in the region is at rest. If the 
region is surrounded by a vacuum, the problem is 
merely a matter of Lorentz transformation of the fields 
from the rest frame of the medium in the region to the 
laboratory frame (since it is usually easier to solve for 
the fields in the rest frame of the medium).! However, 
if the velocity of the medium is a continuous function 
of position, the number of Lorentz frames with which 
one must contend becomes infinite and that is the 
situation which arises when a plane wave is scattered 
by an expanding dielectric obstacle. One might then 
resort to solution of Maxwell's equations in the 
laboratory frame using Minkowski's constitutive 
relations. 2 This conveniently takes into account the 
infinity of Lorentz frames but, in general, it is mathe
matically quite complicated.3 In this paper a more 
efficient method of dealing with this situation is used 
in analyzing the reflection of a plane wave by an 
expanding dielectric slab. The dielectric to be con-

. sidered is a nonconducting, nonmagnetic, nondis
persive compressible fluid. The velocity and density of 
the fluid are specified a priori and are assumed to be 
unmodified by the presence of the electromagnetic 
radiation. The formulation is quasistatic and is carried 
out to first order in the velocity of the medium. 

DESCRIPTION OF THE PROBLEM AND 
THE METHOD OF SOLUTION 

The configuration to be considered is shown in 
Fig. 1. A unit-amplitude linearly polarized plane 
monochromatic electromagnetic wave is normally 
incident from the left on a slab of dielectric ffuid. The 
velocity of the fluid is purely zdirected, and the index of 
refraction n and the velocity f3 = vic of the fluid are 
considered to be independent given functions of posi
tion z and time t. Thus, the slab is stratified in the z 
direction. The reflected wave is characterized by its 

spectral density function R. It is assumed that the 
properties of the slab vary slowly enough to allow a 
quasistatic analysis; i.e., R is a function of frequency 
and time but time is treated as a constant. This means 
that the time required for the electromagnetic wave to 
completely penetrate the object must be much shorter 
than the time during which the properties of the object 
change significantly. Moreover, since the analysis 
leads to a spectrum function which depends on time, 
it must be required that this time dependence be much 
slower than the rate at which the electromagnetic 
fields oscillate; otherwise, the time-varying spectrum 
description of the scattered wave will be of little value. 

The method to be employed is known as invariant 
imbedding. It appears that the first application of the 
invariance concept to electromagnetic scattering was 
done by Ambarzumian in his study of the scattering 
of light by a foggy medium. 4 A similar approach has 
since been used extensively in astrophysical problems.5 

This eventually led to the development of the method 
now known as invariant imbedding which has been 
very widely applied.6 Recently, invariant imbedding 
has been applied in finding the scattering from 
inhomogeneous nonconducting obstacles7- 9 and 
Kritikos, Lee, and Papas used the concept to obtain 
the scattering of plane waves by a jet stream which is 
inhomogeneous by virtue of a nonuniform velocity 
profile.10 

In applying this method, it will be assumed that the 
reflection from that portion of the slab to the right of 
a given plane z is known and the change in reflection 
due to the addition of an infinitesimal layer of material 
at this plane will be found. This will result in a differ
ential equation for R which is to be integrated from 
the right boundary of the slab, where the reflection is 
known, to the left boundary, where it is to be found. 
R is defined in a Lorentz frame (T, s) comoving with 
the fluid at z at time t and is, therefore, a function of 
T, Wout, Win, and S, where Win is the frequency of the 
incident wave viewed in the comoving frame (a 
function of T and s) and Wout is the frequency variable 
in the spectrum of the reflected wave as seen in the 
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,B(t,b) 

a b 

-l-z 
FIG. 1. Reflection from the general slab. 

comoving frame (also a function of T and '). Note 
that this approach circumvents calculation of the 
electromagnetic fields within the scatterer. 

FORMULATION OF THE PROBLEM 

Figure 2 shows the configuration used to derive the 
differential equation for R(t, Wout, Win, z). Recall that 
the laboratory frame coordinates are z and t and the 
comoving frame coordinates are T and,; z = , when 
t = T. It is assumed that R is known at , + ~, and a 
layer of fluid of thickness ~, having constant index 
n = n( T, , + ~O and a constant velocity gradient is 
added at , + ~, and extends back to ,. The material 

TIME·T·t 

n'n(T~C) 

p-o 

INCIDENT WAVE 

("'IN) 

. . 
C 
Z 

FIXED BOUNDARY 

n=n(T,t+t.t) 

.B-C 

FIG. 2. Configuration for derivation of the invariant imbedding 
equation for the reflection function. 

to the left of the added layer has a constant index 
n = neT, ') and zero velocity in the comoving frame. 
The spectrum function of the incident wave is a (j 

function at Win' The R; shown in Fig. 2 represent the 
spectrum functions of the results of the indicated 
multiple reflections. 

It may be shown (by direct substitution into Max
well's equations using the Minkowski constitutive 
relations for the moving medium)2 that a plane wave 
solution for E within the added layer is 

E- - E ( . wiz 
n + (3 d .) = ex 0 exp 1- --- Z - IWt , 

col + n{3 
(1) 

where Eo is a constant amplitude factor. Requiring 
continuous tangential E and H at the boundary' while 
using R(t, Wont' Win, , + ~'), which is assumed 
known, yields (to first order in ~') 

where 

W' = win(1 - n~(3), w" = (J)out(1 + n~(3), 
and 

~(3 

Similarly, 

foo 1 on dw 
Ra = R(T, W, Win, ') - - R(T, Wont' W, n - ~,. 

-00 2no' 2w 
(2c) 

The factors 1 ± nd{3 arise because R at , + d' and 
R at , are defined in different Lorentz frames. Now, 
R j for j > 3 is of second or higher order in ~, and may 
be neglected. Thus R(,) = Rl + R2 + Ra and, in the 
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limit as ~~ --+ 0, one obtains 

oR 0(3 oR 0(3 oR - + W n--- - w· n-
o~ out 0' oW out III o~ OWin 

1 on( 
= 2n 0' 2m5(wont - Win) 

- (e<) R(T, OJ, Win, ~)R(T, Wont' OJ, s) diO) 
J-oo 27T 

. n 0(3 
- I - (Wont + win)R + 2n - R. (3) 

c os 
Re-expressing the equation in terms of laboratory 
coordinates (quasistatically and to first order in (3) 
gives 

oR 0(3 oR 0(3 oR 
- + Woutn--- - Winn --
OZ OZ oW ont OZ OW in 

= - - 2m5(wont - Win) 1 on( 
2n OZ 

- (00 R(t, (0, Win, z)R(t, Wout , OJ, Z) dOJ) 
loo 27T 

. n ( )R 2 0(3 R (4') - I - Wout + Win + n - . 
C oz 

That is, S --+ z and T --+ t and the form of the equation 
is unchanged. It should be emphasized that R, Wont' 
and Win are still evaluated in the comoving frame at 
each position z and time t. 

SOLUTION OF THE PROBLEM 

For a sufficiently tenuous slab, the integral term 
may be neglected and the equation becomes linear. 
The solution, valid for (32 « I, is easily obtained by 
the method of characteristics. The result is 

[
0 1 on ( 1" 0(3 ) R = - - 2m~ W - Wo + 2wo n -, dz' 

• a 2n OZ a OZ 

X exp ( - f2n :~, dZ
I

) 

X exp e (W + wo) fn dZ') dz 

. ( (0 0(3 ,) + R(t, Wout(b), win(b), b) exp - Ja 2n OZ' dz 

Carrying out the integration of the b function yields 

R(t, w, wo, a) 

= - - exp - 2n - dz 
27T (2n)-10n/oz I ( iZ(W) 0(3 ') 

Wo 2n o(3/oz "~z(w) a oZ' 

X exp (~(W + Wo) f(W)n dzl) W(w;w(b), w(a» 

( 
[b 0(3 ') + R(t, wont(b), win(b), b) exp - Ja 2n OZ' dz 

X exp G(w + Wo) fn dz l
), (6) 

where 

W(z) = wo(t - 2fn :~,dZ} (6'a) 

W(~; p, q) = 1, for p ~ ~ ~ q, 

= 0, otherwise, (6'b) 

and it is assumed that (6'a) is uniquely invertible. In 
many cases exp [-S~ 2n(op/oz') dz'] R:; I so that, as a 
"lowest-order" approximation, one may use the fol
lowing formula: 

R(t, w, wo, a) 

27T (2n)-10n/oz I 
= - Wo 2n o(3/oz z=z(w) 

X exp (~(W + wo) f(W)n dZ') W(w; web), w(a» 

+ R(t, wout(b), win(b), b) 

X exp G (W + Wo) f n dZ} (7) 

This expression holds for a tenuous, slab with con
tinuous n(t, z) and (32 « 1. The first term gives the 
contribution from the interior of the slab and is band
limited due to the presence of the W function. The 

X exp (~(W + Wo) fn dZ} 

second term accounts for a possible discontinuity in n 
at the plane z = b and for a possible scatterer located 
to the right of z = b. It remains for us to deal with the 
possibility of an index discontinuity at z = a. 

(5) Suppose R(t, w, wo• a + EO) is known and R(t, w, 

where 

fa 0(3 I 

wout(b) = W - Wo n - dz , 
b OZ' 

fa 0(3 I 

winCh) = Wo + Wo n - dz . 
o oZ' 

wo, a - EO) is desired,given that n is discontinuous at 
z = a, i.e., lim [net, a + EO) - net, a - EO)] -:F 0, as EO-+ 
O. This situation is shown in Fig. 3. The laboratory 
frame is comoving with the discontinuity at z = a. 
Referring to the figure, we easily see that the limit of 
the expression for R immediately to the left of the 
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FIG. 3. Discontinuity in n at z = a. 

discontinuity as € ---+ 0 is 

lim R(t, w, wo, a - €) 
e-+o 

where 

= lim (Yo(t) + to(t)R(t, w, wo, a + €)~(t) 
e-+o 

+ L:to(t)R(t, w, w', a + €)ro(t) 

x R(t, w', wo, a + €)~(t) dw' + ... ), (8) 
211' 

'oct) = [net, a + €) - n(t, a - €)]/ 

[n(t, a + €) + net, a - E)] = -;'o(t), 

to(t) = 2n(t, a + €)/[n(t, a + t-) + net, a - E)], 

to(t) = 2n(t, a - €)/[n(t, a + €) + n(t, a - E)], 

where the arrows indicate the direction of the incident 
wave for each reflection or transmission. 

Equations (7) and (8) provide a complete pre
scription for obtaining the approximate spectrum of 
the wave scattered from the slab given net, z) and 
P(t, z). Consistent with the accuracy to which R is 
given by (7), one need only retain the first two terms in 
(8). 

ADDITIONAL COMMENTS 

It may be observed that to first order in p the 
magnitude of the solution R may be written as a 
function of w - Wo only, the wo's not associated with 
w in this way being treated as constants. This suggests 

writing the differential equation for R in the form 

oR + 2nw op oR 
OZ OZ ow 

= 1- on (2m5( w - wo) 
2n OZ 

- roo R(t, OJ - wo, z)R(t, w - OJ, z) dOJ) 
J-oo 211' 

- i ~(w + wo)R + 2n op R, (9) 
c OZ 

which facilitates taking the Fourier transform. The 
result is 

oR _ n(l + y OP)OR 
OZ OZ oy 

= (1 - R2).l on + [3n op _ 2in wo(l + y OP)]R' 
2n OZ OZ C OZ 

(10) 
where 

R(t, y, z) 

= 2~ L: R(t, w - wo, z) exp [ _i(W ~ wO)yJ dw. 

This equation, though not as accurate as Eq. (4) 
as far as the phase is concerned, is more convenient to 
deal with if one wishes to account for the nonlinear 
term. As a check, this equation was solved for a 
tenuous slab (neglecting R2) and the inverse transform 
of the result is as follows: 

R(t, w - Wo, a) 

211' (2n)-lon/oz I ( JZ(ro) op ,) 
= - - exp - 2n - dz 

Wo 2n ofJ/oz z=z(ro) a oz' 

[ 
i (z(ro) (("(ro) ofJ ) ] 

X exp ~ (w + WO) Ja n exp Ja n oz' dz' dz 

X W[w; web), w(a)] 

+ R[t, [w - web)] exp (fn :: dZ) bJ 

X exp (- f2n ::. dz') 

X exp [~ [2w(b) - w + wo] 

X fn exp (fn ;: dz') dZ]' (11) 

where 

w(z) = Wo - 2W{1 - exp (- fn :: dZ')]. 
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which is identical (to first order in (3) with (6) except 
for the expected discrepancy in the phase of each term. 

The use of R(t, W - Wo, z) as indicated above is 
also helpful when dealing with an index discontinuity 
because it converts the integrals in (8) into convolu
tions. Fourier transformation then leads to a geo
metric series which may be summed. Inverse Fourier 
transformation results in 

R(t, W - wo, a - E) 

- ~ J'" R(t y a + E) = ro(t) + fo(t)to(t) --. -,--,--,' '-"---'---
-00 1 - ro(t)R(t, y, a + E) 

X exp [i(W ~ wo)yJ dy. (12) 

CONCLUDING REMARKS 

This paper presents a method of determining the 
frequency spectrum of the reflected electromagnetic 
wave resulting when a plane monochromatic electro
magnetic wave is normally incident on a stratified 
nonconducting slab of fluid. Details of this formulation 
and a similar one for the transmission problem may be 
found in Ref. 11. The technique employed is also 
applicable, in principle, to a similar problem in which 
an electromagnetic wave is obliquely incident on the 
slab. There one would expect both a frequency 
spectrum and an angular spectrum in the reflected 
wave. The formulation, however, has not been carried 
out in detail as yet. Work is currently proceeding on 
the application of the invariant imbedding concept in a 

study of the scattering of a plane electromagnetic wave 
by an expanding dielectric sphere. 
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The electromagnetic field given by Cohn, according to which the radiation from a classical spinning 
point charge is independent of the particle's spin, is shown not to satisfy Maxwell's equations. Refer
ences are given to earlier expressions, which also correspond with quantum theory. 

In a recent paper, 1 Cohn tries to generalize the 
potentials from a static point charge with a magnetic 
dipole moment ("spinning" charge) to the covariant 
form corresponding to an arbitrary translational and 
"rotational" motion of the particle. He then obtains 
the surprising result that no term of the electro
magnetic field caused by the dipole moment varies as 
the inverse distance, and that therefore this field 
does not contribute to the radiated energy and 
momentum. The paper contains no references to 
standard treatments of magnetic dipole radiation, 
nor to earlier papers on the problem in question. 

In the present paper, we demonstrate that Cohn's 
expression for the field does not satisfy Maxwell's 
equations, because certain terms are lacking, even in 
the rest system. 

For the special case of a charge at rest and with a 
time-varying magnetic moment fL(t), Cohn's expression 
in his Eq. (12) for the dipole parts of the potentials 
reduces to the form 

where, with c = 1, 

t' = t - r, f = rlr. 

Now consider Maxwell's equation, for r > 0: 

oEt 
V x Bt - - = o. at 

The left-hand side becomes 

so that Eq. (3) is not satisfied. 

(2) 

(3) 

However, the (well-known) form 

A - fL(t') x f + {L(t') x i_V fL(t') 
t- - x--

r2 r r 
(5) 

satisfies 

(V2 - :t:)At = O. (6) 

The covariant generalization of (5) (with <l>t = 0) is 
given in the papers of Ellis,2 Ward,3 Kolsrud and 
Leer,4 and Monaghan. 5 In the momentary rest system 
(with acceleration v¥: 0), they obtain 

A fL x i ,i x i fL x [(v x i) x i] (7) t=--+--+ , 
r2 r r 

<l>t = (v x fL)· fir. (8) 

The integrated radiation intensity is found in invar
iant form in Ref. 4. When v = v = 0, it reduces to the 
well-known expression tip. In the same reference the 
total radiation intensity from a point particle with 
charge e and (rest system) magnetic moment fL is 
also given. Besides the usual point charge term 
~e2u U (where u = d2x IdT2 with x = it and T = 
3 /l /l /l /l' 4 

proper time) and the pure dipole terms, there is a 
cross term of the form 

ieAf/lvu/luv' (9) 

Here Af/l
V 

is the magnetic moment tensor, which in 
the rest system has the components 

M:J) = Eiikflk, M:f) = O. (10) 

The invariant (9) may then be expressed by rest-system 
quantities as 

lev. (ll x fL). (11) 

This term corresponds exactly with the spin term in 
the low-energy and long-wave approximation of the 
quantum theoretical expression for spontaneous 
emission, as shown in Ref. 4. 

1 J. Cohn, J. Math. Phys. 10, 799 (1969). 
• J. R. Ellis, Proc. Cambridge Phil. Soc. 59,759 (1963); J. Math. 

Phys.7, 1185 (1966). 
3 G. N. Ward, Proc. Roy. Soc. (London) 279,562 (1964); Proc. 

Cambridge Phil. Soc. 61, 547 (1965). 
, M. Ko1srud and E. Leer, Physica Norvegica 2, 181 (1967). 
S J. J. Monaghan, J. Phys. AI, 112 (1968). 
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The unitary condition, or the constraint imposed by ·the conservation of probability, is examined for 
certain approximate solutions to physical scattering problems. The unitary condition is shown to be 
preserved for an approximate nonrelativistic S matrix derived by a rather generalized moments method. 
The unitary condition, or conservation theorem, is shown to be satisfied independent of the accuracy of 
the approximate solution under certain specifically defined conditions. 

The unitarity condition, or the constraint imposed 
by the conservation of probability, has always played 
an important role in physical scattering problems. In 
recent years, many people have come to believe that 
the S matrix, tGgether with the unitarity condition 
and certain assumed analytic and symmetry properties, 
may actually be sufficient to describe the dynamics of 
any physical system. l More recently, Venezian02 pro
posed a representation for the relativistic scattering 
amplitude, which does not satisfy the unitarity con
dition explicitly. Owing to the impressive successes of 
the Veneziano model, much effort is now being spent 
to make it satisfy the unitarity condition. Therefore, 
it is of interest to investigate, even in the nonrelativistic 
regime, the conditions imposed by the conservation of 
particles on the approximate quantum mechanical 
wavefunction. The related problem of scattering of 
electromagnetic waves in the classical regime has been 
studied elsewhere.3 

We intend to show that the particle conservation 
theorem is satisfied by a broad class of approximations 
to solutions of the SchrOdinger equation 

- :~ V2
tp - C~C A· Vtp) + G~22 + eo/)tp 

+ ~ atp = 0. (1) 
i at 

For simplicity, we will let A = 0 here, although the 
conservation theorem is satisfied by approximate 
solutions of more complex forms of (1). We include 
scalar scattering from a static potential 0/ only. 

With the particle current density given as 

J = (eIiJ2im)(ipVtp - 1jJVip), 

where the bar denotes the complex conjugate, the 
conservation of particles is readily expressible as the 
integral 

I = III v. J dv = IIJ· ds = 0, (2) 
v s 

where S is the surface surrounding the volume V over 
which 0/ :;i: 0. We assume, for convenience, that the 
source of a steady-state stream of particles of energy 
E, incident upon 0/, is exterior to V. Under these con
ditions, (1) becomes 

(V2 + k 2)tp = Utp = UtpR' (3) 
where 

U = (2meJIi2)f, k 2 = 2mEJ1i2, 

and tp = tpv in V. The state tpi of the incident particles 
satisfies 

(4) 

If G is the appropriate Green's function for 
(V2 + k 2

), then the scattered state tps is given by 

(5) 

and 

tp = tpi + tps = tpi - III GUtpv dv. (6) 

v 
Now (6) is a Freqholm integral equation (of the second 
type) for tpv. If this integral equation is solved for 
approximate tpv, tpv

a
, then the corresponding approx

imate tp, tpa' is 

tpa(x) = tpi(X) - III G(x, x')U(x')tpVa(X') dv', (7) 

v 
1691 
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where we note that "Pa"t. "Pva in V. When this ap
proximate "Pa is substituted into the conservation 
equation (2), we obtain, noting from (7) that 
(V2 + k2)"Pa = U"PVa, 

fa = fff[ U"Pva( ifi - fff GUifva dV') 
V V 

- Uifva( "Pi - fff GU"PVa dV')] dv. (8) 
V 

We now consider the conditions for which (8) will be 
identically zero. 

An approximation for "Pv may be given by 

N 

U"PVa = :2 O(nllln, (9) 
n=l 

where the Illn' n = 1, ... ,N, may form a basis in 
some subspace and the coefficients O(n are to be deter
mined later. Substitution of (9) in (8) yields 

fa = 0(. ['1fi - G~] - ~. ["Pi - GO(], (10) 
where 

and 

ffIU'1fva"Pidv=m~l~m"Pim==~·"Pi. (12) 
V 

The quantities 0( and "Pi are matrix vectors, while G is a 
square matrix: 

Gmn == fff dv fff dv'<I>m(x)G(x, x')llln(x'), 
V v 

"Pim == Iff dV<l>m(x) "Pi(X). 

v 

We now determine what class of 0( (or "Pv) will 
a 

satisfy fa = 0. If, in general, the coefficients O(n are 
determined from a (matrix) solution of 

HO( = "Pi - GO(, (13) 

then we find that 

fa = 0( • H~ - ~ • HO( ~ 0, (14) 

ifHisHermitian (Hmn = Hum). Wenote,inparticular, 
that if H is the identity matrix H = 1, then (13) 
is physically meaningful in that it determines 0( by 
a moments or Ritz4 solution of the integral equation 
for "Pv [Eqs. (5) and (6)]. The broad class of 0( defined 
by (13) and (14) may not, however, have direct 
relevance to the scattering problem. 

1 See, for example, G. F. Chew. S-Matrix Theory of Strong 
Interactions (Benjamin, New York. 1961). 

2 G. Veneziano. Nuovo Cimento 57A, 190 (1968). 
3 N. Amitay and V. Galindo, IEEE Trans. Antennas Propagation 

AP·17, No.6, 747 (1969). 
• L. v. Kantorovich and V. I. Krylov, Approximate Methods of 

Higher Analysis (Interscience, New York. 1964). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 5 MAY 1970 

Orthogonalization Methods * 
H. c. SCHWEINLER 

Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 

AND 

E. P. WIGNER 

Princeton University, Princeton, New Jersey 

(Received 20 October 1969) 

An essentially unique method of formin~ an orthonormali.ze? set of vec.tors fro~ an ind~pendent ~e.t of 
n vectors is presented. The resulting set IS proven to maximize a certam quartic form m the ongmal 
vectors. 

The best-known orthogonalization procedure, and 
the one most commonly used by mathematicians, is 
Schmidt's procedure. l It has the great advantage that 
it can be used, without further modifications, for 
a countably infinite set of vectors. On the other hand, 
the orthogonal set of vectors which it furnishes has no 
simple relation to the original set of vectors-the 
members of the set depend, in fact, on the order in 
which the vectors are arranged. 

Physicists often use another orthogonalization 
method.2 Let VI' V2 ,· •• , Vn be the vectors to be 
orthogonalized; they will be assumed to span a 
finite· dimensional complex Hilbert space. One then 
forms the Hermitian matrix M (Gram's matrix l

), 

where 
(1) 

If the vectors V are linearly independent, which is 
being assumed, M is positive definite. One forms its 
characteristic vectors UA, with components Uk}., 

(2) 

and the P are then positive. The UA will be assumed to 
be normalized so that 

L U:KU kA = Cl KA , 
k 

L u:Ku lK = Clkl • 
K 

(3) 

(3') 

The orthogonal vectors w in the space of the V are then 
defined by means of the 

One has 

(w;, w1) = L L u:KUUJVk , VI) = L UtMkIUZ;. 
k I kl 

= L U:KPAUkA = ClKA • PA· 
k 

Hence, if one sets 
_ -! 1_", -! 

WK - PK WK -..:;., PK UkKVk ' 
k 

(4) 

(5) 

(6) 

the W form an orthonormal set. Since the PI< are posi
tive, p;;! can also be assumed to be positive. Con
versely, 

'" * ! (6') vk = ..:;., UkKPKWk· 
K 

As matrix equations, (6) and (6') are W = vup-k and 
V = wp!u t, respectively, p being a diagonal matrix 
with diagonal elements PI< . 

The set of W is, evidently, independent of the order in 
which the v are arranged, and one expects it to satisfy 
some extremal condition which distinguishes it among 
all the sets of orthonormal vectors 

(7) 

where S is an arbitrary unitary matrix. Of course, if S 
is a phase matrix exp (iCl) = diag (exp (iCl1) , exp (iCl2) , 

... , exp (iCln», or a permutation matrix P, or a prod
uct exp (iCl)P of such, the resulting set Z will be 
identical with the set of w, except possibly for phase. 
One such extremal theorem is the subject of this 
paper. It states that the quantity 

(8) 

assumes its maximal value of LP! for the w set of 
orthogonal vectors, i.e., if the Sin (7) is a unit matrix 
or a generalized permutation matrix. In one sense, (8) 
is the simplest expression involving the original set of 
vectors v and the orthonormal set Z: If one does not 
square the sum over k in (8), the result is simply the 
sum of the squares of the lengths of the v and, hence, 
independent of the S in (7). Perhaps an even more 
natural extremal principle would be to set 

m' = I I(ZK' vk)l\ (8') 
kK 

but this does not lead to a simple set of equations such 
as the preceding one. 

In order to express m in terms of Sand w, we first 

1693 
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calculate 

(w", vk ) = (w", ~ p!u:"w,,) = piu:" , 

and hence 

and, because of (3), 

1 I(Z" , vk)1 2 
= 11 S""p!uk"S:"p!u:1l 

k 

so that 

(9a) 

(9b) 

(9c) 

(9d) 

The FA are given by the v, and we want to find the 
maximum of (9d) by varying the unitary matrix S. 
It is clear that the maximum exists, since (9d) is 
bounded and the domain of S is compact. We will 
assume for the present, further, that the FA are all 
different-the maximum of m is a continuous function 
of the P A , and its value for a set in which some of the P" 
are equal can be obtained as a limit of the maxima of 
m for a set of p all the P;. of which are different. 

The maximum is found, and the above statements 
about the generalized permutation matrix are verified, 
by observing that we can write m in the form 

m = 1 {(StpS)KK}2 

" 
= 11 (stpS)";.(stpS)",, - 11' (stpS)""(stpS)",, 

K " K>F;' 

= 1 p~ - 11' I(StpS)"KI
2

• (10) 
;. K>F;' 

m is bounded above by Ip!. and it can attain this 
bound if stps is a diagonal matrix d. In this case, 
pS = Sd, or 

(11) 

so the set of p coincides with the set of d, and S;'I< 

vanishes unless p A = dK • Since we have assumed that 
the p" are all different, only one SAl< is nonzero. The 
unitarity of S requires that the absolute value of this 
nonzero term be unity, and its phase is free. Thus S is a 
generalized permutation matrix. 

The preceding discussion assumed that all the 
characteristic roots p of M are different. One can 
conclude, if some of the p are equal, by continuity 
arguments that no m, for any choice of the orthogonal 
Z in (8), can be larger than the m obtained for Z" = 
WI(' However, if some PI< are equal, the corresponding 
W can be subjected to a unitary transformp.tion with
out affecting the value of m. In such a case, the S 
which yields the maximum value of m can contain 
such a unitary transformation. This was foreseeable: 
If some p are equal, the corresponding ware deter
mined only up to a unitary transformation between 
them. 

• Research done in part at Oak Ridge National Laboratory and 
sponsored by the U.S. Atomic Energy Commission under contract 
with Union Carbide Corporation. 

1 R. Courant and D. Hilbert, Methoden der mathematischen 
Physik (Springer, Berlin, 1931), 2nd ed., Vol. I, p. 4; see also pp. 
29-32. 

2 R. Landshoff, Z. Physik 102,201 (1936). Actually, Landshoff's 
orthonormalized functions are, in our notation, 

~ (M-t)lkVI = ~ uiJ(wJ(' 
I J( 
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The inverse scattering problem for the Dirac equation with two central potentials (one a relativistic 
scalar, the other the fourth component of a 4-vector) is investigated. Exact expressions are obtained for 
the values of the two potentials and their derivatives at the origin, as a function of the scattering data and 
bound-state parameters of the particle and the antiparticle for one angular momentum. The considera
tion is limited to the case of Sand P waves (j = !) and to potentials satisfying a restrictive condition; 
explicit expressions for the values of the two potentials and their first three derivatives at the origin are 
given. In the case with only one potential present (the usual Dirac equation), these relationships provide 
explicit connections between the scattering and bound-state parameters for the particle and those for the 
antiparticle. For instance, an explicit and simple expression for the binding energy and for the corre
sponding normalization constant, in terms of the scattering phase shifts of the particle and of the anti
particle, is given in the case with only one bound state, say, for the particle, present (in S or P wave, with 
j = i). It is assumed that the two potentials are central, holomorphic, and satisfy the conditions 
f: rn I Vi(r)1 dr < CfJ, i =: 1,2, /1 =,0, 1,2. 

1. INTRODUCTION 

The inverse scattering problem for the Dirac 
equation with two potentials has been solved by the 
GeI'fand-Levitan method. I Specifically, the GeI'fand
Levitan equation has been established; this equation 
is determined once the scattering data and bound
state parameters of the particle and antiparticle at one 
angular momentum are assigned, and it has a unique 
solution. From the solution of this equation, one can 
find the potentials. This procedure, however, involves 
the solution of an integral matrix equation, that is, a 
system of four coupled integral equations; and this is 
a difficult problem. To bypass this difficulty, we have 
searched for another approach that will allow us to 
find the potentials, or at least some of their charac
teristics, as an explicit function of the scattering data 
and bound-state parameters. 

To this end, we investigate an asymptotic expansion 
of the scattering parameters at large energy that allows 
us to calculate the values of the potentials and their 
derivatives at the origin; in principle, the whole 
potentials, which are by assumption holomorphic 
functions of r, could be reconstructed in this way. 
This method is similar to that developed by several 
authors in the case of the Schrodinger equation. 2- 5 

We treat with this method the S- and P-wave cases 
with j = t, and we explicitly constru~t -:xpressions for 
the values of the two potentials and their first three 
derivatives at the origin in terms of the scattering and 
bound-state parameters. 

In the previously mentioned article, Gasimov and 

Levitan i give a procedure of the Gel'fand-Levitan 
type to reconstruct the potentials from the scattering 
and bound-state data for one angular momentum (i.e., 
the phase shift for all values of the linear momentum 
k, the energies of the bound states, if any, and the 
corresponding normalization constants). Both the 
data for the particle and the antiparticle are needed as 
input, and two functions are produced, which play the 
role of local energy-independent potentials. These two 
functions appear in the so called "canonical form" 
of the Dirac equation, and Gasimov and Levitan show 
that all other equations of the Dirac type may be set 
in this form by an orthogonal transformation. Thus, 
without loss of generality, we choose one of the two 
potentials, VI(r), to transform as a relativistic scalar, 
and the other, V2(r) , as the fourth component of a 
4-vector. 

With this choice, the results of the usual case are 
derived from our setting the scalar potential to zero. 
In this manner, expressions that connect the phase 
shifts and bound-state parameters of the particle with 
those of the antiparticle are also obtained. 

It is interesting to note that, since it has been 
demonstrated that the two sets of input (for particle 
and antiparticle) determine univocally the two po
tentials, in the case of the usual Dirac equation (with 
only one potential), these inputs are superabundant. 
Therefore, there must be a relationship between them; 
in fact, presumably only one set of input data should 
be sufficient to determine the potential univocally. 
Therefore, solving the inverse scattering problem for 
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the usual Dirac equation implies finding relationships 
from which the scattering parameters, say, for the 
particle could (at least in principle) be calculated from 
those of the antiparticle. The explicit relationships 
given in this paper are not general enough to solve 
this problem, but they constitute a first step in this 
direction. Further investigation of this problem is now 
in progress. 

The method of asymptotic expansion that we use 
has an intrinsic difficulty. It is necessary to impose the 
equality of the values of the first derivatives of the 
potentials at the origin (in the S-wave case; in the case 
of P waves, their sum must vanish), in order that the 
expansion at the origin of the irregular solution does 
not contain logarithmic terms. These logarithmic 
terms present a difficulty similar to that experienced in 
the case of the SchrOdinger equation for I> 0, if the 
potential is a regular one, or for all partial waves, if 
the potential behaves as r-1 at the origin. Thus, the 
solution of this difficulty in our case, which would 
allow us to deal with more general potentials, is related 
to the solution of the same difficulty in the non
relativistic case. This is still an open problem, although 
some progress towards its solution is implied by the 
nonrelativistic limit of our P-wave results; see Ap
pendix A. 

Throughout this article we consider central and 
hoi om orphic potentials that verify the restrictive con
dition 

lOOrn 1V;(r)1 dr < 00, i = 1,2, n = 0, 1,2. 

In Sec. 2, the Dirac equation is discussed; in 
particular, its symmetry properties are displayed. 
These are subsequently used to obtain the P-wave 
results from those for the S-wave case. 

In Sec. 3, we study the behavior at the origin of the 
solutions of this equation. The knowledge of this 
behavior allows us to find the conditions on the 
potentials which we need to impose to prevent the 
existence oflogarithmic terms in the irregular solution. 
We will use these conditions in Sec. 7. 

In Sec. 4, for completeness, we define the Jost 
solutions, the Jost functions, and their connections 
with the regular and irregular solutions. 

In Sec. 5, we analyze the analyticity properties in the 
complex k plane of all the functions defined and their 
asymptotic behavior. 

In Sec. 6, we construct a formula that allows us 
to calculate the square modulus of the Jost function in 
terms of the phase shifts and the bound-state energies. 

In Sec. 7, we introduce a method to obtain the 
asymptotic expansion of the scattering parameters 

at large energy, which is a generalization of that given 
by Verde2 for the Schrodinger equation. From this, we 
derive a system of recursion relations, which is useful 
in relating the coefficients of the asymptotic expansion 
of certain functions of the scattering parameters to the 
potentials and their derivatives. 

In Sec. 8, we determine these coefficients in terms of 
the scattering parameters and, in this manner, we are 
able to calculate the values of the potentials and their 
derivatives at the origin. 

In Sec. 9, we give the principal results of this paper, 
that is, the explicit exact expressions of the values of 
the potentials and their derivatives at the origin, in 
terms of the two sets of scattering parameters for the 
particle and the antiparticle. Expressions up to the 
third derivatives are given. 

In Sec. 10, to study the usual Dirac equation, we 
particularize the results of the preceding section. We 
obtain formulas for the potential and its derivatives 
at the origin and give the relationships between the 
scattering parameters for the particle and those of the 
antiparticle. As an example, the value of the binding 
energy and of the corresponding normalization con
stant is given in terms of the (S- or P-wave) phase 
shift of the particle and the antiparticle, for the partic
ular case when only one bound state for the particle 
(or for the antiparticle) is present. 

The nonrelativistic limit of the expressions obtained 
is given in Appendix A. For S waves, we arrive at 
expressions that coincide with those of the Schrodinger 
case. Moreover, we obtain similar expressions in 
terms of the P-wave parameters, some of which con
stitute new results. This fact suggests a procedure to 
solve, at least in some cases, the Schrodinger problem 
for higher ~aves; we propose to come back to this 
question in a separate paper. 

Several authors have derived explicit exact expres
sions for the values of the potential and its derivatives 
at the origin in the case of the Schrodinger equation. 
The first result of this type, consisting in an expression 
for the value of the potential at the origin, was given 
by Newton6

•
7 and simultaneously by Faddeev.8 Subse

quently, Buslaev and Faddeev, 3 Percival ,9 and Roberts 4 

have given an expression for the value of the second 
derivative at the origin. More recently, Calogero and 
Degasperis5 have derived expressions for the potential 
and all its derivatives at the origin in terms of the 
S-wave parameters. In this last article, a review of the 
different methods of attacking this problem in the 
Schrodinger case is given; we refer to it for all other 
references in the Schrodinger case. In the case of the 
Dirac equation, the present work constitutes the first 
effort to derive this type of results; our approach is 
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patterned after that of Calogero and Degasperis.5 

For the Klein-Gordon equation, a similar work has 
been done by Degasperis. Io 

The system of units used in this article is such that 
n=c=1. 

2. THE DIRAC EQUATION 

The matrix form of the radial Dirac equation is 

:r q/(k, r) = [(;)P3 - [E - V2(r)]ip2 

+ [m + vI(r)]PI]rp'\k, r). (2.1) 

The solution is a two-component vector 

A(k r) = (ut(k, r») 
rp, u~(k, r) , 

and the matrices are the usual Pauli matrices 

PI = (~ ~), ip2 = (_~ ~), Pa = (~ _~), 
(2.2) 

where m is the mass of the scattering particle and A is 
an integral number (¢ 0) related to the "orbital" and 
total angular momentum by 

total angular momentum = j = IAI - !, 
"orbital" angular momentum = I = IAI - ! + !A/IAI, 
i.e., 

A > 0, I = A; A < 0, 1= IAI - 1. (2.3) 

Equation (2.1) has the following symmetry proper
ties. It is invariant under the transformations 

E -+ -E, Vlr) -+ - V2(r), A -+ -A, 

ui(k, r) -+ u~(k, r), u~(k, r) -+ ui(k, r) (2.4) 
or 

m -+ -m, VIer) -+ - VIer), A -+ -A, 
ut(k, r) -+ -u~(k, r), u~(k, r) -.. ut(k, r). (2.5) 

Then, if the results for a positive A are known, by the 
transformations 

E -+ -E, Vlr) -+ - V2(r), 

ut(k, r) -+ u~(k, r), u~(k, r) -+ ut(k, r) (2.6) 
or 

m -+ -m, VIer) -+ - VIer), 

ui(k, r) -.. -u~(k, r), u~(k, r) -+ ui(k, r), (2.7) 

we can find the results for the corresponding negative 
A. Henceforth, we deal only with positive A, unless we 
specifically indicate the contrary. 

Note that the transformation (2.7) consists of a 
multiplication of the wavefunction by ip2; since this 

matrix is not equal to its inverse, we cannot apply it 
twice to obtain the same results. With the transforma
tion -ip2' i.e., 

m -+ -m, VIer) -+ - VIer), 

ui(k, r) -+ u~(k, r), u~(k, r) -+ -ui(k, r), (2.7') 

one can also arrive at the result with a different sign of 
A. And, of course, by the successive application of (2.7) 
and (2.7') we obtain the same result. Therefore, we 
decide by convention to use the transformation (2.7) 
to go from positive A to the corresponding negative 
A and (2.7') to pass from negative A to the correspond
ing positive A. 

As we see below, some of the solutions of (2.1) are 
double-valued functions of the complex variable k, 
having different values in the two Riemann sheets 
defined by sgn (Re E), E = ±(k2 + m2)!; therefore, 
we must distinguish between the two transformations 
(2.6) and (2.7) because, white (2.6) exchanges the 
Riemann sheets, (2.7) does not. 

Finally, we emphasize another precaution we must 
take in applying transformations (2.6) or (2.7). If we 
apply them to functions that do not depend explicitly 
on the components, we have to look for their definitions 
to check the signs. For example, for the function 
b...(k) [see Eq. (4.3)], when we apply (2.7), we get 

b.(k, E, VI, V2 , m, -A) = b.(k, E, - VI' V2 , -m, A), 

while, applying (2.6), we get 

b.(k,E, VI' V2 ,m, -A) 

= -tJ.(k, -E, VI, - V2 , m, A). 

3. REGULAR AND IRREGULAR SOLUTIONS 

Let us now study the behavior at the origin of the 
solutions of Eq. (2.1). To this end we put Eq. (2.1) 
in the form of a system of two first-order differential 
coupled equations 

ui'(k, r) = (A/r)uf(k, r) 

- [E - m - VIer) - V2(r)]u~(k, r), 

u~'(k, r) = -(Ajr)u~(k, r) 

+ [E + m + VIer) - V2(r)]ui(k, r). (3.1) 

We introduce the expansions 

co 

uiCk, r) = rt L a nCk)rn , 
n~O 

co 

u:(k, r) = rB I bn(k)rn. (3.2) 
n~O 

These expressions are solutions of the system (3.1), 
for A = A and a l = 0, if B = A + 1. The coefficients 
an and bn are determined in terms of ao. Since the 
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system (3.1) has a term rl, the other independent 
solution must have the form 

00 

zt(k, r) = rO 1 cn(k)rn + Aik) In B(k)r 
n=O 

00 

X r"1 an(k)rn, 
n=O 

00 

Z~(k, r) = rD 1 dn(k)rn + Aik) In B(k)r 
n=O 

00 

X rl.+1 1 bn(k)rn, (3.3) 
n=O 

which is a solution for D = -A and d1 = 0, if C = 
-A + 1. 

The relationships between the coefficients are the 
following: for the solution of type (3.2), we have 

(3.4a) 

(3.4b) 

(3.4c) 

(note that ao is undetermined, since it depends on the 
normalization) and, for the solution (3.3), 

Cn = 1 [(E - m)dn 
22 - 1 - n 

n Vii'(O) + V~j)(O) ] 
~ 1 . dn- i , n < 22 - 1, 

i=O J! 

dn+2 = _1_[(E + m)cn 
n+2 

n V~j)(O) - V~j)(O) ] 
+ L . cn- i ' 

i=O J! 

(3.5a) 

(3.5b) 

n < 2A - 1, 

(3.5c) 

n ~ 2A - 1, 

(3.5d) 

(3.5e) 

(3.5f) 

do, C2,,_I, and B are undetermined (do depends on the 
normalization). To find these expressions, we have 
introduced the following power expansions of the 
potentials at the origin: 

00 VW(O) 
V;(r) = 1-'-'. - rio (3.6) 

;=0 J! 

Here V:il(O) indicates, of course, the j derivative of 
Vi(r) evaluated at the origin. 

In the particular case A = 1, with which we will be 
concerned in Sec. 7, Eq. (3.5e) is written 

Al = (do/ao)[V~(O) + V~(O)]. (3.7) 

Then, if we wish to make the contribution of the 
logarithmic terms in the solution (3.3) vanish, we are 
required to have the values of the first derivatives at 
the origin of the two potentials be equal and of 
opposite signs. The presence of logarithmic terms, as 
we will see below, does not allow us to treat higher 
waves (IAI :;1= 1) with an asymptotic expansion method. 
(See also Appendix B.) However, it is possible to 
reduce a A-wave Dirac equation to a (A - I)-wave 
Dirac equation which has a more complicated poten
tial; then we apply the asymptotic expansion method 
to the last equation. We will treat this problem in 
a subsequent paper. 

4. THE JOST SOLUTIONS AND THE JOST 
FUNCTIONS 

In this section, for completeness, we review the 
definitions of all the functions we will need, which are 
the same as those in the case of a usual (one-potential) 
Dirac equation. (See, for example, Refs. 11 and 12.) 
In addition to (3.2) and (3.3), characterized by their 
behavior at the origin, we have two other solutions, 
the Jost solutions P(±k, r),' characterized by their 
asymptotic behavior. [See formula 4 of Ref. 11 or 
formula (III-8/9) of Ref. 12.] 

The regular and irregular solutions 

A(k ) = (U1(k, r») A(k) = (Z1(k, r») (4.1) 
<p , r u~(k, r) , 'If ' r Z~(k, r) 

can be given as linear combinations of the Jost solu
tions. For the regular solution we have 

<pACk, r) = ~,,~k) [f"( -k)f,,(k, r) - f"(k)f"( -k, r)], 

(4.2) 
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where Ll;.(k) is the Wronskian function of the Jost 
solutionsf).(k, r) andjA( -k, r), 

Ll;..(k) = Mf"(k, r),J).( -k, r)] 

= [Ji(k, r)f~( -k, r) - Ji( -k, r)J~(k, r)] 

= _2ik2A
-

1(E - m). (4.3) 

Here ft indicates the ith component of the vector po. 
With this definition of the Wronskian function, we 
immediately conclude that the Jost function is defined 
by 

JA(k) = Ll[ g/(k, r),JA(k, r)]. (4.4) 

It is a function of k only, which can be calculated 
taking the limit for r ---+ 0 and substituting the be
havior at the origin of the regular solution 

JA(k) = lim [aorAJ~(k, r) - borHY~(k, r)], 
r->O 

= lim aorAJ~(k, r). (4.5) 
r->O 

As usual, we define 

where 1];.(k) is the phase shift of order A, and from this 
we can define the A element of the scattering matrix. 
(See formula 10 of Ref. 11 or the last formula on p. 
126 of Ref. 12.) 

Also, from (4.2), using (4.6), we can get the asymp
totic behavior of the regular solution [See formula 9 
of Ref. 11 or formula (III-l3) of Ref. 12.] 

Note that the irregular solution can be written in 
terms of the Jost solutions as 

V/(k, r) = -: 1 2 [JA( -k)J,-(k, r) + J,-(k)JA( -k, r)] 
21J (k)1 

(4.7) 
and, from this and (4.2), we get 

A Ll;..(k) A A A 
f (k, r) = 2JA( -k) T (k, r) - J (k)1fJ (k, r), (4.8) 

an expression that will be useful for the study of the 
behavior at the origin of the Jost solutions. 

5. ANALYTICITY PROPERTIES. ASYMPTOTIC 
BEHAVIOR FOR LARGE k 

We pass now to consider the above defined functions 
in the complex k-plane. As is well known from pre
ceding treatments of the usual Dirac equations,u·I2 
all the functions defined in the preceding sections are 
double-valued functions of k, since to every value of k 
there correspond two values of the energy 

E = ±(k2 + m2)!. 

The Jost solution f"{k, r) can be extended into a 
double-valued function of the k complex variable that 
possesses branch points at k = ± im. The two Rie
mann sheets, characterized by a = sgn [Re E] = ± 1, 
can be separated by introducing two cuts, (-im, 
-ioo) and (+im, +ioo). We write fA,a(k, r) for the 
Jost solution in the a sheet. 

If we impose the following restrictions on the 
potentials, 

LOO rn 1~(r)1 dr < 00, i = 1,2, n = 0, 1,2, (5.1) 

it is proved thatF,a(k, r) is an analytic function of k 
in the lower half-plane (1m k ::::;; 0), cut from -im to 
-ioo. The proof of this is similar to the proof given 
in the article of Barthelemy, 12 ex.cept that care must be 
taken to substitute for the function VCr) the matricial 
function 

mer) = (V2(r) - VIer) 0 ). (5.2) 
o V2(r) + VIer) 

The reason for this substitution will be clear later 
[see (5.7) and (5.8)]. Aside from the differences implied 
by the introduction of this matrix, the demonstration 
follows the lines of the above mentioned work. There
fore, we omit this proof while we study explicitly the 
asymptotic behavior, in which case we will find differ
ences because of the presence of the new potential. 

In the same manner, it is proved that the regular 
solution (ri(k, r) is an analytic function of k, for 
positive r and finite Ikl, in the cut complex k-plane. 

Let us now move on to the asymptotic behavior in 
k of the solutions of Eq. (3.1). Let f~(k, r) and 
f~( -k, r) be the two independent Jost solutions of the 
free equation (a is fixed and is not indicated explicitly). 
We construct the matrix 

K(k, r, n = Ll)~k) {j~(k, r)[J~( -k, $)]T 

Note that 
- J~( -k, r)[J~(k, ~W}. 

K(k, r, r) = ip2' 

(5.3) 

(5.4) 

With these definitions, the integral matrix equation 
forp'(k, r) is 

JA(k, r) = J~(k, r) - 10:> Sl;(k, r, $)JA(k, $) d$. (5.5) 

Here 

Sl;(k, r, $) = K(k, r, $)m($) (5.6) 

and m is the matrix defined in (5.2). 
Let us now define the matrix 

L;.(k, r) = TA(k, r)J\k, r), (5.7) 
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with 

T (k r) == ([J~l(k, r)]-1 0 ) (5.8) 
A , 0 [J~.(k, r)t1 

SO that 

T.,(k, r)J~(k, r) = G). (5.9) 

Then the integral equation for LA(k, r) is 

L.,(k, r) = G) -LX) Sj(k, r, ~)L;.(k, ~) d~, (5.10) 

where 

Sj(k, r, ~) = T;.(k, r).R(k, r, ~)T;:-I(k, ~). (5.11) 

By differentiation, we get from Eq. (5.10) 

L~(k, r) = Sj(k, r, r)L.,(k, r) 

J.
ooa 

- - Sj(k, r, ~)L;.(k, ~) d~. 
r ar (5.12) 

The asymptotic behavior for large kof Sj(k, r, ~) 
and its derivative are 

lim Sj(k, r, r) = i lim!!:.( 0 v+o(r») , (5.13) 
k-+oo k-+oo E V_(r) 

and, by substitution in (5.12), we obtain 

limL~(k, r) 

By partial integration we get 

limL~(k, r) 

for which the solution is 

- V+(~») 
V+(~) 

(5.14) 

By diagonalizing the matrix in the exponential, we get 

lim L;.(k, r) = exp [-ilim!!:. Joo V2(~) d~J (1) 
k-+CL k-+ooE r 1 

(5.18) 

(note that the diagonalization does not change the 
vector). From this we infer the asymptotic behavior of 
JA(k, r), which is 

lim JA(k, r) = J~(k, r) exp [-ilim!!:. Joo V2(~) d~J. 
k-+oo k-+oo E r 

Imk:SO 

(5.19) 

Let us carry out the same study for the Jost function. 
By multiplying the second component (comp 2) ofEq. 
(5.5) by rA[(2,A, - I)! !]-1, by taking the limit for r -+ 0, 
and by using the definition (4.5) {in which we put 
ao = [(2,A, - I)!! ]-1} and the properties of the Bessel 
spherical functions, the integral expression for the 
Jost function is 

rA 
JA(k) = 1 - lim --

r-+O (2,A, - I)!! 

that is, 

X [Joo .R(k, r, ~)J\k, ~) d~J ; (5.20) 
r comp 2 

J\k) = 1 + loo [rp~(k, ~)]Tm(~)JA(k, ~) d~. (5.20') 

From this equation it is possible to study the analytic 
properties of this function. It is proved that P'(k) is 
an analytic function in the cut lower semiplane of the 
complex k-plane (1m k ::;; 0), the points k = 0 and 
k = - im excluded. The proof is not given here, for 
the reasons stated above, and we refer to Ref. 12 for 
details. In this demonstration, explicit use of the 
condition (5.1) is made. To obtain the asymptotic 
behavior, we take the limit for k -+ 00 in Eq. (5.20'). 
By introduction of the asymptotic behavior of the 
regular free solution 

(

COS (kr - t,A,l7) ) 

lim rp~(k, r) = k-A !!:. . (k _1') (5.21) 
k-+ 00 SIn r "211.17 

E 

and by partial integration, we get 

lim J,-(k) = exp [- ilim!!:. roo V2(r) drJ. (5.22) 
k-+oo k-+ooEJo 

Imk:SO 

From (4.6) we deduce the asymptotic behavior of the 
phase shifts (the so-called Parzen theorem13

), 

lim 'f};.(k) = -lim!!:. roo V2(r) dr, (5.23) 
k-+oo k-+ooE Jo 

Imk:SO 
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and from (4.2), (5.19), and (5.22) we see that the 
regular solution verifies 

lim q/(k, r) 
k .... oo 

(

COS [kr - !h - lim ~ r V2(~) d~J ) 
1 k .... ooE Jo 

= e· ~ sin [kr - !Al7 - lim ~ r V2(~) d~J . 
E k .... oo E Jo 

(5.24) 

It is proved, in a manner similar to that found in Refs. 
11 and 12 that if jA ," (k") = ° for k" = -in" with , n' n Tn 

1m p~ = 0, we have a bound state of energy 

E~ = a[m2 _ (P~)2]!. 

Here jA'''(k) cannot vanish to real k and its zeros are 
simple (except possibly at k = 0; see Ref. 12). 

As we see from (5.19) and (5.22)-(5.24), the asymp
totic behavior is the same as in the case V1(r) == 0. 
This can be justified in the following way: If we 
eliminate a variable in the system (3.1), an equation of 
the Schrodinger type is obtained [see Appendix B, 
formula (Bl)]. In this equation we can see that the 
asymptotic behavior for large k is conditioned by the 
potential V2(r) and not by V1(r) (remembering that 
the potentials are not singular potentials). 

6. CONSTRUCTION OF THE JOST FUNCTION 
IN TERMS OF THE SCATTERING 

PARAMETERS 

We now derive an expression for the Jost function in 
terms of the scattering and bound-state parameters, 
which will be used below. Prats and TollH derive an 
expression of this type for the case when no bound 
state is present. They use a modification of a theorem 
of Titchmarsh14 (useful for this purpose in the non
relativistic case) that is employed by Corinaldesi15 for 
the study of this problem in the Klein-Gordon case; 
this is the standard procedure, as in the Schrodinger 
case. 

We follow this same procedure in the case when 
bound states are present. Let us introduce a new 
function (A is fixed and is not indicated explicitly) 

j"(k) = f"(k) IT k - ~P; ; (6.1) 
n k + IPn 

r"Ck) does not vanish at the energies corresponding to 
the bound states, because the zeros of the Jost function 
are simple. 

The new "phase shifts," defined by 

/,,(k) = 1/,,(k)1 exp [iij"(k)], (6.2) 

are related to the old ones by 

ij"(k) = rr(k) - 2 I arctan p~, 1m k = 0. (6.3) 
n k 

By writing a dispersion relation for the function 
Inj+(k)j-(k), we get 

In If+(k)llr(k)1 = - fl oo 

~ [tt(k') + 1)-(k')] 
17 -00 k' - k 

+ ~ln [1 + (p;n. (6.4) 

For the function (kjE) In [J-l- (k)Jf-(k)] , we get 

If+(k)1 
In-.--

If-(k)1 

E P foo dk' (k' ) = - - - -,- ~ [1)+(k') -1)-(k')] + 2p(00) 
k 17 -00 k - k E 

'" 1 E - E~ (+ -) 1 E - m + ...:::.. a n -- - N - N n --, (6.5) 
n," E + E~ E + m 

where N" is the number of bound states in the a sheet. 
Note that this function has a cut between -im and 
-ioo in the lower semiplane 1m k ::::;; 0, because of 
the presence of E in the denominator. Formula (6.5) 
is obtained by integrating the function 

(k' - k)-l{(k'jE') In [J+(k')Jf-(k')] + 2ip(oo)} 

along a path like that in Fig. 1 and then by taking the 
imaginary part. It is easy to see that by taking the real 
part we immediately get a result which is analogous to 
the Levinson theorem for the Dirac, case. (This 
theorem is quoted in Ref. 12.) 

From (6.4) and (6.5) we obtain 

N+ N-
1f"(k)1 2 = (E + am) -

E - am 

X IT {[1 + (p~')2J [E - aE~:J} 
n,,,' k E + aE~ 

{ 
P foo dk' [ X exp - - -,- 1)+(k') + 1)-(k') 
17 -00 k - k 

+ a ~ (;: [1)+(k') -1)-(k')] + 2P(00)) ]}. 

(6.6) 

In the above expression we have introduced the 
notation 

(6.7) 

We note that (5.23) can be written 

lim 1)"(k) = -ape 00). (5.23') 
k .... oo 
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k 

FIG. 1. The integration path of the function (k' - k)-l{(k'/E') 
X In [f+(k')Il(k'») + 2i,u( CXJ)}. 

7. ASYMPTOTIC EXPANSION METHOD 

Let us now studyI6 the equations satisfied by the 
logarithmic derivative of the components of the Jost 
solutions. We put the system (3.1) in the following 
form: 

ft'(k, r) = (A/r)fi(k, r) - fJ(r)f~(k, r), (7.1a) 

f~'(k, r) = -(Afr)f~(k, r) + (I.(r)f~(k, r), (7.1b) 

where 

We define 

(I.(r) = E + m + Vl(r) - V2(r) , 

fJ(r) = E - m - Vl(r) - V2(r). 

(
k ) _ ft'(k, r) 

YI ,r - ft(k, r) . 

(7.2) 

(7.3) 

(7.4) 

It is easy to see from (7.1) that (7.4) satisfies the 
equation 

, 2 fJ'(r) fJ'(r) A 
Yl(k, r) + Yl(k, r) - fJ(r) Yl(k, r) + fJ(r) ~ 

_ A(A - 1) + (I.(r)fJ(r) = O. (7.5) 
r2 

In order to apply a method of asymptotic expansion, 
it is required that the equation have no terms that are 
divergent at the origin. Therefore, we set A = 1 and we 
require that 

fJ'(O) = - [V~(O) + V~(O)] = O. 0.6) 

We note that this last condition is the same we need in 
order not to have logarithmic terms in the expansion 
at the origin of the regular solution. [See expression 
(3.7).] 

We also define 

k r _ f~'(k, r) . 
Y2( , ) - f~(k, r) , (7.7) 

this function satisfies the equation 

y~(k, r) + y~(k, r) _ (I.'(r) Y2(k, r) _ (I.'(r) ~ 
(I.(r) (I.(r) r 

_ A(A ~ 1) + (I.(r)fJ(r) = 0, (7.8) 
r 

which does not possess divergent terms at the origin, 
if A = -1 and 

(1.'(0) = V~(O) - V~(O) = o. (7.9) 

Now we are in a position to solve the following 
equations: with A = 1, V~ (0) = - V~(O), 

'(k 2 V~(r) + V~(r) 
YI ,r) + Yl(k, r) + Yl(k, r) 

E - m - Vl(r) - V2(r) 

1 V~(r) + V~(r) 
r E - m - VIer) - V2(r) 

+ k2 - 2EV2(r) - 2mVI(r) - V~(r) + V:(r) = 0; 

(7.10) 
with A = -1, V~ (0) = V~(O), 

, 2 V~(r) - V~(r) 
Yz(k, r) + Yz(k, r) - Yz(k, r) 

E + m + Vl(r) - V2(r) 

+ ! V~(r) - V~(r) 

r E + m + Vl(r) - V2(r) 

+ k2 
- 2EV2(r) - 2m Vl(r) - V~(r) + V:(r) = o. 

(7.11) 

Note that (7.10) and (7.11) are derivable one from the 
other by the transformation (2.7). From (2.3) we see 
that (7.10) corresponds to j = t and 1= 1, that is, 
P wave, and (7.11) to j = t and 1= 0, S wave. There
fore, we will treat only this second case, which has an 
easier interpretation in the nonrelativistic case, while 
the P-wave results are derivable from this case, using 
the transformation (2.7'). 

Let us now define 

g(k, r) = (I.(r) (ik +f~(k,r»), (7.12) 
(1.(00) f2(k,r) 

where we have putfi).~-I)(k, r) = f2(k, r). 
From (7.11), g(k, r) satisfies the equation 

(1.( 00 )(I.(r)g'(k, r) + (1.2(00 )g2(k, r) - 2ik(l.( 00 )(I.(r)g(k, r) 

- 2(1.(00)ex'(r)g(k, r) = U(k, r), (7.13) 
where 

U(k, r) = (I.\r)[2EV2(r) + 2m VIer) + V~(r) - V:(r)] 

- ex'(r)(I.(r)(ik + r-1
). (7.14) 

From the asymptotic behavior of the Jost solution 
we deduce that 

lim g(k, r) = 0, (7.15) 
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and from the behavior at the origin of the Jost 
function, which is known from (4.8), we get 

lim g(k, r) = const = g(k). (7.16) 

Thus far, we have considered only positive energies. 
Since the Jost solutions are double-valued functions of 
complex k, the same is true of g(k, r). Thus, instead of 
Eq. (7.13), we have a system of two equations for the 
functions g"(k, r). We want to solve this system intro
ducing an asymptotic expansion in k. But, since both 
equations have terms in k and E, a way to remove E is 
to write a system of coupled equations in the new 
variables 

S(k, r) = ![g+(k, r) + r(k, r)], (7.17) 

D(k, r) = (2E)-I[g+(k, r) - r(k, r»). (7.18) 

We note that 

U(k, r) = P(k, r) + EQ(k, r). 

In this way the system obtained is 

aIS'(k, r) + a2D'(k, r) + a3S2(k, r) + a4D2(k, r) 

+ a52S(k, r)D(k, r) + a6S(k, r) + a7D(k, r) 

= P(k, r), 

bIS'(k, r) + b2D'(k, r) + b3S2(k, r) + b4D2(k, r) 

+ b52S(k, r)D(k, r) + b6S(k, r) + b7D(k, r) 

= Q(k, r), (7.l9a) 
where the "potentials" are 

P(k, r) = {4V2(r)[m + VIer) - V2(r)] 

+ 2m VIer) + V~(r) - V~(r) }k2 

- [V{(r) - V~(r)][m + VIer) - Vlr)]ik 

+ {4m 2V2(r) - r-I[VI(r) - V;(r)]} 

X [m + VICr) - V2(r)] 

+ [2m VIer) + V~(r) - V~(r)] 
X {m 2 + [m + l-';(r) - V2(r)]2}, (7.19b) 

Q(k, r) = 2V2(r)k
2 

- [V{(r) - V~(r)]ik 

+ 2[2m VIer) + V~(r) - vier)] 

X [m + Vir) - V2(r)] - r-I[V{(r) - V~(r)] 

+ 2V2(r){m
2 + [m + Vlr) - Vz(r)]Z} 

(7.19c) 
and the coefficients are 

bi = 2m + VIer) - VzCr) , al = b2 = k2 + mbI , 

a4 = (k2 + m2)aa, ba = 2m, 

as = b4 = (k 2 + m2)b3 , (7.19d) 

a6 = b7 = (-2ik)aI - [V~(r) - V~(r)]b3' 

blS = (-2ik)bI - 2[V~(r) - V~(r)], 

a7 = (k 2 + m2)b6 • 

By introducing the following asymptotic expansions 
for large k, 

N 
S(k, r) = :L S'/I(r)( -2ik)-n-I + O(k-N- 2), (7.20) 

'11=0 

N 

D(k, r) = L Dn(r)( _2ik)-n-1 + O(k-N - Z), (7.21) 
'11=0 

in the system (7.19), we obtain the system of coupled 
recursion relations 

n+4 
T\- L Dlr)Dn_i+4(r) 

;=0 

- HS~+3(r) + Sn+ir) + [2m + VI(r) - V2(r)] 

X [D~+3(r) + Dn+ir)] - 2[V~(r) - V~(r)]Dn+3(r)} 
n+2 

- t:L [S;(r)Sn_1+2(r) + 3m2 D/r)Dn_;+2(r) 
j=O 

+ 4mS/r)Dn_i+z(r)] + m[2m + VIer) - Vz(r)] 

X {S~'+1(r) + Sn+2(r) + m[D~+1(r) + Dn+2(r)]} 

- 2m[V~(r) - V~(r)][Sn+1(r) + mDn+1(r)] 
n 

+ 2m2:L[S;(r) + mD;(r)][Sn_;(r) + mDn_;(r)] = 0, 
j=O 

(7.22a) 

n+2 
- t L [S;(r) + mD j (r)]Dn_i+2(r) 

;=0 

+ [2m + VIer) - V2(r)] 

X {S~+1(r) + Sn+2(r) + m[D~+1(r) + Dn+zCr)]} 

- 2[V{(r) - V~(r)][Sn+1(r) + mDn+l(r)] 
n 

+ 2mL[S;(r) + mD;(r)][Sn_;(r) + mDn_/r)] = 0, 
j=O 

(7.22b) 

where n 2: 0. The first coefficients are given by 

DO(r) = 2V2(r), 

DI(r) = -2V~(r), 

D2(r) = 2V~(r) + 4r-l[V{(r) - V~(r)] 

(7.23a) 

(7.23b) 

+ 8m[Vl(r)V2(r) - ViCr) - V~(r)] - 4Vr(r), 

(7.23c) 
Daer) = -2Vt(r) 

+ 4(v~(r) - V~(r) _ V~(r) - V~(r») 
r2 r 

+ 8[m + VI(r)][Vl(r) + V2(r)] 

X [V~(r) + V~(r)], (7.23d) 

So(r) = 2mV1(r) + V~(r) + 2l-';(r)V2(r) - 2V~(r), 

(7.24a) 
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SI(r) = -2mV~(r) - 2Vl(r)[V~(r) + V~(r)], (7.24b) 

S2(r) = 2mV~(r) + 2Yt(r)[V~(r) + V~(r)] 
+ 2V'{(r)V2(r) + 6V~(r)V~(r) - [V~(r)]2 

+ 4(V~(r) ~ V~(r»)[V2(r) - m] - V~(r) 

- 4 V~(r)V2(r) - 12m Vi(r)V2(r) 

- 16m2V1(r)V2(r) + 4m2[Vi(r) + V~(r)], 

Sa(r) = -2mV~'(r) _ 4(V{(r) ~ v~(r») 

x [3V~(r) - V~(r)] - 4[m - 2V2(r)] 

x (V{(r) - V~(r) _ V~(r) - v~(r») 
r2 r 

(7.24c) 

- 2{Vl(r)[V~'(r) + V~'(r)] + 2V~'(r)V2(r)} 
- 2[6V'{(r)V~(r) + 4V~(r)V~(r) - V~(r)V'{(r)] 

+ SV1(r)[Vl(r) + V2(r)]2[V{(r) + V~(r)] 
+ Sm{V2(r)[3V1(r) + V2(r)][V{(r) + V~(r)] 
+ V~(r)[3V~(r) + V{(r)]} 

+ Sm 2[Vl(r) + V2(r)][V{(r) + V~(r)]. 
(7.24d) 

The system (7.22), together with the initial conditions 
(7.23a), (7.23b), (7.24a), and (7.24b), the asymptotic 
conditions 

S .. (oo)=O, D .. (oo)=O, (7.25) 

and the remaining conditions (7.24c), (7.24d), (7.2Sc), 
and (7.2Sd), allows us, in principle, to calculate by 
recursion all the functions S .. (r) and D .. (r). We note 
that, since we chose V~(O) = V~(O), then 

lim V{(r) - V~(r) = V~(O) - V~(O), 
,.-+0 r 

lim (V{(r) ~ V;(r) _ V~(r) - v~(r») 
1'-+0 r r 

= -HV~'(O) - V~'(O)]; 

therefore, at the origin, the relationships between the 
coefficients of (7.20) and (7.21) and the potentials and 
their derivatives are 

Dl = -2V{(O), 

D2 = 6V~(0) - 4V~(0) 

(7.26a) 

(7.26b) 

+ 8m[Vl(0)V2(0) - V~(O) - V~(O)] - 4V~(0), 

(7.26c) 
Da = -4Vi'(O) + 2V~'(0) 

+ 8[m + V1(O)][Vl(O) + V2(0)][V{(O) + V~(O)], 
(7.26d) 

So = 2V2(0)[Vl(0) - V2(0)] + [2m + V1(0)]VI(0), 

(7.27a) 

SI = -2mV~(0) - 2Vl(0)[V~(0) + V~(O)], (7.27b) 

S2 = 2[3m + V1(0) - 2V2(0)]V~(0) 

+ 2[Vl(0) + 3V2(0) - 2m]V~(0) 

+ 6V{(0)V;(0) - [V{(O)]2 

- V~(O) - 4 V~(0)V2(0) - 12m Vi(0)V2(0) 

- 16m2V1(0)V2(O) + 4m2[Vi(0) + V~(O)], 

Sa = 2[2V2(0) - V1(0) - 2m]V~'(0) 

+ 2[m - 4V2(0) - VI(O)]V~'(O) 

+ 6V~(0)[V{(0) - 4V~(0)] 

(7.27c) 

+ 8m V2(0) [3 V1(O) + V2(0)][V{(0) + V~(O)] 
+ 8m Vi(0)[3 V;(O) + V{(O)] 

+ Sm2[vtCO) + V2(0)][V{(0) + V~O)] 
+ SV1(0)[Vl(0) + V2(oW[V{(0) + V~(O)]. 

(7.27d) 

Here we have set S .. (O) = S .. and D .. (O) = D ... 
The subsequent coefficients are determined by the 

recursion relations. In principle, one could obtain in 
this manner all the coefficients S .. and D .. and from 
these calculate the potentials and all their derivatives 
at the origin, that is, obtain, in fact, both potentials, 
since we assumed they are both holomorphic functions 
of r. 

8. DETERMINATION OF THE COEFFICIENTS 
Sn AND Dn 

From the definition of g(k, r) [see (7.12)], from the 
analyticity properties of the Jost function and the 
functionj2(k, r), and from the value and derivative at 
the origin of this function calculated from (4.8), 
namely, 

f2(k,0) = -f(k)(f.(O), 

f~(k, 0) = -6.(k)/2f( -k) + f(k)cl' 

(S.la) 

(S.lb) 

we infer that the function g(k) [see (7.16)] is a mero
morphic function of k in the cut lower semiplane, 
1m k ~ O. In the first Riemann sheet, g+(k) has simple 
poles at k = - ip; because of the zeros of the function 
j+(k). The same occurs for g-(k) at k = -ip;;; in the 
second sheet. 

The residues at the poles are 
2 IT 

R [a(k) k . a] - Pn (8 2) 
es g , = -IP.. = r(ip~)fa( _ ip~) . 

Here fa (k) indicates the derivative of r (k) with respect 
to k. To obtain this result, we take/i(-ip;, 0) from 
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(8.1 a), while we evaluate fi' (-p~ , 0), differentiating 
Eq. (4.2) and setting k = -ip~ and r = O. 

Let us now define the functions 

E"e" 1 
S(k) - S(k) + ~ n n (8 3) - t.. (E~ + am) [kz + (p~)Z] , . 

_ ~ ae~ 1 () 
D(k) = D(k) + t.. (E~ + am) [k2 + (p~)z] , 8.4 

where we denote by C~ the normalization coefficient of 
the bound-state wavefunctions 

c~ = bn;(f" [<p(E~, r)]T<p(Ej, r) drf 

-2i(p~)2(E~ + am) 
(8.5) 

- E~f"(ip~)f"( -ip~) . 

The functions S(k) and D(k) are holomorphic in k 
in the lower semiplane, 1m k ~ 0, since the sums 
cancel out the possible contribution of the poles in 
S(k) and D(k) because of the presence of bound 
states. 

By comparing the expansions (7.20) and (7.21) with 
the similar ones for S(k) and D(k), 

N 
S(k) = ! Sn . (-2ik)-n-l + O(k-N - 2), (8.6) 

n=O 
N 

D(k) = ! Dn . (-2ikrn
-

1 + O(k-N -
2), (8.7) 

n=O 
we obtain 

S2; = S2i' (8.8) 
22i+2E"e"(p,,)2; 

S - {'i + ~ n n n (8 9) 
21+1 - °2;+1 k (E" )' . 

n," n + am 
D2j = jjZj' (8.10) 

_ a22i+2e~(p~)2; 
D2J+1 = D2J+l + ! (8.11) 

n,lI (E~ + am) 

For real k, it is possible to express the imaginary 
parts of S(k) and jj(k) as follows: 

1m S(k) = _ m[Vl(O) - V2(0)] 
k 

+ l.k(2 __ 1_ _ 1 ) 
2 1j+(kW If-(k)1 2 ' 

1m k = 0, (8.12) 

- k VI(O) - V2(0) k (1 1) 
1m D( ) = k + 2E If-(k)1 2 - 1j+(k)12 ' 

1m k = O. t8.13) 

The real parts can be expressed by the dispersion 
relations 

Re S(k) = - ~ 100 
dk' ,2 k' 21m S(k'), 

7r -00 k - k 
1m k = 0, (8.14) 

Re jj(k) = - ~ roo dk' ,2 k' 21m jj(k'), 
7r 1-00 k - k 

1m k = O. (8.15) 

By looking at the expansions (8.6) and (8.7), we 
note that from (8.12) and (8.13) we can get the coeffi
cients Sn and D n of even order as generalized moments 
of the phase shifts [see also (6.6»), while from (8.14) 
and (8.15) we can obtain the odd coefficients in the 
form of generalized moments of 1f"(k)12. Then from 
(8.8)-(8.11) we can get Sn and Dn. 

Note that the even coefficients depend on the phase 
shifts and the bound-state energies, but not on the 
bound-state normalization coefficients, while the odd 
coefficients depend on all the parameters, in close 
relation with the results of the nonrelativistic case.5 

We are now ready to calculate from (7.26), (7.27), 
and (7.22) the potentials and their derivatives at the 
origin. 

9. VALUE OF THE POTENTIALS AND THEIR 
DERIVATIVES AT THE ORIGIN 

In this section, we deduce expressions for the values 
of the potentials and their first three derivatives at the 
origin in terms of the scattering phase shifts and the 
binding energies and normalization constants of 
the bound states. The results are given by formulas 
(9.20)-(9.26). In (9.27) we give the conditions on the 
scattering parameters, implied by the assumed equality 
at the origin of the first derivatives of the potentials. 

To deduce these expressions, we simply make an 
expansion for large k of the function 1f"(k)12 and then 
compare it with expressions (7.26) and (7.27) without 
deriving general formulas, which are very complicated. 

In order to simplify the description of this com
putation, we consider a case where no bound state 
is present, and we give at the end the corresponding 
expressions in the general case with bound states. 

When no bound state exists, (6.6) becomes 

where 
1f"(k)12 = exp [NI(k) + aEN2(k)], (9.1) 

N (k) = - ~ 100 

~ s(k') (9.2) 
1 k' k'YJ , 7r -00 -

~~=~~+~~ ~~ 
P fOO dk' N2(k) = - - -,- ['YJD(k') + 2,u(oo)], (9.4) 
7r -00 k - k 

'YJD(k) = (kJE)[rt(k) - 'YJ-(k)]. (9.5) 

From (8.13) and (9.1), we have 

1m jj(k) = Jt;,(O) - Vz(O) 
k 

+ ~ exp [-Nl(k)] sinh [EN2(k)]. (9.6) 
E 
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By expanding for large k, we get 

1m D(k) = [~(O) - J--;(O) + d1 ]k-1 

+ [d2 + td~ - Sldrlk-3 + O(k-5
), (9.7) 

where the coefficients are given by 

dn = -1 ['I) dk!>~n-1[k-11]D(k)], (9.8) 
17(2n - I)! le" 

Sn = -1 foo dk!>!n-11]S(k). (9.9) 
17(2n - 1)! -00 

In these formulas n ~ 1 and !>; is the operator 

!>n=kn~kn. 
k dkn 

(9.10) 

The coefficients were obtained by using the mathe
matical results given in the article by Calogero and 
Degasperis5 (see also Buslaev and Faddeev3), who 
have performed similar expressions in the Schrodinger 
case (see Appendix C). 

In a similar way, we obtain 

1m S(k) 

= [-mVl(O) + mV2(0) - !d~ + srlk-1 

+ [S2 - tm2d~ - d1d2 - 214dt + iS1d~ - isnk-3 

(9.11) 

In this manner, from (9.7) and (9.11) we obtain the 
first two even coefficients, i.e., Do = Do, D2 = D2, 

SO = So, and S2 = S2 [see (8.8) and (8.10)]. 
In order to evaluate the odd coefficients, we expand 

(8.14) and (8.15) and then compare the coefficients 
obtained in such a way with those of the expansions 

(8.6) and (8.7); remembering (8.9) and (8.11), we 
obtain (see Appendix C) 

S. = (- )i22i+l foo dk!>2i+I[k(2 _ 1 
2,+1 17(2j + I)! -00 k Ir(k)12 

_ 1 )] + ~ 22i+2E~C~(p~)2j 
1f+(kW f.'u (E~ + am) , (9.12) 

D - - dk!>2i+1 - --( )122i+1 foo [k ( 1 
2i+1 - 17(2j + 1)! -00 k E If-(k)1 2 

_ 1 )] + ~ a22i+2C~(p~)21 
If+(k)12 f.'u (E~ + am) (9.13) 

By relating the coefficients obtained from (9.7) and 
(9.11) with the expressions (7.26a) and (7.27a), we 
get the value of the potentials at the origin (no bound 
states present), 

V1(0) = -m + [(d1 - m)2 + t(2md1 - d~ + Sl)l~-, 
(9.14) 

V2(0) = Hd1 - m) 

+ H(d1 - m)2 + t(2md1 - d~ + Sl)]!' (9.15) 

By comparing (9.12) and (9.13) with (7.26b) and 
(7.27b), we find the value of the first derivative at the 
origin 

V;(O) = V~(O) 

--1100 

dk!>l[~( 1 1)] 
- 17 -00 k E Ir(kW - If+(k)12 

(9.16) 

and the condition on the scattering parameters, which 
follows from the requirement that the first derivatives 
of the two potentials be equal at the origin, 

fOO dk!>1[k(2 _ E + m - 2[(d1 - m? + t(2md1 - di + Sl)]! 
-00 k E 1f+(k)12 

_ E - m + 2[(d1 - m)2 + t(2md1 - d; + Sl)]!)] = O. (9.17) 
E If-(k)1 2 

The second derivatives are calculated by comparing (7.26c) and (7.27c) with the coefficients of order k-3 of 
the expansions (9.7) and (9.11): 

ViCO) = t[V1CO) + mrl{4m2df + 8d1d2 + tdt - 4dfsl - 8s2 + 4s; 

+ t[Vl(O) - 2V2(0) + 3m)[8d1s1 - fdi - 8d2] 

- 5[V;(OW + 12m V1(0)V~(0) + 10m V~(O) - 8m V~(O) 

+ 4m2[V1(0)V2(0) + 2V~(0) + 2V;(0)] + 3V~(0)}, 
V~(O) = IO[V1(0) + m]-1{4m2d; + 8d1d2 + tdt - 4d;Sl - 8s2 + 4s; 

- -Hfi(O) + 3V2(O) - 2m][8d1s1 - fd; - 8d2] 

- 5[V{(OW + \-6mfi(O)V:(O) - 8mV~(O) + 2imViCO)V2CO) 

+ tm2[8~(0)V2(0) + vi(o) + V;(O)] - tv~(O)}. 

(9.18) 

(9.19) 
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We find the third derivatives by relating the expressions (9.12) and (9.l3) to (7.26d) and (7.27d). Their values 
are given later [see (9.25) and (9.26)], in the general case with bound states present. 

In order to compute the values of higher-order derivatives at the origin, it is necessary to continue this 
procedure. That is, one should compare higher-order coefficients from the expansions (9.7) and (9.11) and 
the coefficients given by (9.12) and (9.l3) with the values at the origin of the coefficients found with the system 
of recursion relations (7.22). 

If, instead of the expansion of Ij"(k)1 2 given by the formula (9.1), we expand the expression given by (6.6), 
we obtain the values at the origin of the potentials and their derivatives when bound states are present. We 
give here the results of these computations: 

VI(O) = -m + [m2 
- t(tal - c1)(!d1 - C1 - m) + t(SI + hI)]!' (9.20) 

(9.21) 

(9.22) 

V~(O) = t[Vl(O) + mrl{S2 + t[Vl(O) - 2Vz(0) + 3m]D2 - 5[Vi(0)12 - 12mVl(O)V;(O) + lOmV~(O) 
- 8mV~(0) + 4m2[Vl(0)vlO) + 2V~(O) + 2V~(0)1 + 3V~(0)}, (9.23) 

V~(O) = -fO[Vl(O) + mrl{Sz - t[Vl(O) + 3V2(0) - 2m]D2 - 5[V~(0)]Z + ~mVl(O)V;(O) - 8mV;(0) 

where 
+ ¥mV~(O)V2(0) + tm2 [8V1(0)V2(0) + V~(o) + V~(O)] - tv~(O)}, (9.24) 

D2 = 8(dl - 2cl)(Sl + hI) - td~ - 8d2 + 8(2ca - 2m2cl - 2cidl + cldD, 

S2 = 4m2d~ + 8dldz + td: - 4(dl - 2C1)2(Sl + hI) - 8(S2 - h2) + 4(Sl+ hll 

- 4hi + 16(c4 - m2c~ - CadI - cl d2 + tcidi - tc1di), 

Vr'(O) = t[Vl(O) + m]-l( -Sa + [2V2(0) - Vl(O) - 2m]Da 

+ 2Vf(0){ -9V~(0) + 8 Vl(O) [Vl(O) V2(O) + 5m VlO) + 4m V2(0) + 2Vi(0)] 

- 8V~(O)[m + Vl(O)] + 24m2[J-;(O) + V2(O)]}), 

V;'(O) = t[Vl(O) + m]-I(-Sa + t[Vl(O) + 4VlO) - m]Da 

+ 2V~(O){ -9Vi(0) + 4 Vl(O) [ - V1(O) l'2(O) + 4m V1(0) + 2m V2(O) + vi(O)] 

- 8V;(0)[m + J-;(O)] + 12m2[vlO) + v2(o)J}), 

(9.24') 

(9.24") 

(9.25) 

(9.26) 

where S3 and Da are given by (9.12) and (9.13). (9.29a) 
The condition V;(O) = V~(O) gives the relationship 

1. 1'" dk'1i[k(2 _ E - m - 2V1(O) 
7r -00 k E If+(k)12 

_ E + m + 2V1(O»)] 
E If-(k)/2 

+ L 2{E~ - a[m + 2ViO)J}C~ = O. 
n," (E~ + am) 

(9.27) 

In all these formulas the coefficients Sn and dn are 
given by (9.8), (9.9), and (9.10), while the bound-state 
coefficients are the following: 

n," 

n," 

C4 = let + tel L [(E~? - ama], 
n," 

(9.28a) 

(9.28b) 

(9.28c) 

n,a 

n," n<m,a n,m 

All the above results are in the case A = -1, i.e., 
S wave. To find the corresponding expressions for 
P wave, we simply change the sign of m and Vin)(O), 
n = 0, 1,2, ... [see (2.7') and remember that g(k, r) 
is the ratio between a component and its derivative], 
and use the corresponding P-wave data. 

10. RELATIONSHIPS BETWEEN PARTICLE 
AND ANTIPARTICLE SCATTERING AND 

BOUND-STATE DATA 

In this section, we particularize the results of the 
last section to the usual Dirac case, that is, V2(r) = 
VCr) and VI (r) == 0, providing expressions for the 
values of the potential and its first three derivatives at 
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the origin and also giving conditions on the scattering 
parameters. 

As previously noted, these expressions constitute a 
first step in finding relationships between the scattering 
and bound-state data of the particle and the anti
particle. These conditions, however, have a restricted 
validity, because they are deduced in the particular 
case of a potential whose first derivative vanishes at the 
origin. Later, we hope to find more general e~pressions 
in order to solve the inverse scattering problem for 
particles that satisfy the Dirac equation. 

From (9.21), we get the value of the potential 

YeO) = id1 - C1 

= _..L roo dk1)i[k-l1'jD(k)] - I (E~ - am) 
217' )-00 n," 

(10.1) 

and, from (9.20), the first condition, linking scattering 
and bound-state data, 

SI + hI = (td1 - cI)(ldl - CI - m) 

= V(O)[V(O) - mJ. (10.2) 

The requirement that the first derivative of the po
tential vanish at the origin gives the two conditions 

! roo dk1)l[!5:( 1 - 1 )] 
17' J-oo k E If-(k)/2 1j+(k)12 

+ I aC~ = 0 (10.3) 
n," (E~ + am) 

(10.4) 

which are obtained from (9.22) and (9.27). 
For the second derivative, from (9.23) and (9.24), 

imposing (10.2), we obtain 

V"(O) = -tdi + tmdi + 2dz + c1di - 2mc1d1 

- 2cid1 + 2mc~ + 4m2c1 + 4c~ - 4cs (10.5) 

and the condition 

Sz - h2 = _tV4(0) + 3mV3(0) + !m2V2(0) 

+ t[2V(O) - m]d2 + 6m2c1V(0) 

- 3(2V(0) - m](cs - ffC~) - lhi - 3m3c1 • 

(10.6) 

From (9.25) and (9.26), we find the third derivative 

VII/(O) = iDs 

- ~ Joo dk1)3[~( 1 - 1 )] 
- - 317' -<I) k E If-(k)12 Ij+Ck)12 

8aC"(ptr)2 + I n n 
n,tr (E~ + am) 

(10.7) 

and the condition 

Sa = (d1 - 2eI - 2m)Da 

= 2[V(0) - m]Da. (10.8) 

In all the above formulas, the coefficients are given 
by (9.8)-(9.10), (9.12), (9.13), (9.28), and (9.29). 

The conditions found may be used to derive formu
las for the energy and normalization constants of the 
bound states ,in terms of the scattering phase shifts. 
For instance, in the particular case when there exists 
only one bound state for the particle (or for the 
antiparticle), we get, from (10.2), 

N+ = 1, N- = 0, 

Et(S) = l(d1 + m) + {[l(d1 + m)]2 - ldi 
- !md1 + lm2 + lSI}! (10.9) 

and, from (10.3), with (9.13) and (8.11), 

ct(S) = -![Ei(S) + mJDI(S), (10.10) 

It should be noted that these results have been ob
tained using only the conditions VI (0) = 0 and V~ (0) = 
0, without explicitly using the condition V~(O) = 
V'(O) = O. It is therefore reasonable to conjecture that 
these relationships hold for more general potentials, 
without any restriction on the value at the origin of 
their first derivative. 

The expressions (10.9) and (10.10) give us the 
energy level and the normalization constant in the case 
of one bound state for the particle in S wave. The 
corresponding results for P wave are 

Et(P) = Hd1 + 3m) + {[!(di + 3m)]2 - idi 

- !md i - im2 + iSI}! (10.11) 
and 

ct(P) = -UEt(P) + m]D1(P). (10.12) 

If there exists only a bound state for the antiparticle 
in S wave, we get 

N+ = 0, N- = 1, 

E1(S) = Hd1 - 3m) - {[Hdi - 3m)]2 - idi 

+ !md1 - lm2 + lSI}!' (10.13) 
and 

C1(S) = HE1(S) - m]Dl(S) (10.14) 

and, correspondingly, in P wave we find 

E1(P) = Hd1 - m) - {[Hd1 - m)]2 - Idi 

+ lmd1 + tm2 + iSI}! (10.15) 
and 

C1(P) = UE1(P) - m]D1(P). (10.16) 
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ftm(k, + 1) = lim [rft (k, r, + 1)] 
r-+O NR 

= lim [krFt (k, r, + 1)]. 
r~O NR 

(AS) 

APPENDIX A: THE NONRELATIVISTIC LIMIT 

Taking the nonrelativistic limit of our results (for 
the usual Dirac case), we must recover the results of 
the Schrodinger case. Therefore, the nonrelativistic 
limit of our results constitutes an excellent test of their 
validity in the S-wave case; moreover, in the P-wave 
case it yields expressions, valid in the Schrodinger 
case, for the second and third derivatives of the 
potential at the origin in terms of the P-wave scattering 
and bound-state data, which are new results. 

To avoid confusion, we indicate in all functions the 
explicit dependence on A and denote by a subscript 
NR, appended to a function, that its nonrelativistic 
limit has been performed. 

Let us now study the equations that the components 
of the Jost solutions satisfy. Introducing the auxiliary 
function 

Ft(k, r, +1) = [!X(r)p(oo)]-!ft(k, r, +1), 

i.e., A = +1, (AI) 

we see that it satisfies the (Schrodinger-type) equation 

Ft"(k, r, +1) + (k2 - ~)Ft(k, r, +1) 

= [2EV(r) _ V2(r) + l!X'(r) + i(!X'(r»)2 
r !X(r) 4 !X(r) 

and that 

- ! !X"(r)] Ft(k, r, + 1) (A2) 
2 !X(r) 

lim Ft(k, r, +1) = ie-ik
,. (A3) 

,-+00 

From the definition (4.5) of the Jost function and 
from (4.S) and (3.3), with V1(r) == 0 and V~(O) = 
V'(O) = 0, one sees that 

f+(k, +1) = lim [rft(k, r, +1)] 
,-+0 

fi(k,O, +1) 

P(O) 

= If+(k, +1)1 exp [i1J+(k, +1)]. (A4) 

Thus, in the nonrelativistic limit, 

FtNR(k, r, +1) = k-YtNR(k, r, +1), (AS) 

Ft" (k, r, +1) + (k2 - 2r-2)Ft (k, r, +1) 
NR NR 

= 2mV(r)Ft (k, r, +1), (A6) 
NR 

lim F+ (k r + 1) = ie-ik
, (A 7) 

2NR ' , , 
,-+0 

Therefore, f~R(k, + 1) is the Jost function in the 
Schrodinger case for I = 1, and Fi;,R (k, r, + 1) is the 
Jost solution for this case. Correspondingly, one gets 
for the phase shift 

1Jtm(k, +1) = b (k, V, 1 = 1), (A9) 

where o(k, V, I) is the Schrodinger phase shift for 
linear momentum k, angular momentum I, and po
tential + V(r). 

Repeating the argument for the other components of 
the Dirac Jost solutions, for A = ± 1 and for the two 
signs of the energy, one gets 

1JNR(k, + 1) = b (k, - V, 1 = 0), (AlO) 

1Jtm(k, -1) = b (k, V, 1 = 0), (All) 

1JNR(k, -1) = b (k, - V, 1 = 1), (A12) 

that is, the Dirac phase shifts,for the particle and for 
the antiparticle for "angular momentum" zero and 
one, goes into the phase shifts for the Schrodinger 
problem with potentials VCr) and - VCr) and 1= 0 
and 1. 

Let us now consider the expression of the Jost 
function in terms of the phase shifts and bound-state 
energies [see (6.6)]. We observe that in the nonrela
tivistic limit 

--":':'---=1+-, E - E! E + m (P!)2 
E+E!E-m k 

(A13) 

--..:.:.----t = 1 + - , E - E";; E - m [ (p-;')2J-l 
E+E-;'E+m k 

(A14) 

so that 

( 
P Loo k' ) X exp - - dk',2 2 b (k', V, 1 = 1) 
1T -00 k - k 

= If (k, V, I = 1)1, (A15) 

a formula that reproduces the well-known formula for 
the Schrodinger case [see, e.g., Eq. (2.29) of Ref. 5]. 
Here En (l = 1) = -[p~(A = +1)]2 indicates the 
energy of the nth bound state produced by the po
tential V(r) for angular-momentum one. 
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In the same way, we see that 

Iftm(k, -1)1 = If (k, V, I = 0)1, (A16) 

IfNR(k, +1)1 = If (k, - V, I = 0)1, (A17) 

IfNR(k, -1)1 = If (k, - V, I = 1)1. (AI8) 

In these equations,f(k, V, /) is the Jost function of the 
Schrodinger problem with linear momentum k, angu
lar momentum I, and potential + VCr). 

For the bound-state normalization constant [see 
(8.5)], the nonrelativistic limit gives 

C (l) = -4i[Pn(1)]2 (AI9) 
n f[iPn(l)]j[ - iPn(l)] , 

this being also a well-known result for the Schrodinger 
case [see Eq. (AlO) of Ref. 5]. 

From (7.12) with VI(r) == 0 and from (7.13) and 
(7.14), we also see that in the nonrelativistic limit 

gtm(k, r, -1) = g (k, r, V, 1=0), (A20) 

where g(k, r, V, /) is the function of Eq. (4.1) of Ref; 
5. We note also that 

gtm(k, r, -1) = SNR(k, r, -1) + mDNR(k, r, -1). 

(A2I) 

From these equations it is easily seen that the non
relativistic limit of (7.22) reproduces the recursion 
relations of the Schrodinger case [see Eq. (4.6) of 
Ref.5]. 

In the same manner, we obtain 

gNR(k, r, +1) = SNR(k, r, +1) - mDNR(k, r, +1) 

= g (k, r, - V, I = 0). (A22) 

Therefore, the nonrelativistic limit of the Dirac prob
lem for the particle, with A = -1 ("S wave"), and for 
the antiparticle, with A = + 1 ("P wave"), corresponds 
to two SchrOdinger problems with potentials V(r) and 
- V(r) , respectively, both in S wave. 

This correspondence may be verified by performing 
the nonrelativistic limit of the expressions for the 
values of the potential and its derivatives at the origin. 

From (10.2) we see that, in the nonrelativistic limit, 

and, by substitution in (10.1), 

V(O) = (dl)NR - 2(CI)NR + m-I[(sl)NR + (hl)NR]' 

(A24) 

From (9.28a), (9.29a), (9.8), and (9.9), we obtain 

and from these we get 

2m YeO) = -! roo dk!:l~c5 (k, V, I = 0) 
7T Jo 

N 

- 4 Z En (l = 0). (A25) 
n=1 

This is the well-known result first obtained by Newton6 

and independently by Faddeev.8 

The first derivative of the potential is, by assump
tion, zero at the origin in our case, as we stated in 
Sec. 10. Nevertheless, it is interesting to note that by 
combining the nonrelativistic limit of conditions (10.3) 
and (10.4) we obtain 

o = ..± 100 

dk!:ll[k(1 - 1 )] 
7T -00 k If (k, V, I = oW 

N 

+ 4 Z Cn (l = 0), (A26) 
n=1 

whose right-hand side reproduces the expression for 
V' (0) in the Schrodinger case [see Eq. (6.5) of Ref. 5]. 

For the second derivative, one can see that, from 
the nonrelativistic limit of (10.5), 

V"(O) = 2mV2(0) + 2(d2)NR + 4m2(cI)NR 

- 4(Ca)NR + t(CDNR (A27) 
and, from (10.6), 

(S2)NR = (h2)NR + tm2V2(0) 

- tm(d2)NR + 3m(ca)NR - 2m(c~)NR 

- Hh~hm - 3ma(cI )NR' (A28) 

By combining these expressions, one gets 

2m V"(O) = Sm2V2(0) + ~ 100 

dkn! b (k, v, 1 = 0) 
7T3! -00 

N 

+ 2a Z [En (/ = 0)]2. (A29) 
n=1 

This coincides again with the formula for the Schro
dinger case [see Eq. (6.6) of Ref. 5]. 

The nonrelativistic limit of the third derivative is 
easily found. Note that by combining (10.7) and 
(10.8) we can write 

2mV"I(0) = -m(Da)NR - (Sa)NR, (A30) 
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from which we obtain 

2mV"'(0) = ~ 100 

dkl)~{k[l - If (k, v, 1= 0)1-2
]) 

1T3! -00 

N 

+ 24 I Cn (l = 0) En (l = 0), 

= - ~ 100 

dkl)~[k-I If (k, v, I = 0)1-2
] 

1T5! -00 

N 

+ 24 I Cn (l = 0) En (l = 0). (A31) 
n=1 

This equation coincides with the formula obtained in 
the SchrOdinger case [see Eq. (6.7) of Ref. 5], provided 
that V'(O) = O. (To obtain the last expression, we 
have performed two partial integrations.) 

Applying the transformation (2.7') to the expressions 
(10.1) and (10.2), that is, simply changing the sign of 
m since VI (r) == 0, and introducing the scattering and 
bound-state parameters for A = 1, one obtains the 
results for the Dirac "P wave," A = + 1, and in the 
nonrelativistic limit the results become 

2m YeO) = - ~ roo dkl)~r5 (k, V, 1 = 1) 
31T Jo 

N 

- t IEn (l = 1). (A32) 
n=1 

This is the formula for the Schrodinger case for / = 1. 
[See Newton, Ref. 7, formula (8.14').] 

For the second and third derivative, one gets 

2mV"(0) = -Vm2V2(0) 

- - dkl)3r5 (k V 1 = 1) 2
5 Loo 

3! 51T 0 k " 

N 

- t I [En (l = 1)]2, (A33) 
n=1 

2m V"'(O) = - ~ roo dkl)~{ k[I-lf (k, v, 1 = 1)1-2n 
3! 31T Jo 

24 N 
- - ICn(l = l)En(l = 1). (A34) 

3 n=1 

The last two expressions constitute new results. 
These formulas could not be obtained with the method 
of asymptotic expansions5 because of the singularity 
of the centrifugal potential. The results obtained here 
indicate, however, that this difficulty can be overcome, 
provided that the potential satisfies the additional 
condition V' (0) = O. The technique of doing this is 
suggested by the procedure which we have followed in 
obtaining these results here; it proceeds essentially 
through the transformation of the P-wave Schrodinger 
equation into an S-wave Schrodinger equation with an 

"equivalent" potential, which is complicated and 
energy dependent, but finite [if V'(O) = 0]. A more 
detailed discussion of this method and its application 
in the Schrodinger case in obtaining results for higher 
partial waves will be treated in a separate paper. 

Finally, we note that from (A23) and (A24) one can 
also obtain (A32) for the potential - VCr), while by 
repeating the procedure to obtain (A32) one can 
obtain (A25), again with - VCr) in place of VCr). This 
is a confirmation of the fact that the nonrelativistic 
limit of the Dirac problems with A = ± 1, and ±E 
goes into the SchrOdinger problems with / = 0, 1 and 
P9tentials ± VCr). 

APPENDIX B 

Here we put forward some considerations on the 
presence of logarithmic terms in the expansion at the 
origin of the solutions ofEq. (3.1). 

From the system of equations (3.1), by elimination 
of one variable, we get 

"(k) (k2 A(A - 1») (k ) v;. , r + - r2 v;., r 

= [2EV2(r) + 2m VI(r) + V~(r) - V~(r) 

+ ~ V~(r) + V~(r) 
r E - m - Vir) - Vlr) 

+ 3 ( V~(r) + V~(r) )2 
4 E - m - VI(r) - V2(r) 

+ ,VA ,r, ! V~(r) + V~(r) j (k ) 
2 E - m - VI(r) - V2(r) 

(B1) 

where 

v;.(k, r) = ([E - m - VI(r) - V2(r)][E - mn-! 

X u~(k, r). 

Equation (Bl) can be interpreted as a Schrodinger 
equation with an energy-dependent potential, which is 
singular at the origin (since A ~ 0). Therefore, the 
behavior of the solution at the origin will be (for the 
case A = 1) of the type 

lim v1(k, r) = const + A In Br, (B2) 
r-+O 

where 

A ex V{(O) + V~(O). 
[For the case A = - 1, it is proved that A oc V~ (0) -
V~(O); see (2.6)'or (2.7).] 

Note that, if A vanishes, the singularity in Eq. (Bl) 
disappears. In the Schrodinger case, one meets log
arithmic terms if there are singularities (/ ~ 0 or no 
regular potentials) and these terms impede the use of 
a method of asymptotic expansion such as that used in 



                                                                                                                                    

1712 O. D. CORBELLA 

this paper. Therefore, in order to employ a similar 
method, one must choose the potentials in such a way 
that they exclude the presence of logarithmic terms. 

APPENDIX C 

Calogero and Degasperis5 introduced the following 
asymptotic expansion for the scattering phase shift 
(numbers on the left denote the equations of their 
paper): 

N 
(2.41) ?](k) = I a1lk-2n- 1 + O(lC2N- 3

). 

n=O 

They have the expression 

(2.50) N(k) = - !:. J'oo dk' k' ?](k') 
1T -00 k,2 - k2 

and prove that it can be developed in the asymptotic 
expansion 

N 
(3.18) N(k) = I d"k-2n + O(k-2N- 2

), 

in which the coefficients are given by 

(3.17) d1l = _ 1 roo dk'1)~"-1?](k). 
1T(2n - I)! 1-00 

In our case, we are in a similar situation. Let us 
introduce the following asymptotic expansions: 

N 
rt(k) = I a"k-Z,,-l + O{k-ZN

-
3

) 

11=0 

11=0 

11=0 

N' 
- E I b"k-2,,-1 + O(k-2N'-3). (C2) 

,,=0 

Then we can write (9.2) as 

and, introducing the asymptotic expansion 

N 
N1(k) = I Snk- 2n + O(k-2N- 2). 

11=1 

(C6) 

(C7) 

we get for the coefficients (making use of the resulis of 
the Schrodinger case) 

s" = -1 roo dk'1)~n-l?]S(k). 
1T(2n - I)! 1-00 

For the function N2(k), from (9.4), we get 

(C8) 

p 100 
1 N2(k) = - - dk',2 2 [?]D(k') + 2p(00)]; 

1T -00 k - k 
(C9) 

therefore, an asymptotic expansion of the type 

N 

N 2(k) = I dn k-2n + O(k-2N- 2
) (ClO) 

n=1 

implies for the coefficients the expression 

dn = -1 100 
dkXl:n-1{k-1[?]D(k) + 2p(00)]} 

1T(2n - I)! -00 

= -1 roo dk'1)i"-1[k-1?]D(k)]. 
1T(2n - I)! 1-00 

In the same way, having 

(Cll) 

Re S(k) = - 1:.. roo dk' ,2 k' 21m S(k') (C12) 
1T 1-00 k - k 

in which we choose bo = -2p(oo); obviously these and taking the real part in (8.6) 
expansions are consistent with Eqs. (4.9) and (5.30'). 
The absence of logarithmic terms is a consequence of N S. 

Re SI(k) = .. "=1(-)n 22"2,,-1 k-2n + O(k-2N- 2), (C13) the conditions imposed on the potentials (see Sec. 3). ""-
From these we define 

?]S(k) = ?]+(k) + ?]-(k) 
N 

= 2 I a nk-2n- 1 + O(k-2N- 3), 

n=O 

n=O 

N' 

(C3) 

?]D(k) + 2p( 00) = 2 L bn+1k-2n-2 + O(k-2N·-4
). (C5) 

n=O 

we obtain 

( _)n2-2ns, _ = -1 100 

dkXl2n-l 1m SI(k). 
2n 1 1T(2n _ I)! -00 k 

(C14) 

From this and (8.9), we obtain (9.12). The same 
procedure may be used to go from (8.15) to (9.13). 
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By first casting the scalar-tensor theory into canonical form, the constraint equations are obtained from 
which it is possible to discuss the self-energy problem of the neutral particle and the electron. With the 
assumptions of Minkowski space and a constant scalar field as boundary conditions at infinity, it is shown 
by variational arguments that the inertia of these objects is unchanged from the corresponding general 
relativity values. Accordingly, if the boundary value of the scalar is altered by a change of matter at infin
ity, the mass of the electron is unchanged. From this point of view, the scalar-tensor theory is no more 
compatible with Mach's principle than is general relativity. 

INTRODUCTION 

In 1916 Einstein, influenced by the writings of 
Mach, proposed a new theory of gravitation which was 
to be compatible with the concept of the relativity of 
all motion. The special theory of relativity was 
partially successful in excising the Newtonian absolute 
space from physics by establishing an equivalence of 
inertial frames; the general theory made another 
step towards the elimination of the concept of absolute 
space by establishing the fundamental validity of 
essentially any coordinate frame. 

However, since that time there have been many 
criticisms of general relativity because of what is 
referred to as Mach's principle. Owing to the large 
number of formulations of Mach's principle, it has 
itself been criticized as being too vague, but there are 
essentially two dominant themes common to all its 
formulations. One form emphasizes the intrinsic in
ertial properties of matter by demanding that the 
inertia of a body is due to the presence and distri
bution of matter in the universe; for example: " ... 
matter has inertia only because there is other matter 
in the universe" (Sciama)l; and "From Mach's point 
of view, the inertial reaction may be considered to be 
gravitational in origin" (Dicke).2 The second form 
emphasizes the properties of coordinate systems them-

selves by demanding that inertial frames must be 
completely determined by the presence and distribu
tion of matter in the universe; for example: "Accord
ing to Mach, then, inertial frames are those which are 
unaccelerated relative to the 'fixed stars' -i.e., relative 
to some suitably defined average over all the matter in 
the universe" (Sciama)l; and "By Mach's principle 
the inertial coordinate system ought to be uniquely 
determined by the mass distribution (in the universe)" 
(Dicke).3 

The first form of Mach's principle is not substan
tiated by general relativity and can be shown by a 
particular solution of the Einstein field equations. 
We imagine a thin, spherically symmetric mass shell 
situated in an otherwise empty universe. Furthermore, 
we suppose that the shell is at rest relative to the 
inertial frame at infinity. It is then well-known that 
an inertial frame can be constructed everywhere within 
the shell, and thus all local physics conducted at the 
center of the shell and all physical parameters, includ
ing the masses of elementary particles, must be inde
pendent of its mass or radius; the mass of a single 
electron placed at the center of the shell is unaffected 
even if the radius of the shell is increased without 
limit. Thus, in general relativity the inertia of bodies 
is not due to the distribution of matter in the universe. 
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to some suitably defined average over all the matter in 
the universe" (Sciama)l; and "By Mach's principle 
the inertial coordinate system ought to be uniquely 
determined by the mass distribution (in the universe)" 
(Dicke).3 

The first form of Mach's principle is not substan
tiated by general relativity and can be shown by a 
particular solution of the Einstein field equations. 
We imagine a thin, spherically symmetric mass shell 
situated in an otherwise empty universe. Furthermore, 
we suppose that the shell is at rest relative to the 
inertial frame at infinity. It is then well-known that 
an inertial frame can be constructed everywhere within 
the shell, and thus all local physics conducted at the 
center of the shell and all physical parameters, includ
ing the masses of elementary particles, must be inde
pendent of its mass or radius; the mass of a single 
electron placed at the center of the shell is unaffected 
even if the radius of the shell is increased without 
limit. Thus, in general relativity the inertia of bodies 
is not due to the distribution of matter in the universe. 
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On the other hand, solutions of the Einstein 
equations can be found which do support the second 
version of Mach's principle. If the mass shell is set in 
slow rotation relative to the inertial frame at infinity, 
we find, as shown by Brill and Cohen,4 that an inertial 
frame can still be constructed everywhere within the 
shell, but it is now also rotating with respect to the 
inertial frame at infinity. Furthermore, this "dragging" 
of the inertial frame by the shell is perfect if the radius 
of the shell equals its Schwarzschild radius. Under 
this condition, observers within the shell could not 
detect any rotation of the shell relative to their local 
inertial frame. This, in fact, can be offered as an 
explanation as to why all visible stars in the universe 
are, in the large, rotationally at rest relative to a local 
inertial frame. 

So we see that, although general relativity does not 
suggest a determination of inertia by the presence of 
matter, it does allow a determination of inertial 
frames by matter. 

The scalar-tensor theory of gravity was proposed in 
1961 by Brans and Dicke5 in order to remedy the 
incompatibility of general relativity with Mach's 
principle. Since this theory also enables one to deter
mine the metrical properties of space and may even 
be cast into a form in which the Einstein equations 
are satisfied,6 it is clear that the main thrust towards a 
full integration of Mach's principle must be through 
its inertial implications rather than through the influ
ence of matter on inertial frames. 

Brans and Dicke have pointed out an important 
consideration with regard to the inertia of bodies and 
to whether inertia can vary.5 If it is said that the mass 
of an electron at one point of space is the same as its 
mass at another point, this statement is either a 
definition or it is meaningless. In addition to the 
generally accepted units of length and time, we must 
also make a choice for the unit of mass. If we choose 
the electron mass as this unit of measure, then, of 
course, the mass of an electron is constant by defini
tion. On the other hand, mass ratios, such as the 
ratio of the proton mass to the electron mass, are 
dimensionless numbers. Such quantities cannot be 
altered by adjusting units and so may well be spatially 
dependent. 

A case in point is the dimensionless combination 
(G/lic)!me' where G is the gravity constant and me is 
the mass of an electron. Such a combination enables 
us to define the mass of the electron in terms of the 
quantities G, Ii, and cor, if we wish to choose me as a 
fundamental unit of measure, the quantity G may be 
expressed in terms of me, Ii, and c. 

Such consideration might be specious but for the 

fact that the combination CGjlic)!me is an exceedingly 
small number, on the order of 10-23 • It is generally 
believed that in a complete theory of physics the 
fundamental dimensionless numbers would be of the 
order of unity and constant, whereas either exceed
ingly small or exceedingly large numbers must in some 
way be connected with the actual distribution of 
matter in the universe. It is the assumption of the 
Brans-Dicke theory that the quantity (G/lic)!me is 
such a number. The original form of the theory is 
written such that the gravity constant G absorbs all the 
variable behavior of this number, but it must be 
recognized that this behavior can be apportioned in 
arbitrary amounts to each of the quantities appearing 
in the combination. 

In order to test the inertial implications of the 
scalar-tensor theory, it is then evident that we must 
choose the representation in which the quantities G, 
Ii, and c are constants. 

The scalar-tensor theory of gravity was first intro
duced in the form5.7 

t5fd4rC-4g)!(4)4R - OJ 4>,t'!' + 16;Go LM) =0. 

(1) 

It is understood that L M depends in no way upon 4> 
and so any mass parameter appearing in LM is 
assumed to be constant by definition. On the other 
hand, the presence of 4> as the coefficient of 4R shows 
that the gravity constant is assumed to be a variable; 
in fact, G = 4>-lGO' This action principle can be cast 
into the representation in which the gravity constant is 
constant by definition by means of the conformal map 
gllv --l- 4>-lg!'v' The result is6 

Here, LM is obtained from LM by replacing g!'v in 
LM by gllv/4>. 

If we refer back to the large matter shell, we can see 
how the scalar field may lead to the inertial implica
tions of Mach's principle. Whereas in general relativity 
the masses of elementary particles are unaffected by 
the presence of the large shell because the interior 
inertial frame is independent of its size, we find that the 
scalar field in the Brans-Dicke theory is capable of 
reaching into the interior of the shell and affecting the 
elementary particles' masses therein. The scalar field 
will, in general, depend upon the size of the shell, and 
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so any change in it can lead to changes in the local 
physics at its center. 

Specifically, the action principle (2) leads to an 
equation for the scalar field6 

(_4g)-!~(_4g)l4g"/lalncp) = 87TGO T. 
a~ a~ ~3+2~ 

(3) 

If we look for the static solution in isotropic coordi
nates for the interior solution, we find that (3) be-
comes 

V· (X}'V In cp) = 0, (4) 

where V is the flat-space gradient operator, where 
ds2 = -}.2(r) dt 2 + x4(r)[dx2 + df + dz2], and where 
T is zero everywhere within the shell. Since (4) must 
hold everywhere within the shell, we find that cp = 
const; this condition clearly yields a flat-space metric 
in the interior of the shell. If we have at our disposal 
a detailed model for an elementary' particle; we can 
then compute the mass of the particle by demanding 
that the space become Minkowskian "at infinity" 
and that the scalar field take on the value given by the 
shell's interior solution. It is then possible to ask how 
the mass of the elementary particle is affected as the 
size or matter content of the large shell is altered. 

When dealing with localized matter distributions 
that include such fields as the tensor and scalar fields, 
the use of the canonical formalism as developed by 
Arnowitt, Deser, and Misners is most suitable. Its 
use is particularly enhanced if Minkowskian space is a 
boundary condition. The Hamiltonian of the system 
gives us its energy; the generators of space translations 
give us the momentum of the system when they are 
evaluated for the actual field configuration. But most 
important, these four quantities form a 4-vector 
relative to the Minkowskian space at infinity.s The 
localized system will behave like a particle in special 
relativistic mechanics; in the presence of an external 
field, it will respond with an inertia given by the 
magnitude of this 4-vector. 

When evaluated in the rest frame of the system
i.e., in the frames in which the three spatial com
ponents of the 4-momentum are zero-the energy 
becomes equivalent to the magnitude of this vector. 
We are thus able to compute the inertia of a system 
by means of the self-energy; the two are equal to 
factors of c which, by prior choice of units, .is taken 
to be constant. 

1. THE SCALAR-TENSOR THEORY IN 
CANONICAL FORM 

A model for the electron with the corresponding 
self-energy calculation has already been discussed by 

Arnowitt, Deser, and Misner within the framework 
of general relativity.9 With minor modification one 
can also discuss the neutral "point" particle. Both 
are characterized by a <5-function source and a bare 
mass. Both are clothed by the tensor gravitational 
field where the boundary condition of Minkowskian 
space is assumed at infinity. In the scalar-tensor theory 
these models would be further characterized by cloth
ing by the scalar field whose boundary value is deter
mined by the matter at infinity. 

Referring to Eq. (2), we see that, in the representa
tion in which the masses of fundamental particles can 
vary, the scalar field behaves much as a matter field; 
it behaves as a source for the Einstein field (the metric) 
and, in fact, the Einstein form of the field equations is 
obtained, since only metric components comprise the 
curvature term of the action. This facilitates the 
reduction to canonical form of the scalar-tensor 
theory and the comparison of inertial implications 
between it and general relativity; the (3 + I)-dimen
sional decomposition of the action, the imposition of 
coordinate conditions, the orthogonal decomposition 
of the metric, and the treatment of the constraints can 
be managed in the scalar-tensor theory exactly as in 
general relativity. 

In general relativity the action 

10 = f d4-r( _4g)! 4g/lVR/lV' (5) 

where 

R/lV = r:v, .. - r:",v + r:vr!/l - r:/lr~" (6) 

will yield the Einstein equations 

R/lv - t 4g/lvR = 0 (7) 

and the relations 

(_ 4g)-![( _ 4g)! 4g/lvJ, .. 

+ 4g/l/lrp" + 4gV/lr~" _ 4g/lvq" = 0 (8) 

(from which the affine connection can be expressed in 
terms of the 4g/l V and their derivatives) upon inde
pendent variation of the 4g/lV and the r~v' An equiv
alent form of this action principle can be obtained by 
means of a (3 + I)-dimensional decomposition in 
which we defineS 

gij = 4gil' N = (_4g00)-!, Ni = 4g0i , (9a) 

7Til = (_4g)!(r~q _ g"qgrsr~.)gi"glq. (9b) 

Latin indices run from I through 3, and the quantities 
gil form the matrix reciprocal to gil' Insertion of these 
definitions into 10 yields an equivalent Hamiltonian 
forms 

(10) 
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where 

RO = - gf[3R + g-\! 7Tt7T; - 7Tii7Tt;)] , (lla) 

Ri = -27Tii li , (lIb) 

and where both a total time derivative and a diver
gence have been discarded. Also, "1/' means the co
variant derivative with respect to the jth coordinate. 
It is now understood that the 7Tii , gii' N, and Ni are 
independently varied quantities and that indices are 
raised and lowered with the 3-space metric gii . 

This decomposition of the action can be carried over 
into the scalar-tensor theory because only metric 
components appear in the curvature term. For a com
plete reduction of the scalar-tensor theory to canonical 
form, it is also necessary to cast the scalar part of the 
action into Hamiltonian form. If we take the La
grangian density to be 

Lq. = _(~_ + w)( _ 4g)1 cf>,~~'/l , (12) 

then an insertion of the (3 + I)-dimensional decom
position of the metric (9) yields 

L = _ (i + w)(g)f 
q. Ncf>2 

X [-( cf>,0)2 + 2Nicf>,icf>,0 + (N2gii - NiNi)cf>A,;l· 

(13) 

A conversion to Hamiltonian form can be made in the 
usual way by means of the definitions 

oL 
7T = 0-1. ' h = 7Tcf>,0 - L, (14) 

'1',0 

with the result that 

L = 7T ocf> _ N 7Ti-l. . 
q. 07° '1'" 

_ N( cf>
2

7T
2 

+ (t + W)gfgii cf>A'i) , 
(6 + 4w)(g)f cf>2 

(15) 

and so the action for the tensor and scalar fields can be 
written 

1 -Id4 ( i; Ogii + ocf> _ NRo - N.Ri) (16) 
G+q. - 7 7T 070 7T 070 • , 

where now 

RO = _(g)f[3R + g-l(!7Tf7T; - 7Tii7Tii)] 
-I.27T2 -I. -I. 

+ 'I' + (t + w)igik ~, (17a) 
(6 + 4w)gf cfo2 

Ri = -27Tii li + 7Tcf>,i. (17b) 

If we were in fact considering the source-free scalar
tensor field, IGH would be the full action in Hamil
tonian form. A reduction to canonical form requires 
the use of the constraints obtained from (16)-namely, 
RO = Ri = O-to eliminate the constrained variables 
from the action. Substitution of these constraints 
(obtained by extremizing IGH with respect to Nand 
Ni independently) into 10+4> yields 

1 -Id4 ( ii Ogii + ocf» G+q. - 7 7T 7T 0' 
07° 07 

(18) 

wl"\ere it is understood that four of the quantities in the 
int~grand are expressed in terms of the others through 
the constraints. 

It is further possible to make an orthogonal decom
position of the metric components. For any symmetric 
array hi' it is possible to write 

hi = f~T + f~ + (fli + fT.i) + f~i (19) 

if f~ is defined according to 

Here, (1/V'2) is the inverse of the flat-space Laplacian 
operator with suitable boundary conditions. Also, by 

definition f~j~j = f~T = f~.j = f~ = O. Insertion of 
this decomposition into (18) allows us to write in one 
of several possible forms: 

1 -Id4 ( ocf> + ijTT og~T 
0+4> - 7 7T 070 7T 070 

+ [_V'2(7TiT + 7T~)] 0:
0 
[-(1/2V'2)g~] 

_ (_ V'2gT) ~ [( -1/2V'2)( 7TT + V'27TL )]). (21) 
07° 

If we choose the coordinate conditions 

Xi = 2gi - (1/2V'2)g~, (22a) 

t = -(1/2V'2)(7TT + V'27TJ,), (22b) 

then the action reduces to 

1 G+q. =Id3X dt (7T ocf> + 7T
ijTT 

g'J;T - h), (23) 
ot ot 

where 

(24) 

Once the variables gT, 7TiT , and 7TL are expressed in 
terms of the other variables by means of the constraints, 
the action IGH is in canonical form with h a functional 
of the variables 7T, cf>, 7TiiTT

, and g~T; if these quantities 
are specified initially, then the Hamilton equations 
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obtained from (23) guarantee their unique time de
velopment. Furthermore, the previous claim that the 
orthogonal decomposition of the metric and the 
imposition of coordinate conditions can be carried out 
exactly as in general relativity is substantiated in the 
above equations. The main alteration of the treatment 
of the physical system appears, rather, in the new 
constraints [Eqs. (17)]. 

In order to discuss the self-energy of the- neutral 
particle and the electron, we must also include in the 
action those quantities related to the coupling with 
the electromagnetic and mechanical vatiables. The 
Lagrangian density for a point charge in general 
relativity is given by8 

+ dse - (s)A,l-r)!5'(T - x(s» J 
dX" 
ds . 

X !5'(T - xes»~. (25) 

The appropriate quantities for varying are the vector 
potential All' the field po, the coordinate position of 
the particle x", and the momentum of the particle 7T Il • 
We introduce A'(S) as a Lagrange multiplier in order to 
maintain the arbitrary-parameterization of the action 
in the parameter s. This density can be expressed in 
the scalar-tensor theory by means of the prescription 
given in Eq. (2) with the result 

X !54(T - x(s», (26) 

where cf> is absorbed into the variables po. 
In order to reduce to canonical form the complete 

system it is necessary to effect a (3 + I)-dimensional 
decomposition of the "interaction" Lagrangian density 
as well. In 3-dimensional notation 

In terms of these quantities and the 3-dimensional 

notation of the metric, the above Lagrangian becomes 

1 -
cf>2 LM 

i aAi 3 ° {O dx' O} = -E -0 + 15 (T - X(T » (7Ti(T) + eAi] -0 + 7T 
aT dT 

+ Ao[e!53(T - X(TO» - E:i] 

- !A[cf>gii7Ti7Ti - cf>N-2(7T0 - Ni7Ti)2 + m~] 
x 03( T - X( TO» 

- !Ng-lg;;(EiE i + BiBi) + NiEiikEiBk. (28) 

In obtaining the above, an integration over the arbi
trary parameter s has been made where A = Xes) ds! 
dxO(s) evaluated at XO(s) = TO. 

It is now convenient to eliminate the nongravita
tional constraints. Varying the total action with respect 
to Ao and A will produce a set of. constraints because 
these quantities appear nowhere differentiated in the 
above Lagrangian. The constraints are found to be 

E:i = e!53(T - X(TO», 

.J. -2 i 2 1. ii 2 ",N (7T0 - N 7Ti) = ",g 7Ti7T i + mo, 

where solutions are 

EL = -V e , 
47T IT - X(TO) I 

° N i N( ii + .J.-l 2)1 7T = 7Ti - g 7Ti7Tj '" mo . 

(29a) 

(29b) 

(30a) 

(30b) 

EiL is the longitudinal part of the vector Ei; i.e., we 
have implicitly assumed the orthogonal decomposition 
Ei = EiT + EiL. If we insert these relations into (28), 
bearing in mind the orthogonal decomposition of the 
vectors Ei and Ai, we find 

1 - iT aA; dx i 
3 ° 

cf>2 LM = (-E ) aTO + Pi dT0 !5 (T - X(T» 

- iN g-* gilEiEj + BiB') 

- N[gii(Pi - eA'f)(p, - eA'f) + cf>-lm~]t 
X 03(T - X(TO» 

. . k T 3 ° + N'(EiikE'B + (Pi - eAi)o (T - X(T »], 

where Pi = 7Ti + eA'f. 
(30c) 

The independent excitations of the electromechani
cal system can now be seen to be Ai and its conjugate 
momentum (_EiT), the Xi, and the Pi' At this point 
the variables N, N i, and cf> are unspecified, but their 
significance becomes complete when this Lagrangian 
is added to those corresponding to the scalar and 
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tensor components of the gravitational field. The total 
action then becomes1o 

where now 

RO = _(g)![3R + g-1(t7T:7T1 - 7Tii7Tii)] -

+ 4>
2

7T
2 

+ (t + w)g!gik 4>.i4>.k 
(6 + 4w)g! 4>2 

+ -\ gilEiEj + BiBi) 
2g 

+ [gij(Pi - eAJ)(pj - eAf) + 4>- l mg]! 

X 03(T - X(TO»), (32a) 

Ri = -27Tij /j + 7T4>.i - EnikginEiBk 

_ (pi _ eAiT)o3(T _ X(TO»). (32b) 

Again, as for the free scalar-tensor field, the orthog
onal decomposition of the metric and the choice of 
coordinates can be made in the above action since these 
manipulations are most directly related to the first 
term in the integrand. If the same choice of coordi
nates is made as Eqs. (22), then the action reduces to 

(33) 

where h is a functional of the quantities {7TiiTT
, g'f;T; 7T, 

4>; (-EiT), A;; Pi' Xi} and is obtained by solving the 
constraint relations from Eqs. (32); i.e., RO = Ri = O. 

I is now in canonical form; the set of quantities 
{7TiiTT gTT. 7T A.. (_EiT) AT. p. Xi} comprises the 

, ii' ,'jJ, 'i' t' 

minimal set of Cauchy data for the charged particle in 
the scalar-tensor theory; arbitrary specification of 
these quantities initially will lead to their unique time 
evolution by means of Hamilton's equations generated 
by extremizing I. 

2. SELF-ENERGY OF THE ELECTRON AND 
NEUTRAL PARTICLE IN THE SCALAR

TENSOR THEORY; COMPARISON 
WITH GENERAL RELATIVITY 

From the canonical form of a theory we can recog
nize the energy of a system as the value of the Hamil
tonian for the actual fields present. The self-energy of 
a particle is characterized by the static fields associated 

with the particle. All independent excitations related 
to the presence of waves are excluded. In the case of 
either the neutral particle or the electron, the inde
pendent excitations of the tensor field and the electro
magnetic field may immediately be set equal to zero. 
The scalar field cannot be so treated since no gauge 
condition on 4> exists and there is no natural decom
position of the scalar into that part describing waves 
and that related to the source. The static condition is, 
however, characterized by a minimum energy con
figuration of the fields since any higher energy will in 
general decay to the minimum energy configuration by 
the emission of waves. The self-energy of a particle can 
then be characterized by setting all independent excita
tions equal to zero except for the scalar field and by 
inserting into the Hamiltonian the scalar field appro
priate to the minimum energy configuration. 

From the action in (33) we see that the Hamiltonian 
is 

(34) 

where it is assumed that gT is expressed in terms of the 
independent excitations by solving the constraints. 
Instead of directly expressing gT in terms of the inde
pendent excitations, it is more convenient to first 
insert the static self-energy conditions into the con
straints and then solve for the appropriate gT. If we 
place the charge at rest at the origin of coordinates and 
leave 4> for the moment unspecified, the static condi
tion is characterized by g~T = 7TijTT = Pi = 7T = 
EiT = A; = O. With the coordinate conditions (22) 
we are dealing with the time-symmetric situation 
7Tii = O. We see, then, that the constraints, from 
(32b)-namely, Ri = O-are automatically satisfied; 
the "energy" constraint RO = 0 leads to 

hR (3 + )! ij 4>A.j g =2' wgg--;p-

_1_ EiLEjL rno0
3
(x) (35) + ! gij +!' 

2g 4> 

A special advantage of the choice of coordinates is the 
following: Substitution of the coordinate conditions 
into the orthogonal decomposition of the metric leads 
to 

gij = g~T + 0ii(1 + tgT). (36) 

Thus, in the above static models, the coordinates 
reduce to isotropic coordinates. If we assume gij = 
x4(r)Oij' then the constraint (35) reduces to 

g! 3R = -8X\72X 
2 (VcP)2 (EL)2 rno0

3(x) 
= (~+ w)X - + - + --. (37) 

2 cP 2x2 cPt 
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In terms of X, the self-energy of the particle can be 
written 

m = - f d3x\f2gT = -2f d3x\f2X4. (38) 

Because we always wish to maintain the boundary 
condition of Minkowskian space at infinity, the 
condition of X ---+ 1 as r ---+ 00 is imposed. We can thus 
write the identity 

f d3x\f2Xn = L ds· VXn = n f ds· Vx = n f d3
x"PX' 

(39) 
The self-energy can therefore be written 

m = -8 f d3x\f2X' (40) 

From this it is clear that the self-energy of the system 
is determined as 327T times the coefficient of the ,-1 
term appearing in the asymptotic expansion of X. 

The determination of the mass of either the neutral 
point particle or the electron is not yet complete since 
the scalar field is as yet unspecified in (37). But, 
because we expect the minimum energy situation to 
arise in the static case for some configuration of the 
scalar field, we need only consider all scalar field 
configurations which are initially static and choose 
that configuration which gives the minimum value 
ofm. 

Consider, first, the neutral particle. The constraint 
equation is 

-8X\f2X = (t + w)l(v:r + mo;:(x), (41) 

where that value of cp is to be inserted in (41) which 
minimizes m. An easy comparison can be made with 
general relativity by considering the constraint equa
tion arising in the Einstein theory: 

(42) 

A rigorous solution of this equation leads to not only 
a zero mass but also to a Minkowski space everywhere 
away from the origin.9 Furthermore, X becomes in
finitely large at the origin. If n is chosen equal to - 2 
in Eq. (39), then the mass can be written as 

m = -8 J d3x\f2X = 4J d3x\f2X-2 

= 4fd3X(6(VX)2 _ 2\f2X) 
X4 l 

=Jd3x(24(VX)2 + (.;t + w) (Vcp)2 + mo~3(x») 
l 2 cp2l cptl' 

(43) 

the last statement being true by virtue of the con
straint equation. Because each of the terms are positive 
or zero, we see that the mass must be greater than or 
equal to zero whatever the scalar field and that the 
mass is zero for a constant scalar field, since a constant 
scalar in (41) reproduces (42) (except for an alteration 
of the bare mass). 

Even though zero is the least value m can attain, 
does this correspond to a minimum energy configura
tion of the scalar field? By elimination of \f2X in (40), 
by means of the constraint, we have 

m = f d3X[Ct + W)x(v:r + m~3~x)l (44) 

A first variation of m with respect to cp gives 

Om = f d3X[(t + w)[(V In cpl~x + 2XV Incp· 0 Vln cp] 

+ mo03(X) (_ 04> _ OX)], (45) 
cptx 2cp X 

where 8X is related to 8cp by maintaining the constraint. 
It is clear that, if cp is chosen to be constant, then the 
first bracketed term vanishes because V In cp vanishes 
and that the contribution of the second term is zero 
because at the origin X becomes infinitely large as the 
solution of (41) for cp a constant. 

We see, then, that, if cp is a constant, the minimum 
energy configuration is obtained and the mass is zero. 
The first variation ot m is zero at the point where m is 
zero. Since m can be no smaller than zero, this point 
must be a minimum. 

In general relativity the mass of such an object is 
zero even if placed near the center of a large matter 
shell. Even if we, for the moment, entertain the hope 
that the neutral particle will gain a mass as a conse
quence of the presence of the scalar and the coupling to 
the shell by the scalar, we see that the mass of the 
neutral particle is unchanged from the general rela
tivity result. 

A structureless particle, such as the neutral particle 
just discussed, is perhaps unrealistic. If nongravita
tional interactions are added to the particle, such as 
the electromagnetic field associated with a charge, the 
possibility of differences in the inertial implications of 
the two theories can result. A distribution of energy 
throughout space in the form of the electromagnetic 
energy density about the charge gives us this structure. 
But under such circumstances general relativity already 
assigns an inertia to such systems; it appears unlikely 
that the scalar-tensor theory can modify this situation 
to the point where the inertia of the object is totally 
due to all matter in the universe, but it is more likely 
to cause an influence on the mass of the object. 
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We consider the constraint equation for the point 
charge (37), 

-8i~72X =(i + co)l -'I' + -- + ~. (
V,I.)2 (EL)2 m d3( ) 

rf> 2X2 rf>! 

Here the electric field is given as the solution of the 
nongravitational constraint Eqs. (29a) and (30a). The 
corresponding system in general relativity is obtained 
from the above equation by eliminating those terms 
related to the scalar field 

(Er.)2 
-8XEV2XE = -2- + mod

3(x). (46) 
2XE 

The subscript E is added to X to designate its particular 
relation to the Einstein theory. Arnowitt, Deser, and 
Misner9 have shown that a rigorous solution of (46) 
leads to 

lel~ 
XE = 1 +-

87Tr 
(47) 

and a singularity at the origin of the form c l as € -->- 0 
and that the total mass of the electron is m = 2 lei. 
We can compare this result with an expected result in 
the scalar-tensor theory by examining variations of the 
mass integral in the vicinity of the point where the 
Einstein constraint (46) is satisfied in a manner similar 
to the neutral particle case. 

We first show that the mass of the charged particle is 
positive definite. According to Eq. (43) and the con
straint (37) m can be written 

m = 4Jd3X(6(VX)2 _ 2V2X) 
l X3 

= f d3xe4~~X)2 + (i + co) (;:~2 

+ (EL)2 + mod
3(X»). (48) 

2X6 rf>!X4 

Because of the variable behavior of EL in x, all of the 
terms in (48) cannot be simultaneously zero; their 
positive behavior thus shows the positive definite 
nature of m. But whether the mass is increased or 
decreased from the general relativity value is not a 
priori arguable. 

According to the definition of the mass integral, its 
first variation in cf> about cf> equal to a constant (say 
¢) is 

dm = -8 f d3xV2dX, (49) 

where we assume variations commute with derivatives 
and the constraint is maintained throughout the varia-

tion. Thus, from (37), 

-8V2dX = (i + CO)(Vrf»2t5X + Xd(Vrf»2 _ 3(EL)2 bX 
rf> rf> 2x4 

+ u (x) - - - + - b - , (50) .1.3 [ (mo) bX 1 (mo) ] 
rf>! l X rf>! 

where this equation is to be taken at rf> = ¢ everywhere. 
At rf> = ¢, Eq. (50) becomes 

3(EL)2 
-8V2bX = - -- bX 

2X4 

+ b3(x)[- (mo) dX + 1 b(mo)] . (51) 
rf>! l X rf>! </I=,p 

X appearing in (51) is now the function obtained by 
solving the original constraint equation (37) for the 
condition ~ = ?> 

-8XV2X = (EL)2 + mot5
3
(x) . (52) 

2l ~! 

A comparison of this equation with the Einstein 
constraint (46) shows that the equations are identical 
but for a change in the bare mass. 

We consider, for the moment, the Einstein con
straint alone. The mass of the electron is mE = 2 lei 
where mE = -8 S d3xV2XE with XE given by (47). By 
how much does the mass change if the bare mass is 
altered slightly? Formally, the change in m is bmE = 
-8 S d3xV2bXE where dXE is determined by a varia
tion of (46), 

3(EL)2 
-8V2dXE = - -- dXE 

2X~ 

+ d3(x) (-mo t5~E + 2- dmo). (53) 
XE XE 

But, because the mass is independent of the bare mass, 
the solution of (53) must be such that dmE is zero. 

The problem posed by Eqs. (49) and (51) is identical 
to that of the previous paragraph except that the bare 
mass is replaced by mol?>!. The solution must then be 
that dm vanishes, for cP a constant, in the scalar
tensor theory. The mass is extremized at this point; 
it remains to be shown that it is also minimized. 

The second variation of the mass integral is given 
by 

b2m = -8 J d3xV2d2X, 

and 15 2X can be obtained from 

(54) 

(8V'2 - 3~:2)b2x =/1 + 12 + Ili(x), (55) 
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where 
6(EL)2 2 

fl = - -- IJX , (56a) 
X5 

f2 = -(3 + 2w)X(IJV'ln cP)2, (56b) 

f3 = mo [_ 2 (IJX)2 _ IJX IJcP 
¢fX X X cP 

_ ~ (IJ cP)2 + IJ
2
X]. (56c ) 

4 cP X ~=ib 

It is assumed that every term is evaluated at cP = ¢; 
X in the preceding equations is thus given by Eq. (47). 
Note that!l and!2 are less than zero. 

It is shown in the Appendix that a Green's function 
corresponding to the operator 8V'2 - 3(£L)2/2X4 can 
be obtained to invert (55): 

IJ2X(X) = I d3x'G(x', X)[fl(X') + f2(X') + f3(X')IJ3(x')]. 

(57) 

Because we are only interested in the sign of IJ2m ,we 
can investigate 

IJ2m = -8 II d3x d3x'V'!G(x', x) 

x [fix') + f2(X') + f3(X')IJ3(x')]. (58) 

Furthermore, it is shown in the Appendix that 

IJ2m = tId3X(1 + _1_el_)-2[ -fleX) - f2(X)], (59) 
877 Ixi 

so that it is evident that IJ2m is greater than zero. 
Consequently, cP being a constant is a minimum 
energy configuration for the electron. The static point 
charge solution is thus the same as in general relativity 
and the inertia of the electron is unchanged from the 
general relativity result m = 2 lei. 

CONCLUSIONS 

It was pointed out earlier that there are a variety of 
representations of the scalar-tensor theory; in partic
ular, there are two representations in which the one 
permits a variable behavior to appear in the gravita
tional constant G and the other permits a variable 
behavior to appear in the mass of a fundamental 
particle such as an electron. The one in which the 
latter occurs is distinguished by a choice of the unit 
of mass (lie/G)!. It is this representation which most 
clearly enables us to investigate the inertial implica
tions of Mach's principle. 

The self-energy calculation was made for both a 
neutral particle and an electron to see how the self
energy depends upon the boundary value of the scalar 

field. By extremization arguments, it was concluded 
that cP, equal to a constant everywhere outside the 
particle, is the minimum energy configuration, that as 
a consequence the self-energy of either the neutral 
particle or the electron is unchanged from the corre
sponding general relativity value. Justification for the 
boundary conditions of Minkowskian space and a 
constant scalar field "at infinity" is obtained from the 
interior solution of a large matter shell in which the 
space is, in fact, Minkowskian and the scalar field 
constant. Finally, justification for the interpretation 
of' the self-energy as the inertia of the system arises 
from the boundary condition of Minkowski space; an 
electron with its electromagnetic field and its gravity 
field, when treated as a composite object, will respond 
to an external field with an inertia corresponding to its 
self-energy (up to a factor of e2) because the self-energy 
is equal to the magnitude of the 4-momentum de
scribing the system. 

The conclusion must be, then, that the scalar
tensor theory affords no substantial improvement over 
general relativity in the compatibility with Mach's 
principle. 

Just as the above particle models, in a sense, force 
the scalar-tensor theory to reduce to general relativity, 
the problem of the rotating matter shell and its effect 
on the interior inertial frame has similar results. 
Brillll has shown that the interior inertial frame is 
"dragged" along by the rotating shell in the scalar
tensor theory as in general relativity. Anal, for the limit 
in which the density of matter in the universe ap
proaches zero, the "dragging" is perfect. This is just 
the condition 'Onder which the radius of the shell 
equals its Schwarzschild radius, the same condition for 
perfect "dragging" by the shell in general relativity. 
Although the limit procedures to obtain this model 
are different, it must be concluded that here, too, the 
scalar-tensor theory reduces to general relativity. 

The objection may arise that the solution of a 
constant scalar field does not represent a minimum 
energy configuration since it is hardly a static solution 
of DcP '" T, where T is not identically zero. In Paper 
II exact solutions of a charged spherically symmetric 
mass distribution will be given which show that the 
scalar field can be zero everywhere outside the particles, 
but that an essential singularity appears at the particle 
to maintain Dc/> '" T. 
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APPENDIX 

In this appendix we discuss the Green's function 
related to the operator SV2 - 3(EL)2/2X\ where EL 
and X are the rigorous solutions to the self-energy 
problem of the electron in general relativity. Reference 
to Eqs. (30a) and (47) shows that these quantities are 
given by 

(AI) 
and 

x2 = 1 + IX/2r, (A2) 
where 

IX = lel/41T. 

(A3). An expansion of the b function is given by 

I 
b3(x - x') = "2 b(r - r')b( cp - cp')b(cos e - cos e') 

r 

1 00 I 

="2 b(r - r') L L Yz'~,(e', cp')Yzm(e, cp). 
r I=Om=-1 

(AS) 

Because of this special angular behavior in (e, cp) and 
(e' , 4>'), it is clear that G is expanded in the form 

00 I 

G(x, x') = L L gmtCr, r') Yl~(e', cp') Yzm(e, cp). (A9) 
I=Om=1 

If we let w2(lxl) = 3(EL)2/2X\ then the Green's Now the Laplacian can be written as 
function is defined as the solution to the differential 
equation V2 = R2 _ 13 

'" r2' 
[SV; - w2(lxl)]G(x, x') = b3(x - x'). (A3) where 

The equation we wish to integrate is [see Eq. (55)] 

[SV; - w2(ixDWx = 11 + 12 + I3b3(x) == F(x). (A4) 

If Eq. (A3) is multiplied by b2X and Eq. (A4) by 
G(x, x') and the equations are subtracted, the follow
ing equation arises: 

SG(x, x/)V;b2X - 8b2
XV!G(x, x') 

= F(x)G(x, x') - b2X(x)b3(x - x'). (A5) 

An integration on the variable x over all space will 
yield, by virtue of Gauss' theorem and because of the 
b function, 

b2X(X' ) = f d3xF(x)G(x, x') 

+ sf ds • [b2xV",G(x, x') - G(x, x')V",b2x], 

(A6) 

where the surface integral is taken at infinity. Because 
all variations vanish at infinity, the first term in the 
integrand of the surface integral is zero; an appro
priate choice of boundary condition on G, then, -is 
that G(x, x') vanish in the limit Ixl -+ 00. With this 
choice Eq. (A6) becomes 

(A7) 

by an interchange of labels. 
Let us now consider an expansion of G(x, x') in 

spherical harmonics. G is to be the solution of Eq. 

and 

L2 = __ 1_ ~(sin (j~) __ 1_~. 
sin e oe oe sin2 e Ocp2 

More importantly, V has the property that V Y1m = 
/(l + 1) Y1m • A substitution of these expressions into 
the differential equation (A3) thus leads to 

( 
l(i + 1») 1 R2 - r2 - w\r) gml(r, r') = ;; b(r - r'), 

(A10) 

because of the orthogonality of the Y1m • Once the 
g ml are determined from this equation, (A9) represents 
the solution to be used in (A 7). 

For our purposes; however, knowledge of b2X is not 
as important as knowledge of the sign of b2m. The 
latter is given by 

b2
m = -sf d3xV2b2x· (All) 

According to (A7), it is true that 

vwx = f d3x'F(x')V;G(x', x) (A12) 

and, thus, 

Note that the integrand depends on x only through 
G(X', x). If the order of integrations are interchanged, 
the integration on x can readily be performed. From 
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the expression for G(x, x') given by (A9), we find that 

V';G(x', x) 

= l~j~}'I~(O, !fo)Y1m(O', !fo')(R - 1(1; 1»)gmzCr', r). 

(A14) 
Writing d3x as r2 dr dO. and noting that 

f do.yl':.(O,!fo) = (47T)ibwbmo , 

we readily see that b2m is given by 

15
2m = -8 f d3x'F(x') f r2 drR 2goo(r', r). (A15) 

This is because the summation only contributes at 
I = 0 and m = 0 and because Yoo(O,!fo) = (47T)-~. 

Finally, because of the form of R2, drr2R2 is an 
exact differential; 152m can thus be written 

b2m = -8 f d3X'F(X')(r2 dgoo~:" r)f· (A16) 

It is clear, then, that we need only the quantity 
goo from Eq. (AlO). For 1= 0, Eq. (AlO) becomes 

l ~ (r2 dgoo) _ 31X2goo = 1.. (r _ r'), (A17) 
r2 dr dr 2r4(1 + 1X/2r)2 r2 

where this equation generates goo(r, r'). A more con
venient form is found by multiplying (AI7) by r4. For, 
then, 

r - r - goo - . goo = r u r - r ). 2 d ( 2 d) 31X2 2.1:(' 

dr dr 2(1 + 1X/2r) 
(A18) 

Equation (AI8) is in a form amenable to the substi
tution z = I + 1X/2r since 

d dz d IX d 
-=--=-
dr dr dz 2r2 dz . 

Thus, 

2 d d 
r - = -ilX-

dr dz 

and (AI8) becomes, away from r = r', 

Several conditions are yet to be imposed on goo. The 
Green's function must be continuous everywhere, it 
must reduce to zero as r -+ co, and it must satisfy its 
differential equation everywhere. The condition that 
G(x, x') -+ 0 as r -+ co demands that goo be written, 
for r > r', as 

goo(r, r') = A(l + 1X/2r)S - A(l + 1X/2r)-2, r> r'. 

(A22) 
For r < r', we can write 

goo(r, r') = B(1 + 1X/2r)-2, r < r', (A23) 

if we ask that g be well behaved at the origin. 
The continuity of G demands from goo that 

goo (r -+ r', r') for r > r' equals goo (r -+ r', r') for 
r < r'. This implies from (A22) and (A23) that 

A(1 + 1X/2r')3 - A(1 + 1X/2r')-2 = B(1 + 1X/2r')-2. 

(A24) 

The final condition on goo is that it satisfy the 
differential equation (AI8) everywhere. If we divide 
(AI8) by r2 and then integrate across, = ,', we find 
that 

r2 dgoo (r > r') I _ r2 dgoo (r < r') I = 1. (A2S) 
dr r' dr r' 

The second term in (AI8) does not contribute because 
of continuity. A substitution of the expressions for 
goo given by (A22) and (A23) thus gives 

-fIXA(1 + 1X/2r')2 - IXA(l + 1X/2r')-S 

- IXB(1 + 1X/2r')-3 = 1. (A26) 

Equations (A26) and (A24) imply that A and Bare 
given by 

A = -(2/51X)(l + 1X/2r'r2, (A27a) 

B = -(2/SIX)[(1 + 1X/2r')3 - (1 + 1X/2r'r2], (A27b) 

and so goo(r, r') is given by 

goo(r, r') = _ 2(1 + ~)-2[(1 + ~)3 
51X 2r 2r 

II d
2
goo _ 31X2goo - 0 

4 dz2 2Z2 - . 
(A19) - (1 + ~r} r > r', (A28a) 

If it is assumed that goo is of the form goo = z", then 
(19) is satisfied if a obeys 

a(a - 1) - 6 = (0' - 3)(0' + 2) = O. (A20) 

Clearly, 0' = 3, -2. In terms of r, then, the general 
solution of (18) away from r = r' is of the form 

goo(r, r') = _ 2(1 + ~)-2[(1 + ~)3 
51X 2r 2r' 

- (1 + 2:T} r < r'. (A28b) 

Note that goo(r, r') = goo(r', r). 
Again referring to Eq. (A16), we see that the sign of 

152m depends on evaluating the derivative of goo(r', r). 
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For fixed r' and r > r', 

,2 dgoo = t(1 + ~)-2[3(1 + ~)2 _ 2(1 + ~)-3J' 
dr 2r' 2r 2r 

(A29) 
and so 

r2 dgoo I = t(1 + ~)-2. 
dr r-+ao 2r 

(A30) 

For fixed r' and r < r', 

r2 dgoo = -t(1 + ~)-3[(1 + ~)3 
dr 2r 2r' 

(A31) 
and so 

r2 dgoo I = O. (A32) 
dr r .... O 

Because of these equations, (A16) becomes 

b2m = -~fd3X'F(X')(1 + _OC_)-2. (A33) 
5 21x'l 

As pointed out in Eq. (A4), F(x') is written as 

F(x') = II (x') + !2(X') + fa(x')b 3(x'), 

where!l and!2 are less than zero. We thus write b2m as 

because (1 + oc/2Ix'I)-2 -+ 0 as Ix'l-+ 0 and because 
f3(0) is zero. Thus, b2m > O. Accordingly, the mass of 
the point electron is minimized about 1> = const. 
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Assuming that the metric tensor g;; depends on a continuous parameter E, we write Einstein's field 
equations of general relativity in the form of a divergence equation. The theory of surface layer in 
general relativity is then worked out. Finally, an integral flux law is proposed from which both the field 
equations and the boundary conditions for a surface layer can be deduced. 

INTRODUCTION 

In this paper we assume that the metric tensor gij 
depends on a continuous parameter E; that is, instead 
of a single metric tensor we consider a family of metric 
tensors. Under this hypothesis we first write Einstein's 
field equations of general relativity in the form of a 
dIvergence equation. The theory of surfac~ layers in 
general relativity is then worked out, which consists 
principally of the generalization of the classical 
boundary condition, viz., that the jump of the normal 
derivative of the potential is proportional to the 
surface density of matter together with the surface 
analog of the Bianchi identities. All these are found 
to give correct classical approximations. Finally, an 
integral flux law is proposed from which both the 
field equations and the boundary conditions for a 
surface layer can be deduced. 

1. THE PARAMETER E; DIVERGENCE FORM 
OF FIELD LAW 

Postulate 1.1: We assume that the metric tensor gij 
depends on a real parameter E such that gij = gij(E) 
are analytic functions of E (i.e., representable in power 
series of E) in some neighborhood of E = 0, and for 
E = 0, gij = °gij' where °gij denotes the Euclidean 
metric tensor in any coordinate system. 

Notation: In the following discussions, an overhead 
bar will indicate differentiation with respect to E and 
a left superscript zero the value of a quantity for 
E = 0. As usual, a comma in the subscript will 
denote partial differentiation, and a semicolon in the 
subscript will denote covariant differentiation. 

Remark: r~; is a mixed tensor of rank three. 

The Ricci tensor is given by 

only are 

ffa.j - ffj.a = t5~ffa.k - f:i •k , 

which is in the form of an ordinary divergence. We 
note that t5~ffa - f~; is not a tensor, but that 
t5~rfa - r~; is a tensor. 

Definition 1.1: 

P:j = b~rfa - r:i · 

The tensor P~j has the following remarkable property: 

(1.2) 

P:i is unsymmetric in i, j, and we define Q~i as follows. 

Definition 1.2: 

Q~; = tCP:i + P~i)' 
which is symmetric in i, j. 

From (1.2) we have 

(1.3) 

Definition 1.3: Let Tij denote the energy-momentum 
tensor. Then 

Ti~ = 1';; - igijT 

will be called the modified energy-momentum tensor. 

The field equations of general relativity are known 
to be 

Rii = -KTi~' K = const. (1.4) 

Postulate 1.2: For E = 0, Ti~ = 017; = 0. 

Remark: If we neglect pressure or stresses, Tij = 

POUiUj, where ui = dxijds and Po is the proper mass 
density. Then 

T = Po = -T*, Ti~ = po(uiu j - !gij) 
Rij = ffa.i - ffi.a + rpiffa - fpaffi' (Ll) h . h ( ) 

so t at Postulate 1.2 amounts to saymg t at Po = Po E 

The terms on the rhs containing the second derivatives is such that PoCO) = O. 

1725 
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We note that for e = 0, Rij = °Rij = 0, and, by 
virtue of Postulate 1.2, (1.4) is equivalent to 

or by (1.3) to 

- -* Rii = -K1';i 

Q~j;k = -KTi~' (1.5) 

which is the required divergence form of the field 
equations. 

2. SURFACE LAYER: CONSERVATION 
IDENTITY AND BOUNDARY CONDITION 

We assume that there exists a coordinate system in 
which the Euclidean metric tensor 

°gii = diag (-1, -1, -1,1). 

Consider a smooth hypersurface 

S: f(xl
, X2, x 3

, x4
) = ° (2.1) 

(in any coordinate system), where the function f is 
independent of e and the unit vector normal to S is 
spacelike, i.e., 

g"Pn"np = -1 
so that 

ni = I'i/( - g"Pf.J.p)t. 

(2.2) 

(2.3) 

Definition 2.1,' A hypersurface S is said to be para
metrically stationary if the covariant components of 
the unit normal vector ni are independent of e, i.e., 
fli = 0. 

By (2.3) S will be parametrically stationary if 
g"pfJp is independent of e. In particular, the hyper
surface Xl = ° will be parametrically stationary if gll 
is independent of e, i.e., gll = 0gl1; in fact, we can 
always make a coordinate transformation (Xi) --->- (i) 
in which y1 = f(x l , X2, x3 , X4). 

Postulate 2.1: A hypersurface S represents a surface 
layer if and only if it is parametrically stationary. 

Postulate 2.2: The energy-momentum tensor Sij 
for a surface layer will be given by 

where ao is the proper surface density of mass, the 
pressure or stresses being neglected. Further, ao = 
ao(e) is such that ao(O) = 0. 

Definition 2.2: The modified energy-momentum 
tensor for a surface layer is given by 

Si~ = Sij - tgijS, 

By Postulate 2.2, 

S = ao, Si~ = aO(uiu j - !gii)' (2.4) 

It follows that for e = 0, 

(2.5) 

In the following discussions the symbol ~ will 
denote the jump of a quantity across a given hyper
surface. 

Remark: ~r:i is a tensor. 

Definition 2.3: 

H~j = 15~~r:" - ~r~i . 
The tensor H~ satisfies the identity 

H~j = 0. (2.6) 

We assert that at a surface layer this identity would 
express the conservation law or the physical boundary 
condition and as such is the surface analog of the 
Bianchi identities. Noting that Hi~ is un symmetric in 
i, j, we make the following postulate. 

Postulate 2.3: gij are continuous throughout 4-space 
and, at a surface layer S, 

a ( -lHk) (2 - k 1 a ( k)) - ao ij = K uiuin - - - giin . ae 2 ae 
Therefore, 

a -1 k - k 1 - - k ae (ao Hki) = K(2ukujn - 2 ni) = 2Kuiukn , 

since ni are independent of e. Hence tIre identity (2.6) 
leads to the condition at S 

(2.7) 

Interchanging i, j in Postulate 2.3 and adding the 
result to the same postulate, we obtain 

:e [taol(H~j + H~i)] = K(:e (uiui)n
k 

- ~ :e (giink)). 

Multiplying by nk , which are independent 0 f e, we 
have 

:e [iao\H:j + HJi)nk ] = -K(:e (uiu j) - it;i) 

= -K :e (aolSij) 

or 

:e [aO\tni~r;" + tni~r~" - nk~r~i + KSij)] = 0, 

which are satisfied if 
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These are the required boundary conditions at a 
surface layer S. We note that (2.8) is free from 
derivatives with respect to € and as such provides a 
satisfactory criterion. 

Since ~or:i = 0, oS~ = 0, and ni are independent 
of €, Eq. (2.8) is equivalent to 

(2.9) 

3. CLASSICAL APPROXIMATIONS 

In the linear approximation we assume 

(3.1) 

where € is a small quantity whose square is negligible, 
and we take that coordinate system in which 

°gH = 0gii = diag (-1, -1, -1, 1). (3.2) 
We set 

(3.4) 

(3.5) 

If (ij, k)h denote the Christoffel symbols of the 
first kind by treating hii as the metric tensor, then 

r k '" 0 ka(·. ) 
ii - E g Ij, IX h' (3.6) 

Rii c::::: !€(OgaPhii.aP + h. ii - hf.ai - hi.ai)' (3.7) 

For convenience, let us write (Xi) = (x, y, z, t). 
In the classical approximation, in addition to the 
linear approximation, we have to make two other 
approximations, viz., (i) the quasisteady approxima
tion in which the derivatives with respect to tare 
treated as small compared with the derivatives with 
respect to x, y, z and (ii) the approximation that the 
velocity of a particle is small compared with the 
velocity of light which is taken to be unity, so that 
we may take u1 , u2 , US to be small quantities and u4 c::::: 1. 

Neglecting pressure or stresses which are usually 
small compared with the matter-density, we have 
Tii = POUiU i • Since Po = ° for € = 0, Po = O(E). The 
only component of r i of order € is T44 c::::: Po; all other 
components are negligible. Hence, T = Po, T44 c::::: Po, 
and 

From (3.7) 
R44 c::::: -t€V2h44 • 

Hence, the equation R44 = -KT:4 approximates to 
V2rf> = tKPo if 

(3.8) 

This equation reduces to the classical Poisson equa
tion if 

K = 87TG, (3.9) 

G being the Newtonian constant of gravitation. This 
deduction, however, is well known. 

In the case of a surface layer we similarly have 
S:4 c::::: tao. In the quasisteady approximation It will 
be taken to be small compared with the space deriva
tives j." h' j.. By (2.3) 

(3.10) 

If n = (n." nll , n.) denotes unit vector normal to the 
spatial surface j(x,y, z, t) = ° at time t, then n c::::: 
(nl' n2 , ns) and n4 is small compared with n1, n2 , na. 
For k = 1, 2, 3, 

r k '" 1 h _ A. 
44 - "2E «.k - 'f'.k· 

Hence, the 44-component of (2.8) reduces to the 
approximate equation 

~(n.,rf>., + R"rf>y + n.rf>.) = !KO"O 

which is the classical boundary condition at a surface 
layer. 

We set 

(
dX dy dZ) 

q = (q." qll' q.) = dt' at 'dt ' 

q c::::: (uI, u2
, u3

), u4 c::::: 1. 

The condition (2.7) approximates to 

q.,l., + qJy + q.l. + It = 0, 

which is the well-known classical condition that the 
equation of the surface layer at any time is 
j(x,y, z, t) = 0. We note that q." qy, q., and It are 
small quantities. 

4. INTEGRAL FIELD LAW 

The field equations (1.5) and the boundary condi
tions (2.8) can be simultaneously deduced from an 
integral flux law. 

Definition 4.1: Let V be a region of 4-space. Then 
the integral 

- r T;~ dV, Jv 
where dV denotes the invariant 4-volume element, 
will be called the parametric rate of decrease or simply 
the parametric decay of energy-momentum in the 
region V. 

Similarly for a surface layer S, the parametric 
decay of energy-momentum in the layer S is defined 



                                                                                                                                    

1728 A. GUPTA 

to be 

- LSi~ dS, 

where dS is the invariant hyper surface element. 

Postulate 4.1 (Integral Field Law): Let ~ be any 
closed hypersurface given by F(xl , X2, x3 , x4) = 0 
where the function F does not involve the parameter 
€ and N i , the unit normal to ~, is spac~ike, i.e., 
gaP NaNp = -1. Let V denote the region of 4-space 
bounded by ~ and Ni point out of V across ~. We 
postulate that 

LQ~iNkd~ 
(d~-invariant hypersurface element), which represents 
the flux of the tensor Q~i across ~, is K times the 
parametric decay of energy-momentum in V. 

Thus, for any region V, 

LQ~iNk d~ = -K fli~ dV. 

By Gauss's theorem we get 

fV(Q~i;k + KTi~) dV = 0, 

which gives (1.5). 
We take a fixed point on a surface layer S, at which 

the unit normal is ni , and take ~ to be a small closed 
cylinder across S, enclosing the point whose generators 
are parallel to ni . Applying the integral law to ~, we 
get 

nk~Q~i dS = -KSi~ dS, 

which gives (2.9). 
If S is any hypersurface which is not a surface layer 

(and, hence, S is not necessarily parametrically 
stationary), then the integral law gives the following 
boundary condition at S: 

nk~Q~i = ° 
or, by (2.3), 

f.k~Q~i = o. 
Integrating with respect to € from 0 to E, we have 

or 
H.,Llr:a + H.i~r~a - f.kLlrfi = 0 

(4.1) 

5. APPLICATIONS TO SCHWARZSCHILD'S 
SPHERE 

We shall now apply the criterion (4.1) to the field 
of a stationary sphere of perfect fluid l and show that 
it leads to physically significant results. 

The field being static and spherically symmetric, 
we assume 

where A = A(r), v = vCr). 
(5.1) 

Let r = r l be the boundary of the sphere at which 
we have Llgii = O. Further A, v -+ 0 as r -+ 00. 

The nonvanishing Christoffel symbols have the 
following values: 

f'il = t).', 
r:4 = iv', 

r~3 = - r sin2 ee-'-, 

r~2 = -re-'-, 

f'i2 = r~3 = r-l, 
r~3 = cot e, 
n3 = -sin e cos e, 
f'!4 = tv' eV

-'-, 

(5.2) 

where the prime denotes differentiation with respect 
to r. 

External region: r > r l : The equations are 

r).(r-lv' + r-2) _ r-2 = 0, 

e-\tv" - 104''1'' + 1'1"2 + tr-V - ir-1A') = 0, (5.3) 

e-).(r-l)., - r-2) + r-2 = o. 
The solution of these equations under the given 

condition at infinity is the well-known Schwarzschild's 
exterior solution 

ds2 = -(1 - 2Gm/r)-1 dr2 - r2 de2 - r2 sin2 e d4>2 

+ (1 - 2Gm/r) dt2, (5.4) 

where m is a constant. 

Internal region: r < r l : The energy-momentum 
tensor is given by 

Tii = (Po + Po)UiU i - giipo, 

where Po and Po are the proper density and pressure 
of the fluid and we take Po to be constant. The 
equations are 

e-).(r-lv' + r-2) - r-2 = KPO' 

e-).(iv" - 1).''1'' + 1'1"2 + ir-V - tr-l
).') = KPO' 

e-\r-1A' - r-2) + r-2 = KPO· 

(5.5) 

It follows that 

p~ + '!CPo + Po)v' = o. (5.6) 

The interior solution is of the form 

ds2 = -(1 - r2/R2)-1 dr2 - r2 de2 - r2 sin2 (J d</>2 

+ [A - D(l - r2/R2)f]2 dt2, (5.7) 
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~gn = 0 at r = rl gives 

m = t7Tr~po. (5.8) 

The first equation is of (5.5) gives 

2 3B(1 - r 2JR2)! - A 
KR Po = 1 • 

A - B(l - r2/R2)~ 
(5.9) 

From the first equations of (5.3) and (5.5), we get 

~V' = -Kr1e).(r1 )po(r1) at r = r1 • (5.10) 

By (5.2), the only nonvanishing components of 
~r~j at r = r 1 are 

~ri1 = t~A.', ~r~4 = t~v', ~r!4 = tev-).~v'. 
(5.11) 

F or the boundary r = r1, n2, n3, n4 are all zero. 
Then (4.1) simply gives ~v' = 0 and, hence, by (5.10), 

po(r1) = O. (5.12) 

JOURNAL OF MATHEMATICAL PHYSICS 

This is, in fact, a physical necessity and was assumed 
by Schwarzschild on physical grounds. 

Now (5.12) and ~g44 = 0 at r = r1 give 

A = f(1 - r;/R2)!, B = L 
and the solution is complete. 

(5.13) 

Remark: Note that in the above solution the con
ditions (4.1) are satisfied although dgnJdr is discon
tinuous at the boundary. 

ACKNOWLEDGMENT 

I wish to express my heartfelt thanks to Professor 
J. A. Wheeler of the Physics Department, Princeton 
University, for his kind interest in the paper and for 
communicating the same for publication. 

1 R. C. Tolman, Relativity, Thermodynamics tmd Cosmology 
(Oxford U. P., London, 1934). 

VOLUME 11, NUMBER 5 MAY 1970 

Symmetric Dirac Bracket in Classical Mechanics 

WILHELM H. FRANKE· AND ANDRES J. KALNAyt 

Facultad de Ciencias Fisicas y Matematicas, Universidad Nacional de Ingenierfa, Lima, Peru 

(Received 22 July 1969) 

It is known that, in classical systems that have second-class constraints which relate the canonical 
coordinates and momentum, the ordinary skew-symmetric Poisson bracket must be replaced by the skew
symmetric Dirac bracket. It is also known that in the process of quantization of such systems, the Dirac 
bracket replaces the Poisson bracket in its correspondence with the quantum commutators. In this paper 
we obtain the symmetric partner of the Dirac bracket, which is of interest not only to classical mechanics 
but also in regard to the quantization procedure; i.e., the quantization rules for systems which are 
restricted by second-class constraints such that the commutation rules involve anticommutators (instead 
of commutators, as in certain fields with Fermi-Dirac statistics) can be given in terms of this new sym
metric bracket. This symmetric bracket is related to the Poisson-Droz-Vincent symmetric bracket. 

t. INTRODUCTION 

There are important physical systems that are 
restricted by second-class constraints.1.2 In the quanti
zation of these systems, the Poisson bracket does not 
correspond to the classical limit of the commutator 
and, therefore, the quantization procedure must be 
modified. This was first shown by Dirac in the skew
symmetric case.1- 4 There are important systems such 
as the vector fieldS and the gravitational field4•6 which 
belong to this case. 

As a review, let us remember that usually in Hamil
tonian mechanics the generalized coorc!inates qr and 
their canonically conjugate momenta 

oL 
Pr=-=-

o(dqrJdt) 
(Ll) 

are independent variables! Also there are some less 
known cases in which it fails and the Eqs. (1.1) are 
identities in q and p only, even before Lagrange 
equations are used. Equations (1.1) and others derived 
from it by consistency relations are called constraints 
and denoted by !a(q,p) ~ 0.1- 7 The weak equality 
sign, ~ introduced by Dirac, means that the expression 
can be used only after computing all the Poisson 
brackets and partial differentiations in an equation 
(see, e.g., Ref. 2). The above mentioned second-class 
constraintsl - 3 belong to a certain subset of the former 
set (where, eventually, some constraints are replaced 
by linear combinations of them1.2.8). We denote the 
second-class constraints as9 

&;'(q,p) ~ 0, a = 1,2, ... ,N9• (1.2) 



                                                                                                                                    

SURFACE LAYER IN GENERAL RELATIVITY 1729 

~gn = 0 at r = rl gives 

m = t7Tr~po. (5.8) 

The first equation is of (5.5) gives 

2 3B(1 - r 2JR2)! - A 
KR Po = 1 • 

A - B(l - r2/R2)~ 
(5.9) 

From the first equations of (5.3) and (5.5), we get 

~V' = -Kr1e).(r1 )po(r1) at r = r1 • (5.10) 

By (5.2), the only nonvanishing components of 
~r~j at r = r 1 are 

~ri1 = t~A.', ~r~4 = t~v', ~r!4 = tev-).~v'. 
(5.11) 

F or the boundary r = r1, n2, n3, n4 are all zero. 
Then (4.1) simply gives ~v' = 0 and, hence, by (5.10), 

po(r1) = O. (5.12) 

JOURNAL OF MATHEMATICAL PHYSICS 

This is, in fact, a physical necessity and was assumed 
by Schwarzschild on physical grounds. 

Now (5.12) and ~g44 = 0 at r = r1 give 

A = f(1 - r;/R2)!, B = L 
and the solution is complete. 

(5.13) 

Remark: Note that in the above solution the con
ditions (4.1) are satisfied although dgnJdr is discon
tinuous at the boundary. 

ACKNOWLEDGMENT 

I wish to express my heartfelt thanks to Professor 
J. A. Wheeler of the Physics Department, Princeton 
University, for his kind interest in the paper and for 
communicating the same for publication. 

1 R. C. Tolman, Relativity, Thermodynamics tmd Cosmology 
(Oxford U. P., London, 1934). 

VOLUME 11, NUMBER 5 MAY 1970 

Symmetric Dirac Bracket in Classical Mechanics 

WILHELM H. FRANKE· AND ANDRES J. KALNAyt 

Facultad de Ciencias Fisicas y Matematicas, Universidad Nacional de Ingenierfa, Lima, Peru 

(Received 22 July 1969) 

It is known that, in classical systems that have second-class constraints which relate the canonical 
coordinates and momentum, the ordinary skew-symmetric Poisson bracket must be replaced by the skew
symmetric Dirac bracket. It is also known that in the process of quantization of such systems, the Dirac 
bracket replaces the Poisson bracket in its correspondence with the quantum commutators. In this paper 
we obtain the symmetric partner of the Dirac bracket, which is of interest not only to classical mechanics 
but also in regard to the quantization procedure; i.e., the quantization rules for systems which are 
restricted by second-class constraints such that the commutation rules involve anticommutators (instead 
of commutators, as in certain fields with Fermi-Dirac statistics) can be given in terms of this new sym
metric bracket. This symmetric bracket is related to the Poisson-Droz-Vincent symmetric bracket. 

t. INTRODUCTION 

There are important physical systems that are 
restricted by second-class constraints.1.2 In the quanti
zation of these systems, the Poisson bracket does not 
correspond to the classical limit of the commutator 
and, therefore, the quantization procedure must be 
modified. This was first shown by Dirac in the skew
symmetric case.1- 4 There are important systems such 
as the vector fieldS and the gravitational field4•6 which 
belong to this case. 

As a review, let us remember that usually in Hamil
tonian mechanics the generalized coorc!inates qr and 
their canonically conjugate momenta 

oL 
Pr=-=-

o(dqrJdt) 
(Ll) 

are independent variables! Also there are some less 
known cases in which it fails and the Eqs. (1.1) are 
identities in q and p only, even before Lagrange 
equations are used. Equations (1.1) and others derived 
from it by consistency relations are called constraints 
and denoted by !a(q,p) ~ 0.1- 7 The weak equality 
sign, ~ introduced by Dirac, means that the expression 
can be used only after computing all the Poisson 
brackets and partial differentiations in an equation 
(see, e.g., Ref. 2). The above mentioned second-class 
constraintsl - 3 belong to a certain subset of the former 
set (where, eventually, some constraints are replaced 
by linear combinations of them1.2.8). We denote the 
second-class constraints as9 

&;'(q,p) ~ 0, a = 1,2, ... ,N9• (1.2) 



                                                                                                                                    

1730 W. H. FRANKE AND A. J. KALNAY 

The procedure of finding this subs~t is explained in 
Dirac's papers1.2.8 and it will be shortly reviewed in 
Sec. 4. Here we only mention that the constraints ()a 

are such that the matrix c;;;, defined byl.2.9.10 

(1.3) 

exists. It is clear that, when the constraints exist, the 
generalized velocities dqr/dt cannot be solved in terms 
of the coordinates and momenta, so that it is impos
sible to go from the Lagrangian to the Hamiltonian 
form of classical mechanics by the standard procedure. 
All this suggests that for constrained systems the 
Hamiltonian classical mechanics and the standard 
quantization procedure must be reformulated. More
over, if the quantization rule is used in the standard 
form 

i{ , } - [ , ] (l.4a) 

when there are constraints like (1.2), .there will be 
inconsistencies in the quantum theory.l-3 In order to 
solve those difficulties Dirac found the following 
bracketl : 

{j, g}* == {j, g}~ = {j, g}_ - {j, ()a}_C;;-b{()b, g}_, 
(1.5) 

now called the Dirac bracket,3 which replaces the 
Poisson bracket in the theory (see Refs. 2-4). The 
quantization rule is no longer (1.4a), but 

i{ , }~ - [ , J-. (1.6a) 

This bracket has the same formal properties as 
the minus Poisson bracket has (for example, it obeys 
Jacobi's identity1.3.11). Bergmann and Goldberg3 
showed their relation to the infinitesimal Lie bracket 
of a special group of transformations, and Mukunda 
and Sudarshanll clarified their structure and properties 
in an algebraic way. 

But for unconstrained classical systems it was shown 
by Droz- Vincent l2 that classical mechanics has a richer 
structure than was previously supposed: Not only the 
ordinary (i.e., the skew-symmetric) Poisson bracket 
exists, but also its symmetrical partner. To a certain 
extent the bracket theory can be developed in equal 
footing for both brackets [cf. Sec. 3, Remark (2)]. Not 
only does the old Poisson bracket play an important 
role in classical mechanics, but so does the Droz
Vincent's new symmetric Poisson bracket. While it is 
well known that the Hamiltonian equations of motion 
can be transformed in such a way that the time 
evolution of the system is expressed purely in terms of 
the antisymmetric Poisson bracket, Droz-Vincent 
provedl2 that the same can be done in terms of the 
new symmetric bracket he found. With regard to 

the analogy with quantum mechanics, it was known that 
the transformation theory for classical systems allows 
us to introduce commutators in classical mechanics 
and to relate them directly to the minus Poisson 
bracket. Droz-Vincent showed that anti commutators 
can be also introduced in classical mechanics and 
that they have a similar relation to the symmetric 
Poisson bracket. This closes a gap for the quantization 
procedure: the quantization rule will be expressed as 

(l.4b) 

where the + sign is for systems to be quantized by 
anticommutators and the - sign is for systems to be 
quantized by commutators. The quantization rule with 
the + sign is of interest in regards to the quantization 
of fields which obey Fermi-Dirac statistics. 

We have briefly reviewed that for classical uncon
strained systems symmetric and anti symmetric Poisson 
brackets appear in almost equal footing, and that for 
constrained systems there exists an anti symmetric 
Dirac bracket { , } ~ which plays the role that the 
anti symmetric Poisson bracket does for unconstrained 
systems. Therefore, we should expect that, when con
straints are present, then a (yet unknown) symmetric 
partner { , }! which we shall call plus Dirac bracket 
exists. It is a basic purpose of this paper to obtain this 
bracket. In particular, it should be expected that 
instead of (1.4) the quantization rule should be 

(1.6b) 

We shall follow the following plan: In Sec. 2 we will 
state the notation and the conventions. A further dis
cussion of the basic notions will be given in Sec. 3, and 
in Sec. 4 we shall introduce the symmetric partner of 
the Dirac bracket { , }!, and we shall study some of 
its properties. 

2. NOTATIONS AND CONVENTIONS 

The sum convention is used in any place, as well 
as the natural system of unities. 

Commutators (or minus commutators) and anti
commutators (or plus commutators) are denoted by 
[ , ]±. The curly bracket is reserved for the ordinary 
Poisson bracket (or minus Poisson bracket) and the 
plus Poisson bracketl3 : 

where 

q = (qI, q2, ... ,qN), p = (pI, p2, ... , pN) 
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includes all variables of the phase space of the system 
considered. As in Ref. 11, we use (01 = q1, ... , (ON = 
qN, (ON+1 = pI, ... , (02N = pN, (0 = ((0\ ••• , (02N) = 
(q,p). The ordinary Dirac bracket (or minus Dirac 
bracket) and the new plus Dirac bracket are denoted 
respectively { , } ~ and { , } ~. [They are defined in 
Eqs. (1.5) and (4.10).] To distinguish entities con
structed from (or for) the plus and minus brackets, 
we attach the corresponding + and - sign to them. 
For example, ± second-class constraints will be intro
duced for the theory of ± Dirac brackets. 

Indices for coordinates in phase space: For q and p 
we use r, s, and t as in qr; for (0 we use fl, v, ... , p, eJ. 

Other indices: For the functions 1p to be introduced 
in Eq. (4.5) we shall use the indices m, n, ... , q. For 
the functions (J previously introduced (and as a 
particular case, for second-class constraints) we reserve 
a, b, and c. Our index conventions are defined in such 
a way that do not contradict those used in Ref. 11. 

3. REMARKS 

(1) Droz-Vincent12 introduces the plus Poisson 
bracket (as well as a generalization of the usual minus 
Poisson bracket) in terms of covariant derivatives in a 
connection r. We use r = O. 

(2) It is surprising the parallelism that exists be
tween the properties of the plus and minus Poisson 
brackets. For example, both brackets are related (in a 
symmetric form) to infinitesimal transformations. 
Moreover, the standard Poisson bracket form of 
Hamilton's equations is almost the same for both 
brackets12 : 

dqr { } dPr {H} dt = ± H, qr ±' dt = - ,Pr ±. (3.1) 

(3) However, the old minus Poisson bracket seems 
to maintain some privileges with respect to Droz
Vincent's plus Poisson bracket. For example, Eqs. 
(3.l) are particular cases of the well-known formula 
for the minus Poisson bracket 

df = -{H,j}_, for allf = f(q, p), (3.2) 
dt 

and it seems that Eq. (3.2) has no counterpart for the 
plus Poisson bracket. This is all right with regard to 
the quantization procedure since the pre-eminence of 
the minus commutator exists also in quantum me
chanics. There the time evolution of any quantum 
operator is always computed in terms of the minus 
commutator, 

dfop '[H 1,] -- = I OP' op -, 
dt 

(3.3) 

("op" means operator), even for those fields quantized 
by anti commutators. 

(4) Besides Eqs. (3.1) we also have 

of of 
- = {j, Pr}± and - = ±{j, qr}±' (3.4) 
oqr oPr 

(5) While minus Poisson (or Dirac) bracket and 
minus commutators have the same formal laws, the 
same does not happen for plus Poisson (or Dirac) 
bracket and plus commutators. For example, 

{f, gh}± = g{f, h}± + {f, g}±h (3.5) 

[the same will happen with the ± Dirac brackets; cf. 
Eq. (4.l9d)] and 

[I, ghJ- = g[j, hJ- + [j, gJ-h (3.6) 

have the same form, but, in general, [I, ghJ+ and 
g[j, h]+ + [I, g]+h are different. 

(6) For a classical system, the antisymmetric struc
ture obtained from the minus bracket can coexist with 
the symmetric one obtained from the plus bracket. 
The well-known rule that integral spin fields must be 
quantized with minus commutators while half-integral 
spin fields must be quantized with plus commutators 
shows that the quantum level (where only one 
structure type is allowed for each field) is more 
restrictive in this sense than the classical level (where 
both structures can coexist) (cf. Ref. 12). 

(7) The well-known canonical rules for minus 
Poisson brackets are also right for plus Poisson 
brackets: 

{qr, qs}± = 0, {qr' Ps}± = 0rs, and {Pr' Ps}± = O. 
(3.7) 

This gives further confidence to rule (I.4) for the sym
metric case. 

(8) It follows from Eq. (1.5) that the minus Dirac 
bracket can not obey simultaneously relations of the 
type (3.7). This fact is related to the existence of 
constraints. The same happens to the plus Dirac 
bracket to be introduced in Sec. 4. 

(9) The Dirac bracket can be developed in an 
abstract form in which the (Ja are arbitrary functions 
not necessarily equal to zero. The work of Mukunda 
and Sudarshan was done with this consideration.ll 

4. THE NEW. SYMMETRIC DIRAC BRACKET 

A. Extension of Mukunda and Sudarshan's 
Approach 

Mukunda and Sudarshanll gave a new method to 
obtain the ordinary (or minus type, or antisymmetric) 
Dirac bracket { , }~ ofEq. (1.5). We will use the same 
method to introduce its symmetric partner { , }t. In 
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order to stress the similarity with the antisymmetric 
case, we will present both cases at once, with the 
following convention: In every term of the type F± 
which appears in this section, the upper sign (+) will 
correspond to the obtainment of { , }~ and the lower 
one (-) to { , }~. Of course, only expressions in
volving the upper sign will be new; those involving 
the lower one were considered by Muktmda and 
Sudarshan,u In this way we also emphasize that no 
new procedure of computation is developed by us; 
we will symmetrize in a natural manner Mukunda and 
Sudarshan's expressions. Our contribution is only to 
realize that a symmetrization can be done step by step. 

Let us consider a classical system with canonical 
variables 

w = w(q, p) = (wI, w2, ... , w2N) 

= (q\ q2, ... , qN, pI, p2, ... , pN). 

If 1 is the N X N unit matrix, the matrices 

II€~'II = 11 ±~ ~ 11, 11€;.1i = II ~ ±~ II, (4.1a) 

II€~'II-I = lie;.II, (4.1b) 

allow us to give the form 

fl' of(w) og(w) 
{j, gh, == {j, g}t(W) = €± owl' ow' (4.2a) 

to the ordinary (or minus type) Poisson bracket 
{j, g} = {j, gL and to the simplest form of the plus 
Poisson bracket {f, g}+ introduced by Droz-Vincent12 

[cf. Eq. (2.1)]. Here the functional form (and not the 
value) of f( w) and g( w) are important; the partial 
derivatives are computed as if all the variables wI' 

were independent, irrespectively of the existence (or 
nonexistence) of the identities (1.2) (cf., e.g., Ref. 2 or 
11). In the standard q, p notation, Eqs. (4.2a) read 

_ } ) _ of og of og (42b) 
{j, g}± = (j, g ±(q, p - oqr opr ± opr oqr . . 

Let us consider now a set 4> of 2N independent func
tions 4>1(W), 4>2(W),"', 4>2N(w). We introduce the 
symmetric count~rpart L:a (4)) of the ordinary La
grange bracket -L;tt(4)): 

owl' owv 
L±(.t.) - €± -

"tt 'I' - /tV 04>" O(ptt . 

In the standard q, p notation this means 

opr oqr oqr apr 
L~aC4» = 04>" o4>a ± 04>" o4>tI' 

(4.3 a) 

(4.3b) 

which provides the inverse matrix of the corresponding 
±Poisson bracket (as it is well known for the minus 

case) 

L;vC4>){4>v, 4>S}± = b!. ft, v = 1,2, "', 2N. (4.4) 

Now we decompose the set 4> into disjoint subsets 

4> = Vl U 0, Vl n 0 = 0, (4. Sa) 

Vl(w) == Vl = (VlI' Vl2"", Vlm"", VlNtp±)' (4.Sb) 

O(w) == 0 = (Ol> O2 ,''', Oa,"', ONg±), (4.5c) 

N; + Nt = 2N. (4.6) 

In the antisymmetric case No must be even, but it is 
not necessary in the symmetric case. 

In Mukunda and Sudarshan's approach, both sets 
Vl and 0 are arbitrarily chosen, irrespectively of 
whether or not Oa is a constraint (i.e., irrespectively of 
whether or not Oa ~ 0). The only restrictions are that 
they obey Eqs. (4.5) and (4.6), that the set 4> be a set of 
independent functions, and that the matrix c;" exist, 
defined by 

C~{Ob, OC}± = b~, a, b, c = 1,2, ... ,N~ (4.7) 

(cf. Ref. 11 and Eq. (1.3)]. 
We shall prove below that a matrix rJ±'D(O, Vl) exists 

defined by 

rJ~'DL~ = b:;', m, n, p = 1,2,"', Ntp. (4.8) 

[Notice the difference with Eq. (4.4).] This matrix is 
such that 

rJ~'D(O, Vl) = ±rJ~m(o, Vl). (4.9) 

Now we can introduce a new bracket, which we call 
the plus Dirac bracket { , }! because it is the sym
metric partner of the definition of the minus Dirac 
bracket{ , }~ in Mukundaand Sudarshan'sapproach: 

{j, g}!(O, Vl) = rJ~n(o, Vl) o;m ::n' 

m, n = 1,2,"', Ntp' (4.10) 

for arbitrary !(O,.Vl) ,and g{O, Vl).14 
We shall transform it to a different form. From 

Eqs. (4.4) and (4.5) we find that 

{oa, OO}±L:c(O, Vl) + {oa, Vlm}±L~C<O, Vl) = b~, 

(4.11a) 

{oa, Ob}±L:n(O, Vl) + {oa, Vlm}±L~n(O, Vl) = 0, 

(4.11b) 

{Vl m
, oa}±L:b(O, tp) + {tpm, Vln}±L:;:b(O, Vl) = 0, 

(4.llc) 

{Vlm
, OU}±L:"(O, Vl) + {Vl m

, VlV}±L;"(O, Vl) = 6:;', 
(4.l1d) 

a, b, c = 1, 2, ... , Nt, m, n, p = 1, 2, ... ,N~ . By 
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combining Eqs. (4.7), (4.1lb), and (4.1ld), we deduce 

[{1pm, 1p1l}± _ {1pm, lla}±c~{llb, 1p1l}±1L;n(ll, 1p) = b;:'. 
(4.12) 

This shows that 1)%11 exists and that 

1);;n = {1pm, 1pn}± _ {1pm, oa}±C;b{Ob, 1pn}±, (4.13) 

so that 

{j, g)~(O, 1p) 

= o;m [{1pm, 1pn}± - {1pm, oa}±C;b{Ob, 1pn}±1 ::n' 

(4.14) 
On the other hand, in 

n aj 01pn aj 01pn 
{j,1p }± = oqr apr ± apr aqr (4.15) 

[cf. Eq. (4.2b)] we express oj/aqr and oj/apr in terms of 
aj/01pm and ojlaOe• After some elementary calculations 
we obtain 

aj {m n} {f n} aj {llC n} 01pm 1p ,1p ±= ,1p ±-aoc v,1p ±. (4. 16a) 

Similarly, 

~ {1IJ m oa} = {f oa} _ aj {OC oa} . (4.16b) 01pm T' ± ,± aoc ' ± 

We combine Eqs. (4.16) with Eq. (4.14): 

{j, g}~(O, 1p) 

= {j, 1pn}± ::n - {j, oa}±C;b{Ob, 1pn}± o~. (4.17) 

By transforming the ag/a1pn terms in the same form as 
it was done above with the oj/01pm terms, we obtain 

{j, g}! = {j, g}± - {j, oa}±c~{Ob, g}±, (4.18) 

a, b = I, 2, ... , Nt. In this form (for the - sign) 
Mukunda and Sudarshanll proved that the Dirac 
bracket (4.10) defined in their approach is identical 
with the original one given by Dirac [cf. Eq. (1.5)]. 

With regard to the new plus case, if one tries to 
write directly the symmetric partner {j, g}! of the 
minus Dirac bracket {j, g}! given in its original form 
[Le., as in Eq. (1.5)], problems will arise because, 
whereas 

{j, g}: = {j, g}+ - {j, oa}+C~b{Ob, g}+ 

is a possible symmetric partner of Eq. (1.5), it does 
not seem obvious that this must be the right answer. 
For example, 

can be thought as well as 

-{j, oa}_ctb{llb, g}_ 

to be the symmetric partner of the term 

-{j, oa}_C;b{Ob, g}_ 

of Eq. (1.5). On the other hand, Mukunda and 
Sudarshan's approach for the minus case has only one 
natural symmetric partner, as it can be seen in com
parison of 'the + and the - signs in Eqs. (4.2b), 
(4.3b) , (4.7), (4.8), and (4.10). That is why we use 
Mukunda and Sudarshan's approach in this section. 

B. Properties 

We know1- S.ll that the minus Dirac bracket has the 
properties it is expected to have, if it is a generaliza
tion of the minus Poisson bracket and if it should be 
replaced while quantizing (beside an i factor) by a 
commutator. In the same way, Eq. (4.10) implies 
immediately that the new plus Dirac bracket has the 
properties it is expected to have if it is a generalization 
of the plus Poisson bracket and if it should be replaced 
while quantizing (beside an i factor) by an anticom
mutator. For example, given the arbitrary functions 
j= /(0, 1p), g = g(O, 1p), and h = hell, 1p) and any 
constant (x, it follows that 

and 

{j, g}! = ±{g,j}*, 
{j, (Xg}! = (X{j, g}!, 

{j, g + h}! = {j, g}~ + {j, h}!, 

(4.19a) 

(4. 19b) 

(4. 19c) 

{j, gh}! = g{j, h}! + {j, g}!h. (4.19d) 

An important property that the ± Poisson brackets 
do not have is 

{j, lla}! = 0, for a = 1,2, ... ,Nr (4.20) 

This last result avoids inconsistencies when quantizing 
according to rule (1.6b), when constraints Oa ~ 0 are 
present. 

C. Constraints 

We extend the classification developed by Dirac,l 
Anderson and Bergmann7 for the skew-symmetric 
case to the symmetric one. 

The set of constraints (if any) deduced directly from 
Eq. (1.1) are called primary constraints. If <l>a(q,p) ~ 0 
is a primary constraint, then it must remain valid for 
all time. Since Eq. (3.2) is valid for the plus and minus 
cases, we have 

(4.21) 

(HT is the total Hamiltonian of the system)2 not only 
when looking for the minus Dirac bracket but also when 
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looking for the plus Dirac bracket. It may be that from 
Eqs. (4.21) new independent constraints of the type 
xU< q , p) are deduced, in which case they are called 
secondary constraints. The procedure is iterated, 
getting more secondary constraints, until no new 
constraint can be obtained. Let us call 'a(q, p) any of 
the <I> a or Xa: 'a(q, p) ~ O. We say that 'a is a first-class 
constraint if 

(4.22) 

and that 'a is of second-class constraints if there exists 
b such that 

(4.23) 

It is intended in these expressions for only one sign to 
be used systematically for each classification ( + or - ). 

The constraints 'a are replaced by nonsingular 
linear combinations of these in such a way that we get 
as many ± first-class constraints as possible. The 
remaining ones result in ± second-class constraint 
functions which will be denoted by ()a' They are such 
that 

()iq, p) ~ 0, a = 1,2, ... , Nt-. (4.24) 

In the same way as for the anti symmetric case it is 
proved that 

D. The ± Dirac Brackets in the Theory 
of Constrained Systems 

(4.25) 

In Sec. 4A the Dirac bracket is defined in terms of 
any set of functions "Pm and ()a that satisfy the condi
tions which are imposed there. It is not required that 
the functions ()a be constraint functions: this was not 
required either in Dirac'sl first definition of { , }"'. or 
in Mukunda and Sudarshan'sll approach to them. 
But the principal interest of ± Dirac bracket is when 

the functions ()a considered in subsections A and Bare 
just the ± second-class constraints ()a obtained in sub
section C (cf. Refs. 1~6 for the anti symmetric case). 
This selection of the set () can be done because Eq. 
(4.25) insures the existence of c;1=" [cf. Eq. (4.7)]. 
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A random walk approach leads to rigorous solution of certain albedo problems usually solved by 
Monte Carlo techniques or other numerical methods. 

I. INTRODUCTION 

In the problem of "diffuse reflection," light is 
incident at an angle cos-l flo on material that can scat
ter or absorb it, with the absorption probability a 
(often l 1 - a is denoted wo) per scattering. The general 
problem, in various geometries, is to determine the 
intensity and angular distribution of the transmitted 
and reflected light. The problem may be treated by use 
of integral equationsl or by Monte Carlo techniques,2 
but no purely analytic solutions (free of numerical 
procedures) have been given for any of the quantities. 
In this paper, analytic expressions are derived for 
the total albedo from a semi-infinite slab when the 
albedo per scattering, b = 1 - a, is known and the 
scattering is isotropic. Random walk techniques are 
used, the first case being in one dimension, with walk 
allowed only in a direction normal to the slab surface; 
in the second case, random walk is allowed in any of 
the six principal directions. Only the total albedo,3 
not the angular distribution of the reflected light, can 
be obtained in this manner, since all the photons 
emerge normally to the slab. However, the results 
appear in simple closed form, offering great ease in 
use and great advantage for physical interpretation. 
For example, when a is large, we would expect our 
best chances to get a photon back are if it scatters only 
once, with negligible chance of survival otherwise. 
Thus, in one dimension, the slab albedo R should be 
approximately tb and in three dimensions ib; these 
limits are easily extracted from our answers. Further
more, our method illustrates a way of using generating 
functions to obtain averages weighted by the path 
length of the photon in the slab; these might be 
of use in a variety of other problems, as in finding 
the mean time delay for exit or evaluating effects of 
the photons on slab material. Our results agree 
extremely well with those obtained using the X and Y 
functions of Chandrasekhar. l In Sec. II we evaluate 
the slab albedo in one dimension and in Sec. III in 
three dimensions. 

II. 1-DIMENSIONAL CASE 

This case is absurd as a photon-scattering problem, 
as may be seen from the factor-3 difference in R when 
a is large (Sec. I). However, there are interesting 
systems that are intrinsically of a more I-dimensional 
nature, such as the propagation of cosmic rays along 
a fairly regular magnetic field. 4 This case serves, then, 
as an introduction to the 3-dimensional case and as a 
case of possible interest in other fields. Suppose that 
the photons arrive from the left (empty) half-space at 
the first of an infinite row of scatterers occupying the 
right half-space and that at each scatterer a photon 
can do any of the following three things: 

be absorbed (probability a), 
scatter to the left (probability tb), 
scatter to the right (probability tb). 

The problem is basically a I-dimensional random 
walk, and we follow Feller's5 treatment; but we must 
change the initialization and use certain symmetry 
ideas to take care of the fact that half the space is 
empty, and we must take into account the survival 
probability per scattering, b. Clearly, if b = I, all the 
photons return to the surface and escape, since5 a 
random walk in one dimension leads to unit probability 
of return to the origin. The interesting question in 
regard to absorption arises when one remembers that 
the expectation of the recurrence time in this problem 
is infinite, which suggests that perhaps a small chance 
of absorption per scattering will really destroy a lot of 
photons. In fact, it turns out that only very few 
photons contribute the exceedingly long paths in the 
material that lead to infinite expectation for the path 
length; hence, the slab albedo falls only linearly with 
b at small b, and approaches unity rapidly when b is 
near 1. 

We define a chain of scatterings as a sequence of 
possible scatterings leading to re-emission at the last 
member, but not before. Thus, if scattering to the 
right is denoted R and to the left L, a sample of the 

1735 
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simpler chains allowed is the following. 

Scattering Probability 
L (tb) 

RLL (tb3) 

RRLLL 
RLRLL 

RRRLLLL 
RRLRLLL 
RRLLRLL 
RLRRLLL 
RLRLRLL 

(1) 

We have grouped the chains by length and have listed 
with each group the associated contribution to R, the 
slab albedo. Each chain must have one more L than 
R, must end with an L, and must contain no more 
L's than R's until the last L. By comparison with 
Feller,5 it is easy to see that, if we prefix an extra R 
to each chain, we get exactly all those I-dimensional 
random walks that start to the right and return to the 
origin at the end of the chain, which is half of all the 
recurrent walks considered by Feller (whose lattice 
of scattering centers was infinite, not semi-infinite). 
Since our sample space contains only random walks 
that start to the right, our probabilities for return 
(when b = 1) are identical with Feller's. 

One may think of the missing initial "R" as the 
process of directing the photon at the slab, which is 
taken here to have probability 1. Clearly, if we included 
the initial "R" and assigned it (wrongly) probability b, 
the sum of the terms analogous to those in the second 
column of Eq. (1) would be Feller's generating func
tion [Eq. (3.18) of Ref. 5], with s = b, viz., 

(2) 

and this would be the slab albedo. Since the insertion 
of the photon is demanded, not assigned a probability 
b < 1, we must remove the extra factor b from Eq. 
(2) to get the true albedo of the slab R(b), namely 

R(b) = b-1 [1 - (1 - b2)!] (I-dimensional). (3) 

This completes the solution of the I-dimensional 
problem, there being no point in rederiving here 
Feller's generating function for recurrence times. In 
the next section such a function must be derived in 
three dimensions for recurrence at a plane, since Feller 
treated only recurrence at a point. 

In closing, we note that (3) gives R ~ ib when b is 
small, as promised, and that, when a is small, (3) 
yields R ~ 1 - (2a)l, which supports the claim that 

the total albedo rapidly approaches unity when a does, 
the long chains evidently contributing little. 

ill. 3-DlMENSIONAL CASE 

In this case, a photon arrives from the left and 
strikes the slab, which occupies the right half-space. 
At each scattering, it can do any of seven things: 

be absorbed (probability a), 
scatter to the left (probability tb), 
scatter to the right (probability tb), 
scatter sidewise any of four ways (total 

probability ib). 

Again, a + b = 1. Clearly, we do not care which of 
the four sidewise directions is involved, and we may 
lump them together, using the symbol S on a par with 
Rand L. Thus, chains may be formed just as before, 
but it is now a little problem to arrange them so as to 
easily count up the probabilities. Note that we again 
expect unit probability of return to the original 
surface if b = 1, although the probability of return to 
the starting point is only6 0.35. 

We form chains as before, but with an arbitrary 
number of S's inserted at any point save the end of the 
chain. (The first or any intermediate scattering could 
be sidewise, but the last is assumed to be out of the 
slab.) .We group the chains just as was done in Eq. (1), 
but WIth subgroups containing a given number of S's 
this number being denoted in the sequel as r: ' 

L, SL, SSL, SSSL,· .. (4a) 

RLL, SRLL, SSRLL, SSSRLL, 
RSLL, RSSLL, RSSSLL, 
RLSL, RLSSL, RLSSSL, (4b) 

RSLSL, RSLSSL, 

° 2 3 

In (4a) r takes on the successive values 0, 1,2,3, and 
in (4b) the chains are grouped by r values shown 
beneath the columns. If the original chain (before 
insertion of S's) was n units long, the number of ways 
that rS's can be inserted is a well-known problem in 
Bose-Einstein statistics,7 since the n possible spaces 
before each R or L form "boxes" into which the S's 
may be put like Bose particles. The resulting number of 
terms is7 

(5) 

We denote by P(n) the probabilities for the original 
!-dimensional chains (1), but with lb replaced by tb as 
IS appropriate in three dimensions. The chain length is 
n (not counting the S's), and P is supposed to be 
already summed over all original chains of length n. 
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Let R(n; r) denote the partial albedo due to chains 
with nR's or L's, and rS's. Then 

R(b) = L R(n; r), n odd. (6) 
n,r 

We perform the sum over r first. By inspection, we see 
that 

LR(n; r) = p(n)r~(n +; - l)(ibt, (7a) 

= P(n)(l - ib)-n, (7b) 

where we have used an identity in binomial coefficients 
[Ref. 5, Eq. (9.1)] and the definition of binomial 
series. Now the appearance of a simple power law in 
(7b) tremendously facilitates the final summation over 
n, because the quantities P(n) are already simple 
coefficients times (tb)n. Therefore, the final summation 
is exactly as in Sec. II, except that tb is to be replaced 
by (tb)j(l - ib) = tbj(3 - 2b). The final answer for 
the slab albedo is then 

R(b) = rl[l - (1 - X2)f], 

x == bj(3 - 2b). 
(8) 

If b is small, R -lb, as asserted, and if b is large, 
we find 

R'::::!. 1 - (6a)f, a small, (9) 

a nice analytical limit that could never be obtained by 
numerical techniques.s Again, in this limit, the influ
ence of long paths must be small, in spite of the 
infinite expectation of the recurrence time! To con
clude, we give in Table I a comparison of our results 

TABLE I. Comparison of analytic expression (8) with Chan-
drasekhar's numerical results. 

R, from R, from R, from R, from 
b Eq. (8) Ref. 1 b Eq. (8) Ref. 1 

0.1 0.0179 0.0164 0.8 0.315 0.2853 
0.2 0.0385 0.0352 0.9" 0.453 0.4149 
0.3 0.0627 0.0572 0.925 0.504 0.4665 
0.4 0.0916 0.0834 0.95 0.574 0.5355 
0.5 0.127 0.1152 0.975 0.677 0.641 
0.6 0.172 0.1554 1.0 1.0 1.0 
0.7 0.231 0.2087 

with those obtainable from Chandrasekhar's X, Y, 
and H functions; R = 1 - H(1; b)(l - b)!, where H 
is tabulated.1 
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Th~ p.aper :presents. a general theoretical investigation of 3-wave interaction in the well-defined phase 
descriptIOn wIth specIal regard to n~nlinear explosive instabilities in the presence of linear damping or 
growth. 

1. INTRODUCTION 

In recent years, there has arisen an almost explo
sively increasing interest in the possibility of having 
unbounded solutions to nonlinear equations describing 
wave interaction in plasmas. The corresponding 
instabilities may be responsible, e.g., for certain astro
physical phenomena of catastrophic nature, l as well as 
for enhanced losses in some kinds of laboratory 
plasmas. Several specific examples have been con
sidered.2- 5 They are alike in that there is free energy 
available to be converted into wave motion, expressed 
by the fact that one or two of the interacting waves 
have negative energy in any frame of reference. A 
typical example may be a plasma containing groups 
of particles with different drift velocities. Such a system 
may be linearly stable, but may exhibit nonlinear 
explosive instabilities. A case of this kind occurs, e.g., 
when a weak ion beam penetrates a nondrifting 
electron-ion plasma in a strong magnetic field.a.4 

Nonlinear wave interaction has been investigated 
assuming well-defined phases of the waves6- 9 or by 
means of a random-phase approach.a-5.10-12 The ex
plosive case has been studied mainly using the latter 
method. It has been pointed out, however, that phase 
effects lead to a significant modification of details of 
the dynamics of the interaction.13 It is the purpose of 
the present paper to discuss, within the framework 
of the well-defined phase description, the formal con
ditions under which a nonlinear 3-wave interaction is 
explosive, allowing also for the presence of linear 
damping of the interacting waves. 

2: EQUATIONS OF MOTION 

The equations of motion of waves of well-defined 
phases interacting nonlinearly can be conveniently 
deduced using a normal mode approach.7

•
9 A linear 

analysis yields, for every normal mode j, a complex 
eigenfrequency w;, and a positive or negative 1m (w;) 
corresponding to damping or growth, respectively. In 
the special case of a system which, in the absence of 

wave excitation, is homogeneous, the normal modes 
correspond to different wave vectors k; . 

To lowest nonlinear order, the equations of motion 
contain bilinear interaction terms between normal 
modes. If a pure 3-wave interaction is possible, as, 
e.g., in the case of a homogeneous system in which 
waves with wave vectors k;, j = 0, 1, 2, satisfying the 
matching condition 

ko = kl + k2' 

are excited, one has the closed system of equations 

oao . * at - Iwoao = c12a1a2, 

oa1 • * at - Iw1a1 = c02aOa2, (1) 

where the a; are the amplitudes of the normal modes 
and the star describes the complex conjugate. In the 
following, we assume that the frequencies of the inter
acting waves fulfill the matching condition 

Re (wo) = Re (WI) + Re (w2). 

Explicit evaluations of the coupling constants cij 
show that, in the absence of linear damping or 
growth [1m (w;) = 0], the Cit can be taken to be reaP' 
For longitudinal waves, as well as for transverse 
waves, their signs then depend on that of factors of the 
form [a(w2Ei)/aW]w~w;, where E;(W) is the dielectric 
constant associated with the mode j. It is a character
istic feature of Eqs. (1) that the relative signs of the 
Cij cannot be changed by changing the normalization 
of the a; , i.e., by transformations of the kind a; -- (1.;a; 

with (1.; real. This is closely related to the fact that, for 
a suitable normalization of the a; , the energy of a wave 
can be written 

2 (0(W2E;») la;1 W; sgn --- . 
OW CJ)~"'; 

1738 
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In the presence of linear damping or growth 
[1m (w; :;i: 0)], the coupling coefficients are essentially 
complex. The special case of situations where col
lisional damping is important has been considered by 
other authors.15 

Equations (I) can be reformulated in different ways. 
Introducing 

ai(t) = A;(t)ei[Re«(J)jl]t , 

and using also the matching condition for the fre
quencies, one obtains 

oAo * - + [1m (wo)]Ao = C12AlA2, at 
oAl * - + [1m (Wl)]Al = co2AoA2, (2) at 
oA2 * - + [1m (w2)]A2 = cOlAoAl' at 

Note that lo[ln Aj(t)]fotl« Iw;1 holds if the linear 
damping or growth is small (11m (W;) I « IRe (w;)/) 
and the nonlinear interaction is a small correction to 
the linear motion. 

Often, it is more convenient to consider, rather than 
the Ai == IAjl eiq,;, the real quantities 

Uo = (/coli /co2/)1IAol, 

Ul = (lcol lic12/)1IAl l, (3) 

U2 = (/c02 I ic12/)1IA21, 
and 

Putting cij == Ici;1 ei9H , one obtains, from Eq. (2), 

auo - + [1m (wo)]uo = UlU2 cos (<1) + (J12), at 
aU l - + [1m (Wl)]Ul = UOU2 cos (<1) + (J02), (5) at 
OU2 at + [1m (W2)]U 2 = UOUI cos (<1) + (JOl), 

and 

a<1) U l U2. If"> 
- = - - sm (w + (J12) at Uo 

UOU2 . 
- - sm (<1) + (J02) (6) 

Ul 

- UOUI sin (<1) + (JOl)' 
U2 

For comparison, we note that in the random-phase 
description one has, instead, equations of the form 

ou~ + 2[1 ( )] 2 2 2 2 2 2 2 at m Wi Uj = OtjOlUOUl + Ot;02UOU2 + Ot j12UlU2, 

(7) 

with the OCjkl being real and tending to ± I in the limit 
of vanishing linear damping or growth. 13 

3. DISCUSSION 

In the absence of linear damping or growth 
[1m (w j ) = 0], the possibility of taking the coupling 
coefficients Cij real implies (Jij = 0, ±1T. If all (Jil = 0 
or all ()il = ±1T, the system given by (5) and (6) has 
unbounded solutions, which diverge after a finite time 
t f£) like uj "-' (t f£) - t)-l, describing an '.'explosive" 
instability. In all other cases, the solutions of the 
system are oscillating and, hence, stable. In the 
random-phase approach the situation is analogous, 
the explosively unstable case corresponding to all 
OCjkl = + 1. However, the divergence is oflower order 
in this case, namely, uj "-' (iw - t)-1 where the time 
(X) , after which the divergence occurs, is in general dif
ferent from the corresponding time t~ in the well
defined phase description. Here exist, hence, important 
differences between the two complementary descrip
tions. It may be noted in this context that, if the waves 
have well-defined phases, an explosive instability may 
be preceded by a finite time interval during which the 
amplitudes of all interacting waves decrease, whereas 
this is impossible when the phases are random. 13 

The case mentioned appears when, initially, 

cos (<1) + ()ij) < 0 
holds. 

We now deduce a necessary condition for the pres
ence of an explosive instability in the general case 
1m (Wi) :;!= O. Let us put 

uj = !j(t)f(tw - t), (8) 

where !jet), depending on all parameters of the prob
lem including the initial conditions, is positive and 
varies "slowly" in the neighborhood of the divergence 
of the uj ' assumed to occur for t --+- I w , i.e., 

d(ln!;) // (t _ t)-l f, 
dt "00 , or t --+- tf£) • (9) 

Then Eqs. (5) yield 

f~(too) = [cos (<1)(t",,) + ()02) cos (<1)(t00) + OOl)r1, 

f~(too) = [cos (<1)(t00) + (JOl) cos (<1)(t00) + ()lJrl, 

f:(tw) = [cos (<1)(t00) + (J02) cos (<1)(t",) + OlJJ-l, 

with the constraint that all 
(lOa) 

cos (<1>(100) + ()ij) > O. (lOb) 

Hence, the complex vectors having phase angles 
<I>(too ) + ()i; all point in the right half-plane. This 
implies that, for an explosive instability to occur, it is 
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necessary that the phases Of; of the coupling coefficients 
Cii define complex vectors which all point in the same 
half-plane. 

Furthermore, from Eqs. (6), (8), and (lOa), one 
obtains 

tan (cI>(t<X» + (12) + tan (cI>(t<X» + (02) 

+ tan (cI>(t<X» + (01) = 0. (lOc) 

This relation, together with the constraint (lOb), 
determines the asymptotic phase cI>(to:» uniquely. 

More information about the time teo can be obtained, 
considering the special case 1m (Wj) = v, where all 
1m (wj ) are equal. Using the transformation 

T = v-1(1 - e-vt
), 

U j = ujevt
, 

Eqs. (5) and (6) then yield 

oUo cI> - = U 1 U 2 cos ( + (12), 
aT 

oU1 ° - = UOU2 cos (cI> + 02)' 
aT 

aU2 0 - = UOU1 cos (cI> + 01)' 
OT 

and 

o<l> U1U2 • cI> ° - = - -- sm ( + 12) 
OT Uo 

UOU2 • cI> 0 - -- sm( + 02) 
U1 

UOU1 • cI> 0 - -- sm( + 01)' 
U2 

(a) 

e 
01 

(14) 

(11) 

(12) 

(13) 

t 

The preceding equations are identical with Eqs. (5) 
and (6) with the terms 1m (Wj)Uj suppressed. Hence, 
it is possible to express too in terms of a fictitious 
to:>, corresponding to an explosively unstable situation 
where the coupling coefficients are the same as in the 
actual problem, but the linear damping or growth is 
disregarded. Using Eq. (11), one obtains 

(15) 

This shows that the tendency brought in by the term 
describing linear damping (v > 0) or growth (v < 0) 
is, in the first case, to increase too, and, in the second, 
to decrease it, as is intuitive. 

In particular, if v is larger than a critical value given 
by Vc = i~;t > 0, the time to:> is no longer real and, 
consequently, an explosive instability does not exist: 
it is suppressed by the effect of linear damping.16 

Physically, such a situation occurs when the initial 
excitation of the waves is so small that, at t = 0, the 
nonlinear terms are dominated by the terms describing 
linear damping. These results are analogous to those 
obtained by a random-phase approach,l7 

The opposite case v < vc' which appears for higher 
initial excitations of the waves, comprises the inter
esting possibility that a plasma, which in the absence 
of dissipation would be stable, becomes nonlinearly 
(i.e., explosively) unstable by the effect of even a weak 

FIG. l(a). Vectors e'8ii in the same half-plane (qualita
tive plot for destabilized case). (b) Time dependence of 
the wave amplitudes UI and the phase cI> for 912 = 
-1T + 1T/60; 802 = -1T + 1T/20; 801 = -1T/60, and v = 
0.01. 

O~--------*5--------~10~------~1~5----~ 

(b) 
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e 
02 

e 
12 

e 
01 

(a) 

FIG. 2(a). Vectors ei0ij; two angles differing 
by 7T (qualitative plot for limiting case). (b) Time 
dependence of the wave amplitudes Ui and the 
phase <I> for 8u = -7T + 7T/200; 802 = 7T -

7T/200; 80l = -7T/200, and v = 0.01. 

u:~ 
o 5 10 15 

.. 

dissipation. IS This occurs when the dissipative effects 
modify the phases ()ij in such a way that the corre
sponding complex vectors all point in the same half
plane (cf. Fig. 1), the limiting case of vanishing 
dissipation corresponding to a situation where two ()il 

are equal to 0, and the remaining one equal to ±7T, or 
vice versa. 

e 
02 

e 
12 

(a) 

e 
01 

FIG. 3(a). Vectors eiOij not in the same 
half-plane (qualitative plot for stable case). (b) 
Time dependence of the wave amplitudes Uj 

and the phase <I> for 812 = -7T + 7T/400; 
801 = 7T - 7T/30; 801 = -7T/400, and v = 
0.01. 

t 
(b) 

The three typical cases which can appear according 
to the relative values of ()ij are reported in Figs. 1-3. 
The given time dependencies of the wave amplitudes 
uj and the phase <I> have been obtained by numerical 
integration of Eqs. (5) and (6) in the limit where the 
effect of linear damping is unimportant. All cases with 
eiOij

, being all in the same half-plane which have been 

(b) 
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treated numerically, were explosively unstable. There
fore, the necessary condition for explosive instability 
given above seems sufficient for these cases, also. 

We note that, for ()ij = 0, ±7T, Eqs. (5) and (6) can 
also be integrated analytically [if all 1m (w j ) are equal]. 
This is readily seen from Eqs. (13) and (14), which then 
become formally identical with the equations of motion 
in the absence oflinear damping or growth [1m (w j ) = 
0] and, hence, have simple integrals.6 •8 •13 In the 
general case where ()ij ;t: 0, ±7T, the problem becomes 
considerably more complicated, though one has the 
new constant of motion 

v~ sin «()02 - ()Ol) + vi sin «()Ol - ()12) 

+ v~ sin «()12 - ()02)' (16) 

Generalizations of the constants of motion,previously 
known for the case 1m (Wj) = 0, have not been found, 
however. 
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The method of matched asymptotic expansions is used to reduce the time-dependent, one-velocity 
neutron transport equation to a set of more tractable equations. This reduction is accomplished subject 
to general initial conditions on both the neutron flux and delayed neutron precursors. 

1. INTRODUCTION 

The use of matched asymptotic expansions in solv
ing singular perturbation problems is a well-known 
technique in fluid mechanics.1- 3 There the equations 
are usually nonlinear, and the goal is often an analytic 
approximation to the solution that is uniformly valid 
in some independent variable of the problem. By a 
uniformly valid solution, we mean that the absolute 
value of the difference between the exact solution and 
the approximate solution has a uniform bound 
(with respect to an independent variable), and this 
bound can be made as small as we please by choosing 
some characteristic parameter of the system sufficiently 
close to a limit, usually zero or infinity. The approxi
mation is thus valid in an asymptotic sense. 

In this paper, the method of matched asymptotic 
expansions is applied to the initial value problem for 
the time-dependent, one-velocity neutron transport 
equation with delayed neutrons. The analysis is 
unusual in the sense that the problem is linear, and the 
goal is not an analytic approximation to the exact 
soluti<?n (which seems to be out of the question for 
any realistic formulation of the problem), but is 
rather the reduction of the transport equation to a set 
of asymptotically equivalent equations that are more 
easily solved on a digital computer. 

Very little exists in the way of a rigorous foundation 
for the method of matched asymptotic expansions 
(see the book by Kaplun3 for some first steps in this 
direction), and the analysis which follows is largely 
formal. 

Our goal is solutions to the following system of 
equations: 

a1jl 1 N 
€ - + B1p = -! AiCi , (Ll) at 47Ti~1 

aCi + AiCi = {JiK1jl, i = 1,"', N, (1.2) at 
for the neutron distribution function 1jl(r, Q, t) and 
delayed neutron precursor densities Ci(r, t). Here 
r = (Xl' X 2 , x3) is a vector specifying the position 

in a convex bounded volume V with surface S, within 
which the solutions to (1.1) and (1.2) are sought; Q is 
a unit vector pointing in the direction of the neutron 
velocity; t is time. The magnitude of the neutron 
speed is assumed constant and, because it is usually 
quite large, is denoted by v = l/f.. E, L, S, and K are 
operators defined by the relations 

B = L - S, (1.3a) 

L1jl = Q. V1jl + ~(r)1jl, (1.3b) 

S1jl = {dQ' (~.(r; Q' . Q) + 4~ (1 - {J)Y~ir») 1jl, 

(1.3c) 

K1jl = Y~/r) {dQ'1jl. (1.3d) 

The symbol dQ is shorthand for a differential element 
of solid angle, and the integrals are understood to run 
over the unit sphere. We denote the range of the 
variable Q by n. The neutron distribution function 
1jl(r, Q, t) is defined to be the speed times the time
dependent density of neutrons in the 5-dimensional 
phase space (r, Q). The delayed neutron precursor 
densities Ci(r, t) may be looked upon as the time- and 
space-dependent densities in the volume V of the ith 
(i = I, ... , N) isotope produced in fission and de
caying with the emission of one or more delayed 
neutrons (actually, Ci is a group of such isotopes 
sharing approximately the same half-life). Typically, 
N ~ 6. Other quantities appearing in the above 
equations are the total and fission cross sections ~ and 
~f (reciprocals of the corresponding mean free paths); 
the scattering kernel ~8(r; Q' . Q), defined such that 
~s(r; Q'. Q) dQis the reciprocal of the mean free path 
between scattering collisions of a neutron at r with 
velocity direction Q' which sends the neutron into 
dQ about Q; the fraction of fission neutrons produced 
by the ith delayed neutron precursor {Ji; {J = {Jl + 
... + {IN; the total number of neutrons released per 
fission Y; and the delayed neutron precursor decay 
constants Ai' 
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Equation (1.1) expresses a balance between neutrons 
being lost from an element of phase space by collisions 
and streaming and being added by in-scattering, 
prompt fission, and decay of delayed neutron pre
cursors. Equation (1.2) is the usual radioactive decay 
relation with a source term due to fissions. We shall 
seek solutions to (1.1) and (1.2) subject to the bound
ary condition of no incoming neutrons 

1p(r, n, t) = 0, rES, n· n < 0, (1.4) 

where n is the outward normal to S. We shall also 
specify initial conditions on both 1p and the Ci , namely 

1p(r, n, 0) = fer, n), (1.5) 

Ci(r,O) = gi(r), i = 1, ... ,N. (1.6) 

The last condition generalizes earlier work,' in which 
the formalism made essential use of the conditions 
gi(r) = 0, i = 1, ... , N. For a proof of the existence 
and uniqueness of positive solutions to (1.1) and (1.2) 
subject to (1.4), (1.5), and (1.6) in the more general 
velocity-dependent case, we refer the reader to a paper 
by Marti.5 

The formal perturbation method described below 
involves the expansion of 1p and the Ci in powers of € 

and the assumption that these expansions are valid 
asymptotically, as € -+ 0. The parameter € is equal to 
the reciprocal of the neutron speed, and for most 
systems of practical interest is much smaller than the 
other factors appearing in (1.1) and (1.2). This 
approach can be applied to the velocity-dependent case 
with no changes whatever, but in this case the factor 
1 Iv is a variable and it becomes necessary to prefix the 
time derivative with a fictitious parameter € and let 
€ -+ I at the end of the analysis. This is a procedure 
similar to that used in the Chapman-Enskog-Hilbert 
expansion in statistical mechanics.6 In principle, it 
should be possible to scale (1.1) and (1.2) in the 
velocity-dependent case by introducing a lower bound 
on the range of v and using this lower bound to make 
the equations dimensionless with respect to velocity. 
The difficulty with this approach is that in the velocity
dependent case the operators Band K involve integrals 
over v and the scaling process causes cross sections to 
become functions of €. The form that cross section 
data usually takes makes the required asymptotic 
expansions in € unobtainable. To keep the analysis 
presented here on as firm ground as possible, we limit 
the discussion to the one-velocity case. 

2. KNOWN RESULTS 

The method of matched asymptotic expansions, 
as we shall apply it below, makes considerable use of 

a priori knowledge of the transport equation and its 
solutions; in fact, the method almost amounts to a 
transformation of qualitative information into quanti
tative information. If the general features of the 
required solutions are known, then the method can 
yield very accurate results. Numerical tests have been 
made4.7 that indicate the results in the present case are 
essentially exact. Further verification may be found in 
Sec. 4, where it is shown that in at least one case the 
mathematical structure of our solution agrees 'vith 
that given by exact analysis. 

The operator B has been studied in considerable 
generality by Vladimirov8 (many of the results we shall 
attribute to Vladimirov were stated by him in much 
more general form). His results confirmed what has 
been "known" by reactor physicists for a long time, 
namely that positive bounded solutions to the steady 
state equation 

(L - yS)({Jy(r, n) = Q(r, n) (2.1) 

exist for Q > ° in a bounded volume surrounded by 
vacuum as long as ° :::; y < Yo. The number Yo is the 
first "criticality" eigenvalue for the system. It is simple, 
and to it there corresponds an eigenfunction ({Jo satis
fying the homogeneous equation 

(L - YoS)({Jo(r, n) = 0, (2.2) 

which is unique to within multiplication by a scalar. 
These facts were proven subject to restrictions that in 
effect precluded the possibility S = 0, and for a linear 
manifold of differentiable functions in the Hilbert 
space h of functions square integrable in the Lebesque 
sense on the set of all rEV, n E n. 

Equation (2.2) describes a self-sustaining nuclear 
reaction or a "prompt critical" nuclear reactor, ne
glecting delayed neutrons and feedback effects. The 
word "prompt" indicates that criticality is achieved 
with prompt neutrons alone. Furthermore, there 
exists a denumerably infinite set of eigenvalues Yk and 
eigenfunctions ({Jk satisfying 

The set of functions {S({Jk} is complete in the range of 
S (in particular, they are complete for functions of r 
only), but the set {({Jk} is not complete in h. The inverse 
operator (L - yS)-l exists and is bounded on h for 
y ~ Yk' k = 1,2, " '. 

No equally complete theory exists for the time
dependent equation, but the following observations 
have been made for many applications of the transport 
equation to simple systems9- 12 and for various approx
imations to the neutron transport equation.1s Below 
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prompt critical (y < Yo), solutions to the equation 

Ocp 
E ai + (L - yS)cp = 0 (2.4) 

(subject to a given initial distribution in rand n for cp 
and the same boundary conditions as before) decay at 
least exponentially to zero with increasing time. At 
prompt critical they settle down to a positive steady 
state solution. Above prompt critical they grow with 
time. Solutions to (1.1) and (1.2) may grow for systems 
below prompt critical (when we choose the parameters 
in the operator S in such a manner that y = 1 < Yo) 
because of the contribution of the delayed neutrons. 
The dividing line between solutions to (1.1) and (1.2) 
which grow with time or decay with time is called 
"delayed critical." 

3. MATCHED ASYMPTOTIC EXPANSIONS 

The philosophy underlying the application of the 
method of matched asymptotic expansions to this 
problem has been discussed before,4 and we will 
stress here only those points which differ from the 
analysis presented earlier. The short-time and long
time solutions to (1.1) and (1.2) are denoted by 1pI, 
C: and 1pIII, Cill , respectively. These solutions have a 
common time range of validity , and within this overlap 
the solutions are denoted by 1p1I, Clio We shall also 
refer to the solutions in the three time ranges I, II, and 
III as inner, intermediate, and outer solutions, respec
tively. Evidently, 

1p = 1pI + 1p1lI _ 1p1I, (3.1a) 

Ci = cl + cllI - clI, i = 1, ... ,N, (3.1b) 

since addition of the inner to the outer solution gives 
two times the correct solution in the intermediate 
region. 

Our perturbation method breaks down in the 
neighborhood of prompt criticality. This is because the 
operator L - yoS is "small" on that region of Hilbert 
space which is close to the first criticality eigenfunction. 
Consequently, the parameter E, which is given before
hand in practical problems, cannot be considered 
small compared to other terms. The smaller the E, the 
closer prompt criticality can be approached. The 
perturbation method works for all systems sufficiently 
below prompt critical and, in particular, des~ribes 
systems both at and above delayed critical. It works 
above prompt critical in the trivial sense that the inner 
solution dominates for all time. This is of little interest 
[because there is little advantage in solving the inner 
equations instead of the full set of transport equations, 
(1.1) and (1.2)], and further analysis will be based on 

the assumption that the parameters in the operator S 
are chosen such that y = I < yo. 

Inner solution: In order to satisfy the initial condi
tion on 1p, the time coordinate is stretched in such a 
manner that the time derivative is retained in the 
zeroth-order perturbation theory. We put r = tiE, and 
substitute into (1.1) and (1.2). The result is 

(00 + B) 1pI(r, n, r) = 1. f AiCI(r, r), (3.2) 
r 41Ti=1 

(:r + EAi) Cl(r, r) = EPi(K 1pI)(r, r). (3.3) 

Now, we introduce the expansions 

1pI(r, n, r) = 1p~(r,n,r) + E1p~(r,n,r) + 0(E2), (3.4) 

CNr, r) = Ci~(r, r) + ECMr, r) + 0(E2), 

i = 1, ... ,N, (3.5) 

into (3.2) and (3.3), equate equal powers of E, and 
neglect terms 0(E2). This leads to the following equa
tions: 

(~ + B) 1p~(r, n, r) = 1.. f AiCMr, r), (3.6) 
Or 41Ti=1 

(~ + B) 1pf(r, n, r) = 1.. f AiCl1<r, r), (3.7) 
Or 41Ti=1 

~ CMr, r) = 0, i = 1, ... , N, (3.8) 
Or 

:r cMr, r) = PiCK 1p~)(r, r) - AiClo(r, r), 

i = 1, ... ,N. (3.9) 

These are to be solved subject to the initial conditions 

1p~(r, n, 0) = fer, n), 

1p~(r, n, 0) = 0, j > 0, 

cMr, 0) = gi(r), 

(3.10) 

(3.11) 

(3.12) 

Cl;(r,O) = 0, j > 0, (3.13) 

which result from substitution of (3.4) and (3.5) into 
(1.5) and (1.6). Equations (3.8) and (3.9) may be 
integrated directly: 

Clo(r, r) = gi(r), i = 1, ... , N, (3.14) 

cMr, r) = Pif(K1p~)(r, r') dr' - Aiglr)r. (3.15) 

The rhs of (3.6) is thus a known function. To solve 
(3.6), we break 1p~ into the sum of two functions, a 
solution to the homogeneous form of (3.6), and a 
particular solution to the inhomogeneous equation. 
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The need for this manipulation will become evident 
when the outer solution is matched to the inner solu
tion for intermediate times. We put 

I _ I + I 
'IJlo - 'IJlo" 'IJloP ' 

(3.16) 

where 'IJl~p is the solution to the steady-state equation 

1 N 
B'IJlJ.,(r, g) = - ~ Aigir) (3.17) 

41Ti=1 

and 'IJl~lt is the solution to the time-dependent equation 

where tpi., and 'IJlir may be written formally 

'IJlMr, n, 1') = ~ f A; ( r f3iB-1K 'IJlJir, n, 1") dT' 
41Ti=1 Jo 

f3iT ~ 1 B-1KB-1 , B-1 ) + - £.,IL; g; - ILi gi1', 
41T ;=1 

(3.23) 

'IJli,.(r, n) = - ~ f Ai( f3i fA j g-2KB-1g j - A;g-2gt), 
41Ti=1 41T ;=1 

and 'IJli's is the solution to 
(3.24) 

(3.18) (~ + B) tpi.(r, n, 1') = - ~ f Aif3iB-IK 'IJlJ,,(r, g, 1'), 
aT 41Ti=1 

subject to the initial condition 

'IJl~lt(r, g, 0) = fer, g) - 'IJl~p(r, g). (3.19) 

That the 'IJl~ so defined solves (3.6) subject to (3.10) 
follows immediately from the linearity of B. Since we 
have confined our attention to systems below prompt 
critical, the operator inverse to B exists and is bounded, 
and the solution to (3.17) may be written 

The operator B-1 may be found for slabs with the 
help of Case's method.12 For more complex systems 
one must generally resort to approximate representa
tions of B. Computer codes that can invert approxi
mate representations of B exist for a variety of systems, 
and the principal contribution of this analysis is to 
show how time-dependent solutions to the transport 
equations may be obtained (in the intermediate and 
outer regions) by solving several steady state problems. 

Substituting from (3.16) into (3.15) and making use 
of (3.20), we have 

CMr, g) = J:f3iK'IJl~,,(r, g, 1") dT' 

+ (f3i IAiKB-1g; - A;gi)1'. (3.21) 
41T ;=1 

The rhs of (3.7) is now known. Again, to facilitate the 
matching procedure described below, the solution to 
(3.7) is written as the sum of three particular solutions 

(3.22) 

(3.25) 
subject to the initial condition 

'IJlisCr, n, 0) = ~ I Ai (f3i IA;B-2KB-1g; - AiB-2gi ). 
41Ti=1 41T i=l 

(3.26) 

That (3.22) satisfies (3.7) subject to (3.11) is easily 
verified by operating on both sides of (3.22) with 
0/01' + B and using (3.23)-(3.26). 

Outer solution: We introduce the expansions 

'IJlIII(r, n, t) = 'IJlJII(r, g, t) + etpiII(r, n, t) + O(e2
), 

(3.27) 

CJH(r, t) = CJoII(r, t) + eCN1(r. t) + Q(e2
) 

(3.28) 

into (1.1) and (1.2), equate equal powers of e, and 
neglect terms O(e2

): 

Btp~II(r, g, t) = ~ f AiCflI(r, t), 
41Ti=1 

(3.29) 

B Ill(r n t) = ~ ~ A.CIII(r t) _ otpJII(r, g, t) 
tp1 " 4 £., • t1 , :::I' 

1Ti=l ut 

(3.30) 

(:1 + Ai) CUI(r, t) = f3i(K 'IJl!Il)(r, t), j = 0, 1. 

(3.31) 

The solution to (3.31) may be written immediately: 

CNI(r, t) = Ci~II(r, 0) exp (-Ait) 

+ f3ifexp [-Ait - t')](K'IJlyI)(r, t') dt', 

j = 0, 1. (3.32) 

Note that numerical solution of (3.30) does not 
necessitate numerical differentiation of 'IJl~II; otp~II/at 
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may be obtained in terms of "I'~II and its integrals by 
differentiating (3.29), with the result 

a"l'~II(r, Q, t) = _ J.... I Ai (W1c;01l(r, O)Ai exp (-Ait) at 471'i=1 

- f3iB-1 K "I'~lI(r, Q, t) 

+ Aif3i fexp [-Ait - t')]B-1 

X K "I'~II(r, Q, t') dt')' (3.33) 

Matching: The arbitrary functions eW(r,O) are 
fixed by the matching process. The matching is accom
plished by forcing the short-time outer solution (ex
panded in a power series about t = 0) to agree with 
the long-time inner solution. That portion of the 
solutions held in common is the intermediate solution. 
It is in determining the long-time behavior of the 
inner solution that the virtues of the decomposition 
into particular solutions becomes apparent, for the 
behavior of these solutions can be seen by inspection. 
Because the system is assumed to be below prompt 
critic;al, both 1j1~h and 1j1~s ---+ 0 for large 1'. Both 1j1~p and 
1j1~r are constant in l' and 1j1~~ grows like 1'. Moreover, 
the integral f:: 1j1~h (r, Q, 1') d1' exists because of the 
exponential decrease of 1j1~h' Making use of (3.19), we 
may integrate (3.18) over all time to obtain 

LX) f3iK 1j1~h(r, Q, 1') d1' 

= f3i KW1 fer, Q) - - :2 AjB-1glr) . (
IN ) 

471' j=1 
(3.34) 

The long-time inner solution may therefore be written 

1 N 
"I'I(r, Q, 1') c::.: - :2 AiB-1g;(r) 

471'i=1 

- AiB-1glr») ] + O( E2), l' large. 

(3.35) 

Note that the rhs of (3.35) is also the intermediate 
solution 1j1II(r, n, 1') to O(€2). The short-time outer 
solution, expanded in powers of t = €T about t = 0, 

is 
1 N 

1j1III(r Q €1') /"OJ - :2 }..B-1CIII(r 0) 
, , - 471' i=I' ,0' 

+ ~ f Ai [B-l chII(r, 0) + (1' - B-1
) 

471'i=1 

X (f3iW1KB-1 :YA.clII(r 0) 
471' j=1 1 10 , 

- AiB-1C;oII(r, 0») ] + O(€2), 

€1' small. (3.36) 

The required matching is obviously accomplished if 
we put 

Ci~II(r, 0) = g;(r), (3.37) 

CAlI(r,O) = f3iKW1(f(r, Q) - J.... f AiB- 1g;cr»). 
471' j=1 

(3.38) 

In summary, Eq. (3.1) gives a representation for 1j1 
to O( E2). The inner solution 1j11 is given by Eq. (3.4), 
where 1j1~ is obtained from (3.16) and 1j1! is obtained 
from (3.22). The intermediate solution 1j1II is equal to 
the rhs of (3.35). The outer solution 1j1III is given by 
(3.27), where 1j1~ and 1j1i are the solutions to (329) and 
(3.30). The rhs's of the latter two equations have now 
been fixed by the matching procedure, and theequa
tions may be rewritten in the following form: 

B1j1~II(r, n, t) 

= 1... I Ai (gi(r) exp (-Ait) 
471'i=1 

+ f3ifexp [-A;{t - t')](K1j1JII)(r, t')dt'), 

(3.39) 
B1j1fII(r, Q, t) 

= 1... I Ai [f3iKWI (fCr, Q) - J.... IAjB-1glr») 
471'i=1 471' j=1 

X exp(-Ait) + f3ifexp [-A;{t - t')] 

x (K 1j1fII)(r, t') dt' + AiB-1gi(r) 

x exp (-Ait) - f3 j B-1K 1j1~II(r, Q, t) 

- Aif3i fexp [-Ai(t - t')]W1K 1j1~II(r, Q, t') dt} 

(3.40) 

An interesting feature of these equations is that the 
initial condition on the precursor densities is a source 
for 1j1~II, whereas the initial condition on the neutron 
distribution function is a source only for 1j1iII. Mathe
matically, there is nothing inconsistent: 1j1iII is fed by 
eiir, and the initial condition on cgr results from the 
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delayed neutron precursors produced during the decay 
of the prompt pulse from its initial condition. The 
duration of the prompt pulse is O(E); hence, / should 
appear multiplied by E. Physically, our results make 
sense whenever / is of the same order of magnitude as 
the gi. This corresponds, for example, to initial con
ditions which result from a previously established 
steady state [add a source to the rhs of (Ll) and set 
derivatives in (Ll) and (1.2) equal to zero]. The results 
also apply whenever only one of the initial conditions is 
nonzero, since an initial condition of any magnitude 
can then be handled by scaling it before and after the 
analysis. Our results do not apply, however, to a case 
in which lis very much larger than the gi (for instance, 
if the actual density of neutrons, rather than the speed
multiplied density, is initially comparable with the 
gi). Such a case might be handled by allowing the 
initial condition on 'IjJ or Ci to be a function of E; 
thus, one might put 'IjJ(r, n, 0) = fer, n)/E. Of course, 
the perturbation analysis would then differ in its 
details from that presented above. 

Equations (3.39) and (3.40) are Volterra integral 
equations in time and are readily solved by Neumann 
series. Calculations in the diffusion theory approxima
tion indicate that only the first few terms need to be 
retained even for systems above delayed critical. Of 
course, convergence is speeded the farther the system 
is below critical and the smaller t. Note that all time 
quadratures may be performed analytically and that 
the solution of the time-dependent outer problem has 
been reduced to the solution of a number of steady
state problems. This number goes up rapidly with the 
number of iterations, but for well-subcritical problems 
the number of iterations is generally :$1 [zero itera
tions corresponding to neglecting the integral terms in 
(3.39) and (3.40)]. The number of required inversions 
of B is also greatly reduced by taking only one or two 
groups of delayed neutrons and in problems in which 
gi = 0, i = 1, ... ,N. 

Whereas the solution in the outer time domain has 
been reduced to the solution of several steady-state 
problems, it is clear that the solution in the inner 
domain still requires the solution of the monoenergetic 
time-dependent transport equation. This problem has 
been the subject of a considerable number of investi
gations,9-11.14-18 but with limited success except in the 
case of an unreflected slab. The contribution of the 
present analysis is that given a method for solving 
the time-dependent equation, such as a computer code, 
the known source terms required to introduce delayed 
neutrons are specified. The time at which the computa
tion of the inner solution can be abandoned in favor 
of the much simpler intermediate solution is well 

defined, namely when the difference between them 
goes below a preset error bound. 

In addition to providing a useful method for calcu
lating numerical solutions uniformly valid in time, the 
decomposition into inner, intermediate, and outer 
solutions makes the study of the mathematical struc
ture of the solution much simpler. Of course, there is 
no guarantee that the application of perturbation 
theory will not change this structure radically. This is 
especially true in the case of the spectra of the operators 
involved, since these are known to be very sensitive to 
small changes in the physical model in question.19 We 
shall show, however, that in at least one case this 
structure remains essentially the same as that which is 
obtained by exact analysis. In the next section, we 
shall obtain the outer solution as an eigenfunction 
expansion. It is necessary to restrict this analysis to 
the case of isotropic scattering, constant cross sections, 
and gi(r) = 0, i = 1, ... , N, in order to make use of 
the results of Vladimirov. In addition, we discuss the 
case of one group of delayed neutrons. The latter 
restriction is made for clarity in the discussion only, 
and the generalization to N groups is easy. 

4. EIGENFUNCTION EXPANSIONS 

The constant cross section, isotropic scattering 
approximation may be specified by the following 
revised definitions of the operators L, S, and K: 

L'IjJ = n . V'IjJ + ~'IjJ, 
S'IjJ = cp~ r dn'IjJ, 

41T In 
K'IjJ = ca~ r dn'IjJ = 41TCd S'IjJ, In cp 

(4.1) 

(4.2) 

(4.3) 

whHe cp and Cd are the mean number of prompt and 
delayed secondary neutrons, respectively, and ~ is the 
reciprocal mean free path for collisions of all types. 
The Hilbert space h is defined by the real inner product 

(f, g) = Ldr Ldnfg, (4.4) 

and norm II/II = (f, f)l. (4.5) 

It is easy to show that the following orthogonality 
relation is valid for appropriately normalized CPk satis
fying (2.3), with Land S defined by (4.1) and (4.2): 

(cp", Scpm) = bmn . (4.6) 

The operator S is self-adjoint, and it is unnecessary to 
consider adjoint eigenfunctions. If we subtract Scpk 
from both sides of (2.3), we obtain 

Bcpk = (Yk - l)Scpk· (4.7) 

This equation, plus the completeness of the set {Scpn} 
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in the range of S, permits the solution of (3.39) and 
(3.40) by eigenfunction expansions for the revised L, 
S, and K. 

It is convenient to work with the Laplace transforms 
of "P~II and "P~II . We use the notation 

J(p) = Loo e-P'l'(t) dt. (4.8) 

Equation (3.39) has the unique solution "P~II = 0, 
since gi = O. The Laplace transform of (3.40) (by use 
of the fact that "P~II = 0) is 

Bip~II(r, n, p) 

= A{JCd (1- SB-1j(r, n) + (Sip~II)(r, P»). 
cp(p + A) 47T 

(4.9) 

We have stated that the set {lPn} are not complete in h 
(see Davison20 for a simple proof); nevertheless, ip~II 
can be represented as an expansion in the IPn' To see 
this, we note that the rhs of (4.9) is a function of rand 
P only and call it F(r, p). Then 

(4.10) 

and, since the rhs of (4.10) is also a function ofr and 
p only, we can expand in the SlPn: 

00 

LippI = 2,Ynan(p)SlPn' (4.11) 
n=1 

where 
(4.12) 

The operator L-l exists as a bounded transformation 
of h to h. The solution to (4.11) is thus 

00 

-III ~ - ( ) "PI = k an P IPn' (4.13) 
n=1 

Substituting from (4.13) into (4.9), using (4.6) and 
(4.7), we can solve for the an: 

_ () A{JciSB-
1
j, IPn) ( + 1 A{JCd )-1 an p = p II. - • 

47TCp(Yn - 1) cp(Yn - 1) 
(4.14) 

Applying the inverse Laplace transformation to (4.13), 
we obtain 

"P~IT(r, n, t) 
= A{JCd i (SB-

1j, IPn) 

47TCp n=1 Yn - 1 

x exp [-A(l - {Jcd )t]9?n<r,n). (4.15) 
cp(Yn - 1) 

5. DISCUSSION 

The Yn are a sequence of real numbers that increase 
with n and have no finite accumulation point. B There
fore, the an(p) have poles which accumulate at -A 
with increasing n. This behavior has been noted in the 
exact analysis of this problem in slab geometry.21.22 
In addition, comparison of the eigenvalues 

-A(1 - {Jca/cp(Yn - 1» 
with the "delayed eigenvalues" predicted by the exact 
analysis in slabs for a variety of cases indicates that 
these numbers are essentially exact. 7 

The solution (4.15) complements the Neumann 
series solution to the original Volterra equation in the 
sense that, for systems near critical, the series (4.15) 
may be well approximated by the first mode, whereas 
several terms may be needed in the Neumann series. 
The practical value of this observati'on is not great, 
however, since, when the system is too near prompt 
critical, the perturbation method itself breaks down. 
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The implications of weakening the axiom of local commutativity to a condition of exponential decrease 
are studied. A strong operator limit on the behavior of the commutator for large spacelike separations 
leads to fields which are almost local in the sense of Haag. A further condition on the spatial behavior 
of matrix elements of the commutator is introduced, which leads to analyticity of the elastic scattering 
amplitude at fixed momentum transfer in a striplike region in the complex-energy plane. 

I. INTRODUCTION 

In most discussions of quantum-field theory from 
an ~xiomatic point of view, it is assumed that field 
operators defined at two points of space-time commute 
(or anticommute) if the separation between the points 
is spacelike. This assumption-the axiom of local 
commutativity, or microcausality-can be justified by 
the plausible argument that fields at spacelike sepa
rated points should be simultaneously measurable. 
However, in the absence of a consistent theory of 
measurement with a physical interpretation of the 
results of such measurements, the argument is not 
compelling. Furthermore, even for measurable fields 
there is no experimental evidence excluding precursor 
effects in the very small spacelike region. From a 
practical point of view, local commutativity has 
proven to be a very powerful tool with important 
consequences for the analytic properties of vacuum 
expectation values of products of field operators l 

and of scattering amplitudes in theories with an 
appropriate asymptotic condition. It is the purpose 
of this paper to explore the consequences for the 
latter of a weakening of local commutativity to a 
condition of exponential decrease. 

We will treat a model field theory consisting of a 
single Hermitian scalar field A(x) describing particles 
of nonzero mass m: We make the usual assumptions,2 
omitting only the local commutativity axiom; namely: 

(a) In order to satisfy the requirements of ordinary 
quantum mechanics, we assume that the physical 
world is represented by a Hilbert space of physical 
states. The field A(x) is then considered to be an 
operator-valued distribution defined on a dense 
subset of this space. 

(b) The requirements of special relativity are met 
by assuming that the inhomogeneous Lorentz group 
is represented on the Hilbert space by a group of 
unitary operators U(a, A) and that the field trans-

forms according to the rule 

U(a, A)A(x)U-l(a, A) = A(Ax + a). 

(c) To insure the absence of states in the Hilbert 
space with unphysical energy momentum, we con
sider the spectrum of the momentum operator pl'. 
As is well known, this is the generator of translations; 
i.e., 

U(a, I) = exp (iP . a), 

where a is any 4-vector. We assume that the Hilbert 
space contains a unique state 10) invariant under all 
Lorentz transformations. This, of course, implies 

PI'IO) = O. 

The state 10) will be interpreted as the "vacuum" or 
no-particle state. On all other states of the Hilbert 
space we require that the spectrum of pI' include only 
timelike momenta with positive energy. Furthermore, 
the spectrum of 

contains on these states only a discrete contribution 
at m2 and a continuum beginning at 4m2• The inter
pretation of these states is clear: Those with p2 = m2 

are I-particle states, and those with p2 ~ m2 contain 
two or more particles. 

In Sec. II, we introduce a condition of strong 
spacelike exponential decrease for the commutator 
[A(x), A(x')]. We show that this implies the field is 
almost local in the sense of Haag.3 This allows us to 
apply the result of Hepp4 and introduce the asymp
totic condition of Lehmann, Symanzik, and Zimmer
mann5 which leads to the usual reduction formulas. 
In Sec. III, it is pointed out that the strong commutator 
condition is insufficient in itself to imply analyticity 
of the scattering amplitude, and a further condition 
of weak spatial exponential decrease is developed to 
remedy this. The method of Bremermann, Oehme, 

1750 
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and Taylor6 is then applied in Sec. IV to give an 
analytic continuation of the scattering amplitude 
for fixed momentum transfer into a striplike region 
in the energy-variable plane. 

II. STRONG SPACELIKE DECREASE 

The condition of local commutativity will be 
replaced by the condition that the commutator 
decrease exponentially in the spacelike region. More 
precisely, let u be a dimensionless 4-vector, normalized 
so that u2 = -1. Then we require that there exist 
some positive number M, such that 

lim eIlR[A(x + Ru), A(x')] = 0, (1) 
R-+oo 

for all fl < M, where R is a parameter with the 
dimensions of length. The limit in (1) is to be taken 
in the strong operator sense, and we will refer to the 
condition as one of strong spacelike decrease. 

We wish to show that fields obeying (1) are almost 
local in the sense of Haag.3 Almost-local fields obey 
a condition on the spacelike asymptotic behavior of 
the truncated vacuum expectation values. The latter 
are formed from the usual vacuum expectation values 
by subtracting out contributions due to vacuum 
intermediate states in a symmetric way.' To get an 
explicit statement of the spacelike asymptotic con
dition, let us define 

T(x + a) = (01 A (Xl + al) ... A(xn + an) 10h, 

where the subscript T indicates truncation. Next define 

F.p(a) = J dx c/>(x) T(x + a), 

where c/>(x) is a test function defined on 4n-dimen
sional space and dx = dXl ... dxn. Let the ai be 
purely spatial; i.e., 

ai = (0, a i ). 

Then the spacelike asymptotic condition takes the 
form 

undergoes space1ike displacement; i.e., all the a; are 
zero but one. In particular, define 

F.p(a) = J dxc/>(x) (01 A(XI + a)A(x2)' •• A(xn) 10h 

and 

G.p(a) = J dxc/>(x) (01 A(X2) ... A(xn)A(xl + a) 10h· 

We first prove the following lemma. 

Lemma: For any positive integer N, 

lim laiN [F.p(a) - G.p(a)] = 0. 
lal-+oo 

Proof: First note that 

F .p(a) - G.p(a) 

= J dxc/>(x) (01 [A(xl + a), A(X2) ... A(xn)] 10h· (3) 

The commutator may be expanded: 

n 

= IA(x2) ... A(xj-l)[A(Xl + a), A(xj)] 
i~2 

x A(XHl) ... A(xn). 

Every commutator appearing in this expansion will 
involve fields at spacelike separated points if 

[(Xl - Xj) + a]2 < 0, j = 2,3, . \. ,n. 

Define the Euclidean norm: 

II xj l1 2 = (X~)2 + IXjI2. 

Then (4) will be satisfied if 

Ilxl - xj l12 < t lal2 

and, consequently, if 
n 

IIxI12 == I IIx j l1 2 < t lal2. 
j~l 

(4) 

limANF.p(a) = 0, (2) Indeed, this last condition implies 
).-+ 00 

for any positive integer N, where A is the diameter of 
the configuration of the ai . The limit must be taken in 
such a way that the relative positions of the ai within 
the configuration are left unaltered.8 Ruelle8 and 
Araki, Hepp, and Ruelle9 have demonstrated that 
strictly-local fields are almost local. 

In order to avoid introducing the cumbersome 
notation required for dealing with the most general 
case, let us consider here an n-fold truncated vacuum 
expectation value, wherein only one of the fields 

[(Xl - Xj) + a]2 < -t lal2. 

We may write the integral on the right-hand side of 
Eq. (3) as a sum of two parts. One part is the integral 
over the exterior of the hypersphere \lxll = t lal. 
Ruelle, in his proof for local fields, shows that this 
must decrease more rapidly than any power of lal, 
as lal----)o 00. The remainder is the integral over the 
interior of the hypersphere, which is identically zero 
in the case oflocal fields. In our case, the strong space
like decrease of the commutators involved in the 
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expansion of the integrand is sufficient to give rapid 
decrease of the integral with increasing lal. 

We can now proceed exactly as Ruelle does to show 
that the lemma and the spectral conditions of the 
theory imply 

lim laiN F",(a) = O. (5) 
lal-+oo 

Let us introduce a sum over intermediate states into 
the definition of F",(a): 

F ",(a) = IfdX¢(X) (01 A(Xl + a) I(X) 
la> 

X «(XI A(X2) ... A(xn) 10). 

It must be remembered that the matrix elements 
appearing here have had vacuum intermediate states 
subtracted out. Translation invariance immediately 
reduces the right-hand side to 

f dx¢(x)e-iPa,(",+al (01 A(O) I (X) «(XI A(x2) ... A(xn) 10). 

If we define the partial Fourier transform of ¢(x) by 

~(p, X2, ... , xn) = f dXle-iP'Xl¢(x), 

then 

F",(a) = L fdX2'" dXn~(Pa' x2,···, xn)eiPa·a 
la> 

X (01 A(O) I(X) «(XI A(x2) ... A(xn) 10). (6) 

The spectral conditions require that either Pa = 0 or 
p~ > 0 and p; 2 m2• The first of these alternatives is 
ruled out because the truncated vacuum expectation 
value has no vacuum intermediate states and hence 
I(X) cannot be 10). Let us define the test function 

ip(p, X2, ... , xn) = h(P)~(P, X2, ... , xn), 

whereh(p) = 1, for pO > Oandp2 2 m2
, buth(p) = 0 

outside the forward light cone. Equation (6) and the 
spectral conditions imply 

Fop(a) = F",(a). (7) 

The lemma requires that 

lim laiN [Fop(a) - Gop(a)] = 0; (8) 
lal-+oo 

so let us examine Gop (a) more closely. With the 
introduction of a sum over intermediate states, we 
have 

G,.,(a) = L fdX2'" dXnVJ(-Pa, x2 ,···, xn)e-iP",·a 
la> 

X (01 A(x2) ... A(xn } I (X) «(XI A(O) 10). 

Since p~ > 0, by the spectral conditions, we must have 

and hence Gop(a) = O. Inserting this result and Eq. 
(7) in Eq. (8) proves Eq. (5), which is the desired 
spacelike asymptotic condition for the case at hand. 

The general case follows from an extension of the 
arguments above. In the most general case, all fields 
in the n-fold truncated vacuum expectation value 
may be undergoing displacement. We consider all 
partitions of the displacements into two subgroups 
and choose that partition which maximizes the dis
tance between the subgroups. We define Fia) as 
above, and let G",(a) be the same except for having a 
different permutation of the fields, the permutation 
being chosen so as to keep the same relative order of 
the fields within the two subgroups. The expansion 
of F",(a) - G",(a) involves only commutators between 
a field in one subgroup and a field in the other. As in 
the special case treated above, the expression may be 
divided into two parts. One is an integral over the 
exterior of a hypersphere whose radius tends to infinity 
as the displacements tend to infinity. This integral 
vanishes faster than any power of the diameter of the 
configuration, as shown by Ruelle. The other part is 
an integral over the interior of the hypersphere and 
involves only commutators of fields at points which 
are separated by spacelike 4-vectors which grow as 
the diameter of the configuration is increased. The 
strong spacelike decrease of these commutators is 
sufficient to damp the integral faster than any power 
of the diameter of the configuration. By transforming 
to momentum space and using the support properties 
given there by the spectral conditions, we can always 
find some "p such that (7) is true and for which 
Gop(a) = O. Thus, fields obeying Eq. (1) are almost
local fields. 

The significance of this identification is that we 
may now employ the result of Hepp4 to define 
asymptotic fields and apply the Lehmann, Symanzik, 
and Zimmerman5 (LSZ) reduction technique. The 
reduction formula for the Lorentz-invariant scattering 
amplitude is 

T(Pl, P2; Ps, P4) = if d4xeiPl'''{8(xO) (P21 [j(x), j(O)] Ips) 

+ b(xO) (p21 [AO(x),j(O)] Ips>}' (9) 

In Eq. (9), j(x) = (0 + m2)A(x) is the usual current 
operator, and AO(x) = oA(x)/oxo• Since the fields 
under consideration here do not have a vanishing 
spacelike commutator, the right-hand side of (9) is 
not manifestly covariant. However, T is covariant; 
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thus we will assume that any apparent lack of covari
ance cancels out on integration. We also ignore the 
possible difficulties associated with the multiplication 
of the matrix elements by step functions such as O(XO). 
HepplO has investigated cases in which ambiguities 
due to this point can be avoided, and we simply assume 
the same is true in all cases treated here, while recog
nizing the fact that it may be technically very difficult 
to justify this assumption even if it is correct. 

An additional reduction formula we will need for 
our later discussion is 

where 

gra( kl' "2' ka) 

= . ± f d4XI d"x2 d4Xaei(kl''''1+k2''''2+k3''''3) 
t,1=1 

x plxO)p;( -XO) (01 [Bi(ixI + txa),j( -tXI + Xa)] 

X [B;( -!X2 - ixa),j(!X2 - iXa)] 10), 

where 

and 

pbO) = O(XO), P2(XO) = <5(XO), 

BI(x) = j(x), B2(X) = AO(x), 

kl = teP2 - PI), k2 = tePa - p,,), 

ka = t(PI + P2)· 

Equations (9) and (10) are the starting point for the 
analytic continuation of the scattering amplitude. As 
we discover in the next section, however, strong 
spacelike decrease is insufficient in itself for this 
purpose. 

III. WEAK SPATIAL DECREASE 

Using the transformation properties of the fields 
under displacements, we can rewrite Eq. (9) in the 
form 

T(PI' P2; Pa, P4) = if d4xei1Jl·"'ei(1J2-1J3)·t., 

X {O(xo) (p21 U(tx),j( -!x)] IPa) 

+ <5(XO) (p21 [AO(!x),j( -tx)] IPa)}· 

We evaluate the right-hand side of this expression in 
the "brick wall" reference frame defined by 

PI = (£0,11 + pe), Pa = (Ed, 11), 

P2 = (Ed' -11), P4 = (£0, -11 + pe), 

where 
lel=l, e·I1=O, p2=w2 _E!, 

E! = 1l.2 + m2
• 

Now 

Pl· x + (P2 - Pa)· tx = (PI + P4) . tx 
= WXO - pe· x. 

Thus we have 

T(PI' P2; Pa, P4) = j f d"xei(.,,,,o-pe.x) 

x {O(XO) (P21 U(tx),j( -tx)] IPa) 

+ <5(XO) (P21 [AO(tx),j( -tx)] IPa)} 

== Mr(w, /).2), 

where the subscript r refers to the presence of retarded 
commutators in the integrand. Following Bremer
mann, Oehme, and Taylor,6 we introduce a new 
parameter fJ and define a generalized amplitude 

Mr(w, /),,2, fJ) = if d"x exp {i[wxO - (£02 - fJ)~e. xl) 

X {O(XO) (p21 UUX),j( -tx)] IPa) 

+ <5(XO) (p21 [AO(tx),j( -tx)] IPa)}. 

(11) 

In the case of local fields, the integrand is nonzero 
only in the forward light cone. In our case, we will 
write it as the sum of two parts: a "temporal part," 
involving an integral over the forward light cone, 
and a "spatial part" consisting of the remainder. The 
arguments used for local fields give an analytic con
tinuation of the temporal part M; into the region 

{(w, fJ) I 1m £0 > 1m (£0 2 
- fJ)~}· (12) 

The branch of the square root has been chosen so 
that the imaginary part is nonnegative. The usual 
assumption that the integrand is a tempered distribu
tion also implies that the temporal part is of at most 
polynomial increase as 1£01---+ 00 inside the specified 
region. For fJ real and negative, we have a continua
tion to the entire upper-half w-plane. 

The spatial part M; has no continuation to values 
in the region (12). The difficulty arises in the fact that 
the exponential damping of the commutators can 
only give convergence inside a hyperboloid x2 < -a2• 

The integral, however, includes an infinite volume 
outside this hyperboloid, in which the explicit ex
ponential factors are increasing for £0 and fJ in (12). 
What is needed, evidently, is for the integrand to 
provide exponential decrease with increasing lxi, 
independent of xO. 

A condition such as suggested above clearly lacks 
manifest covariance. For this reason, it could not be 
stated in the form of a strong operator limit on 
the commutator without a strong presumption that the 
latter would violate the Lorentz invariance of the 
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theory. However, there seems no such objection to 
stating such a condition on matrix elements of the 
commutator, that is, in terms of a weak operator 
limit. The matrix elements of the commutator must 
involve state vectors which themselves are not 
Lorentz invariant, with the exception of the vacuum 
state. The vacuum state can give no difficulty, for it 
is well known that the vacuum expectation value of 
the commutator vanishes for spacelike separation as 
a consequence of the other axioms even when local 
commutativity is not assumed. Hence, the commuta
tor, as an operator, could extract coordinate-system
dependent information from the state vectors involved 
in its nonvanishing matrix elements. 

As an example of what is meant here, consider the 
matrix element 

F(x,p) = (01 [A (x) , A(O)] Ip), 

where Ip) has 4-momentum (E, p). Lorentz invariance 
requires only that F(x, p) be a function of the invari
ants X2, p2, and x . p. Suppose that for spacelike x, 

F(x, p) = ef (x,1J), 

where 
j(x, p) = X2p2 _ (x . p)2. 

Maximizingj over spacelike values of x gives 

j(x, p) S -(E - IpJ)2IxI2. 
Thus 

lim e*IF(x, p) = 0, 
Ixl-+ 00 

for any /-t, and the limit is uniform in XO (provided 
XO < Ix!). 

A condition appropriate for our purposes is the 
following. Let <I> and '¥ be any two states in the 
domain of the field operator, and let u be a dimen
sionless spacelike 4-vector with lui = 1. Then we re
quire that there exist some positive number M, such 
that 

lim ellR (<I>I [A(x + Ru), A(x')] I'¥) = 0, (13) 
R-+oo 

for all /-t < M. We require the limit to be uniform 
with respect to uO; it is this requirement that intro
duces a lack of manifest covariance and which gives 
the desired exponential decrease with increasing 
spatial displacement. We will call (13) the condition 
of weak spatial decrease and require that derivatives 
of the commutator obey the same condition. 

With Eq. (12) we can now obtain a continuation 
of the spatial part M; to the region 

{(w, {J) 11m w ~ 0, 1m (w2 + {J)t < M}. 

In particular, we see that this includes 

{cw, {J) I wE D+C6.2
, <5), r: E Sp(<5)}, (14) 

where 

D+(6.2 , <5) 

= {w = WI + w 2 1 4M2 + 4M2( w~ - w~ - E1 - <5) 

> 4w~w~ + 41wIllw21 b + b2; W2 ~ O} (15) 
and 

Sp(<5) = {{J I -R < Re {J < E1 + b; 

11m {JI < b; R > O}. (16) 

For our later discussion we will want the entire real 
axis to lie in D+(6.2

, b), so we impose the restrictions 

M> E tl , 1151 < 2M(M - E tl ), (17) 

where M; will be of at most polynomial increase as 
Iwl---+ 00 inside the region defined by Eqs. (14)-(16). 
For simplicity, we assume that both M; and M: 
actually vanish as Iwl---+ 00, and the more general case 
follows from this one by the usual subtraction 
technique. 

Consider {J real and in Sp(b). Then we can write an 
integral representation for Mr(w, 6.2 , {J) by deforming 
the contours of Cauchy integral representations of 
M; and M;. The result is 

M ( 6.2 R) __ 1_ f+ OOd I Mr(w\ 6.
2

, {J) 
r W, ,t' -. w I 

2'1Tl -00 W - w 

1 1 d I M;(w\ 6.
2
, {J) +- W I • 

21Ti 0+ w - w 

The contour C+ in the second integral is the upper 
boundary of D+(6.2 , b). The representation holds for 
win D+(6.2 , b). 

We now define functions M~ and M! as the spatial 
and temporal parts of Miwa , 6.2 , (3), which is defined 
by the replacement O(XO) ---+ -O( -XO) in (11). The 
a refers to the advanced commutator which this 
introduces. By the same reasoning as used for M r , 

we find 

Ma(w, 6.2, (3) ;:: ~ f-tr
OO

dwl MaC~\ 6.
2

, (3) 
21Tl -00 W - W 

+ _1_ r dwi M!(w\ 6.
2

, (3) 
21Ti Jo_ W

l 
- W ' 

for w in D_(6.2 , b), which is the reflection of D+(6.2 , b) 
in the real axis. C_ is the lower boundary of D_(;j.2, b). 

Let us consider the absorptive part of the amplitude, 
defined by 

A(w, ;j.2, {J) 

= 1. lim [Mr(w + iE, 6.2
, {J) - Ma(w - iE, 6.2, (3)] 

2"-+0 

= t f d4x exp {i[wxO - (w2 - {J)!e. xl} 

X (P21 [j(lx),j( -tx)] Ips), (18) 
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If we insert a sum over a complete set of states, make 
use of translation invariance, and do the integral in 
(18), we find 

A( w, ,:l2, ~) = !(21T)4 I (P2\j(0) I IX) (IX\j(O) IPa) 
la> 

x {b(Pa - Q - tp2 - iPs) 

- b(Pa + Q - tp2 - tPs)}, 

where Q = [w, (w2 
- ~)te]. 

Since IIX) must be at least a I-particle state, with 
p; ~ m2 , we have A(w, ,:l2, ~) = 0, provided ~ < 
_,:l2 and Iwl < -(~ + ,:l2)j2EX. Thus, we really 
have a single analytic function M(w, ,:l2,~) repre
sented by M" when 1m w > 0, and by M a , when 
1m w < O. M(w, ,:l2, ~) itself has the integral repre
sentation 

M(w, ,:l2, ~) = .! 1+00 

dw l A(w
l
\ ,:l2, ~) 

1T -00 W - W 

lId I M;(w\ ,:l2, ~J + - w ---,.:c-~-,-,-,-

21Ti c+ WI - W 

lId I M~(w\ ,:l2, ~) +- WI' 
21Ti c_ w - w 

Again following Ref. 6, we define 

p(k2, ~ _ ,:l2, ,:l2) 

(19) 

= !(21T)4 I (P2\j(0) IIX) (IX\j(O) Ips) b(k - PIX) 
IIX> 

and write the spectral representation 

A(w, ,:l2, ~) = f dk2p(k2
, ~ - ,:l2, ,:l2) 

X {b(k2 - ~ - E1 - 2wE,!) 

- b(k2 - ~ - E1 + 2wE,!)}. 

The spectral conditions applied to the state IIX) 
require p; = m2 or p; ~ 4m2 , so that 

p(k2, ~ - ,:l2, ,:l2) = 1Tm2g2(~ - ,:l2)b(k2 - m2) 

+ O(k2 - 4m2)a(k2, ~ - ,:l2, ,:l2). 

Inserting this into Eq. (19) gives 

M(w, ,:l2,~) 

g2(~ _ ,:l2)h(~, ,:l2) 
= 

where we have defined 

and 
wP(k) = (k2 - E1 - ~)/2E",. 

The lower limit of the integral over the cut has been 
shifted by a change of variables, so as to be inde
pendent of ~, for 

wp(2m) + ~j2E", = (4m2 - E1)/2E",. 

In summary, the representation (20) is valid if w 

lies in the region bounded above by C+ and below by 
C_, with cuts from ±wp(2m) to ± OC! on the real axis, 
if the restrictions (17) are imposed. To make use 
of this representation, we will need to explore the 
analyticity of the spectral function in ~. 

IV. ANALYTICITY OF THE SCATTERING 
AMPLITUDE 

In the last section, we introduced a representation 
for the function M(w, ,:l2,~) which explicitly exhibits 
its analyticity in a portion of the w plane. The next 
step in demonstrating analyticity of the scattering 
amplitude consists of continuing this representation 
in the variable ~ back to the physical value E1. 
It is sufficient for this purpose that the integrands in 
(20) be analytic in the strip SP(b) defined by Eq. (16). 
The required analyticity of g2(~ - ,:l2) follows from 
this by arguments essentially those of Ref. 6. We 
have already shown in Sec. III that M: and M! have 
the required analyticity in ~. We now demonstrate it 
for the spectral function. 

Since k 2 ~ m2 , we may write 

(k2 _ m2)a(k2, ~ _ ,:l2, ,:l2) 

where 

= (k2 _ m2)p(k2, ~ _ ,:l2, ,:l2) 

= (k
2 

- m2)A(PI + P4' P2, Pa), 

A(PI + P4' P2' Ps) 

= if d4xei
(Pl+P4)'tx (P21 j(tx)j( -tx) IPa)· 

Applying the reduction formula (10), we have 

A(P1 + P4,P2'PS) = 16gra(k l , k2' ka)· 

The subscripts r, a refer to the presence of a retarded 
commutator in Xl and an advanced commutator in 
X 2 in the integral defining gra' We now define analo
gous functions grr' gaa' and gar by the indicated 
replacements O(xO) +-+ - O( - XO) in the definition 
of gra' 
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The spectral conditions imply a number of "joining" 
properties of the gii' These are given in Ref. 6 and are 

gri - gaj = 0, for (kl + ka)2, 
and 

(k l - ka)2 < 4m2
; 

gi, - gla = 0, for (k2 + ka)2, 
and 

(kz - ka)2 < 4m2; 

gii = 0, for k~ < m2 or k~ < 0. 

Let ka = (t,O) with t ~ m real. Then the repre
sentation for gra plus the condition of weak spatial 
decrease defines a function analytic for 

Similarly, gaa is analytic for 

(1m k~) < -11m kll, 11m kll < M. 

Thus, as functions of kl , gra and gaa define a function 
analytic in a "flattened wedge" given by 

W, = {k l 111m kll < min (11m k~l, M)}. 

The joining property for fixed t gives us an "E
limiting" property on the set 

E = {kl I 1m k] = 0, (Re kl ± t)2 < 4m2}. 

Simply stated, this means that if p is in ~, ~hen 
gra(kl , k2' t) and gaa(kl' k2' t) have the s~me lImIt.as 
kl approaches p along paths in the respectIve domams 
of analyticity. 

Consideration of the functions gar and grr leads to a 
similar result in the variable k 2 • So we actually have a 
function g(k] , k2' t) for each fixed t ~ m, analytic in 
W X W with an E-limiting property on the set 

f , " h E x E. By virtue of the "edge-of-the-wedge t eo-
rem,n g(kl' k2' t) will also be analytic in a neighbor
hood of Ex E. 

By Lorentz invariance, we can express g as a 
function of invariants only. Using the notation of 
Ref. 6, we define 

where 

ZI = (kl + ka)2 = P~, Z2 = (k2 + k3)2 = pL 
) 2 2 _ (k k )2 _ 2 

Z3 = (kl - k3 = Pl. Z4 - 2 - 3 - P4. 

Z5 = (kl - k~)2 = (PI - p,)2, 

and Z6 = 4k~ = 4t 2 • Then we have the following: 

Theorem: Considered as a function of the five com
plex variables Zl' ••• , Z5' the function X(ZI' ••• , Z6) 

is analytic for each real t ~ m in the region 

{Zl' ... , zollz1,2 - m21 < <5, IZ3.4 - yl < <5, 

Izs + 4~21 < <5}, 

for all real y such that - R ~ Y ~ m2 and ~ < ~max' 
To satisfy (17), ~max can be no larger than (M2 - m2)!. 
We will find a further restriction on its value in the 
course of indicating the proof of the theorem. Note 
that 

!CPt + P4)2 = !(Z3 + z,) - !Z5' 

Thus the theorem implies that the spectral function is 
analytic for all (3 satisfying 

1(3 - y - ~21 < tb, 

which includes the strip defined by (16). 

Proof of the theorem: We must show that for 
Zl = Z2 = m2 , Za = Z4 = y, Zs = _4~2, and Z6 = 4t 2 , 

we can always find kl , k2 in the domain of analyticity 
of g(kl' k2' t). We have 

k~ = k~ = (m 2 
- y)/4t, 

kl = p(t, y)e1 + ~e2' and k2 = pet, y)el - ~e2' 

where 

( 
m2 - y)2 2 

ei • ei = bij and p2(t, y) = t + -4-t- - E4 • 

If we have p2(t, y) > -15'2, then 

11m kil < J and (Re k? ± t)2 - IRe ki l2 ~ m2
• 

But this means that if J is sufficiently sm~ll, kl and k2 
will be in a small neighborhood of the set E x E, 
where g(kl' k2' t) is analytic by virtue of the edge-of
the-wedge theorem. We can see that ~2 < Jz guaran
tees this; so for sufficiently small momentum transfer 
the theorem holds. To continue to larger ~2, we use 
the semitube method as developed by Bremermann.12 

First note that, for p2(t, y) positive, we have analyt
icity via edge of the wedge, as indicated above. In the 
(t, y) plane, the curve p2 = ° is as shown in Fig. 1. 
Since we need only consider y ~ m2 and t ~ m, the 
shaded region in the figure is all that remains to be 
accounted for. As shown in Ref. 6, for ~2 < 3m2 and 
m ~ t ~ E 4' the set E contains the set 

E' = {k I 1m k = 0, IRe kl < 00, IRe kOI < '¥J(t)}, 

with rJ(t) = 2m - t. Applying Bremermann's theo
remla for rJ < M, we have that g(kl' k2' t) is analytic 
in the semitube domain Ho x Ho, where 

Ho = {k I kO E B, 11m kl < v(kO), IRe kl < oo} 

and where B is the kO plane cut from ± rJ to ± 00. The 
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r 
p2 = 0 

FIG. 1. Region in the (Y. t) plane not covered by the edge-of-the
wedge theorem. 

function v(kO) is 

max {H1] - IRe k°J), min (11m kOI, M)}. 

The holomorphy envelope of this domain is H X H, 
where 

H = {k I kO E D, 11m kl < V(kO), IRe kl < oo} 

and V(kO) is the smallest superharmonic majorant of 
v(kO).14 We find 

V(ko) = 2M 1m cosh-1 (COSh (1Tk
O
/2M») , 

1T cosh (1T1J/2M) 

11m kOI < M, 
= M, Ilmkol > M. 

If for kl and k2 we have 

IRe kOI < 1](t) 

and 
11m kl < V(kO) , 

then g(kl' k2' t) is analytic. The first condition is 
simply (m2 - y)/4t < 2m - t, which is fulfilled for 
all y and t in the shaded region of Fig. 1, if E 4 < 2m. 
Now, 

Imkl = Imk2 = [E!- (t + m24~ yrr, 
so the second condition implies 

2M tan-1 [(COSh
2 

[1T(2m - t)/2M] - I)!] 
1T cosh2 [1T(m 2 

- y)/2M] 

- [E! - (t + m2;; y)]! > O. 

The left-hand side of this is always greater than 

(2M/1T) tan-1 [sinh 1Tm/2M] - /::,., 

for t and y in the shaded region. Thus, if we take 

/::"max ~ (2M/1T) tan-1 (sinh rrm/2M), 

then the theorem holds. Combining this with the 
restriction from (17), we have 

Llmax = min {(M2 - m2)!, 2: tan-1 (Sinh ;:)}

(21) 
A plot of /::"max/m vs M/m is given in Fig. 2. 

The theorem gives us the analyticity needed to carry 
out a continuation of (20) to the physical value of (3, 
but we stiII need to show that the spectral function 
retains its temperateness in the relevant part of the 
envelope of holomoTf;hy. This step was omitted in 
Ref. 6 and is implicit in modern proofs of dispersion 
relations for local fields. However, the author has 
demonstrated that the necessary extension of tem
perateness can be carried out in the Bremermann, 
Oehme, and Taylor framework,1s and essentially the 
same arguments go through in the present case. 

With the analyticity demonstrated above, the details 
of the continuation of (20) to (3 = El are as in the 
local case and need not be repeated here. We find a 
continuation into the domain D(/::,.2, b) = D+(/::,.2, b) U 

D_(/::,.2, d) except for the usual cuts and poles on the 
real axis, where 15 is a small but otherwise arbitrary 
parameter. If we define 

D(/::,.2) = {w I (1m W/M)2 < 1 - E!/(M2 + Re ( 2)}, 

(22) 

then we see that every interior point of D(/::,.2) lies in 
some D(/::,.2, b). Thus our result may be summarized 
as follows: 

The elastic scattering amplitude may be analytically 
continued into the domain D(/::,.2) except for cuts 

AMAX --m 

I 
I 

I~ ---~-------------- -

0.5 

I 
I 

I 

OLI---------2L-------~3L--

FIG. 2. Variation of .1.max with M. 

M 
m 
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1m .. 

5 
----- ----------------~ 

4 

____________ ~~t_*-~------------Re .. 
1.5 3 

FIG. 3. The domain D{~2) for M = 5, m = 3. and 
~ = 0 (forward scattering). 

running from ± (m2 - 1);.2)/ E A to ± 00 and poles at 
±(EA - m2/2EA ), provided that M < m and I);. < 
I);.max, where I);.max and D(1);.2) are defined by Eqs. 
(21) and (22). For an example ofa domain D(1);.2), see 
Fig.3. 

In determining the domain of analyticity of the 
scattering amplitude we made use of the analyticity 
of the absorptive part in several complex variables. 
To make maximum use of this analyticity, we would 
need to know the envelope of holomorphy of the 
primitive domain constructed from the spectral 
conditions, the condition of weak spatial decrease, 
and Lorentz invariance. Instead, we have employed 
the semitube method which gives only a subset of the 
envelope of holomorphy. In the local field case, 
extending the domain of analyticity further into the 
holomorphy envelope permits the proof of dispersion 
relations for larger I);. and eventually for I);. < 2m. It 
seems reasonable, if somewhat less than urgent, that 
we might be able to prove analyticity in our case for 
I);. larger'than the I);.max of Eq. (21); the present result 

should be considered a minimum of analytic continua
tion. 
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Unitary irreducible .re~resentations of th~ group SL(3, C) ~re obtained i.n an SU(3) basis. The principal 
nondegenerate and prIncipal degenerate serIes of representatIOns are considered, and the matrix elements 
of the generators are worked out by the use of expansion formulas expressing them as functions of the 
generators of the. group SU(3) ~ T8 • The forms of the Casimir operators of SL(3, C) and their values in 
these representations are also given. 

INTRODUCTION 

The purpose of this paper is to obtain in explicit 
form the unitary irreducible representations (VIR's) 
of the noncompact group SL(3,C) in a basis made up 
of vectors belonging to finite-dimensional VIR's of 
the maximal compact subgroup SU(3). We concern 
ourselves only with the principal nondegenerate and 
the principal degenerate series of VIR's of SL(3, C), 
and not with the supplementary series.! Furthermore, 
we deal only with the problem of obtaining the matrix 
elements of the generators of the Lie algebra of 
SL(3, C) in the above-mentioned basis and do not 
deal with finite elements of the group. 

The most severe difficulty that one faces in trying to 
solve the problem outlined above is the problem of 
internal multiplicity. In general, a VIR of SL(3, C) 
contains a given finite-dimensional VIR of SU(3) 
several times. The difficulty lies in the choice of state 
labels that take account of this multiplicity and serve 
to distinguish the several occurrences of one VIR of 
SU(3), and then in evaluating the dependence of the 
matrix elements of the generators on these labels. 
Such problems are present for many families of semi
simple noncompact Lie groups.2 In a previous paper, 
we outlined a method by which these problems can be 
solved in the case of SL(3, C).3 The group SL(3, C) 
can be related via group contraction to the group 
SU(3) X Ts which is also noncompact but not semi
simple. For suitably related VIR's of these two groups, 
the rules for reduction under SU(3) turn out to be 
identical. In the case of the representations of SU(3) x 
Ts , an elegant and simple method exists for choosing 
labels to take care of the multiplicity problem as well 
as for evaluating the generator matrix elements.4 In 
the paper referred to above, we showed that, in both 
the principal nondegenerate and the principal degen
erate series of VIR's of SL(3, C), the generators of 
SL(3, C) are written as polynomial functions of the 
generators of suitably chosen VIR's of SU(3) x Ts , 
and we refer to these formulas as expansion formulas. 
Thus, by combining the known methods for setting up 

VIR's of SU(3) x Ts with the previously derived 
expansion formulas, we obtain the VIR's of SL(3, C) 
in an SU(3) basis. 

Section I contains a brief description of the Lie 
algebras of SL(3, C) and SU(3) x Ts , the correspond
ing Casimir invariants, and the classes of VIR's of 
these groups that we are interested in. We also write 
down the expressions for the matrix elements of the 
SU(3) x Ts generators, describe the correspondence 
between the VIR's of SL(3, C) and SU(3) x Ts as 
revealed by the common SU(3) reduction character
istics, and give the expansion formulas leading from 
the SU(3) x Ts generators to those of SL(3, C). 
Sections 2 and 3 deal with the evaluation of the matrix 
elements of two characteristic combinations of the 
SU(3) x Ts generators, which appear in the expansion 
formulas. In Sec. 4, we put these results together to 
obtain the final expressions for the matrix elements of 
the SL(3, C) generators, for both the nondegenerate 
and the degenerate principal series. Some of the calcu
lations necessary to obtain the results of Secs. 2 and 3 
have been explained in an appendix. 

1. UIR's OF SL(3, C), SU(3) x Ts AND THE 
EXPANSION FORMULAS 

We begin with ~( description of the Lie algebra 
of SL(3, C). The SIxteen generators of SL(3, C) are 
made up of the eight generators of the subgroup SU(3), 
written as J';, and eight "noncompact" generators 
K; that transform according to the 8-dimensional 
adjoint representation of SU(3) (as do the J';). [As in 
I, where convenient, we use tensor notation with 
respect to SU(3), with the indices ~, p, ... taking the 
values I, 2, 3.] The Hermiticity, trace, and commuta
tion properties in a unitary representation of SL(3, C) 
are5 

(r)t = JP (Ka.)t = KP Ja. = Ka. - 0 P a:' P a:' a a - , 

[J';, J;J = b=J~ - b~J=, 

[J';, K;J = b=K~ - b~K=, 

[Kp, K;J = b~J= - b=J~. 

(1.1 a) 

(1.1 b) 

(1.1c) 

(1.1 d) 

1759 
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In the choice of Casimir invariants for SL(3, C), we 
can be guided by the fact that, disregarding Hermi
ticity properties for the moment, the two sets of 
operators 

Mp = t(Jp + iKp), Np = t(Jp - iKp) (1.2) 

obey the commutation rules of two commuting SU(3) 
groups. It follows that SL(3, C) possesses four Casimir 
invariants which may be obtained from the expressions 
for the two invariants of an SU(3) Lie algebra. We 
define the four Hermitian Casimir invariants for 
SL(3, C) as follows: 

el = Re MpM~ = t(JpJ~ - KpK~); 
e - 1m MaMfJ - 1rKfJ. 2 - fJ a - 2 fJ a' 

ea = Re HMp, M~}+M~ 
= /d({Jp, J~}+ - {Kp, K~}+)J~ 

(1.3a) 

(1.3b) 

- ({Jp, K~}+ + {Kp, J~}+)K~J;. (1.3c) 

e4 = 1m HMf;, M~}+M~ 
= 116 [({Jp , J~}+ - {Kp, K~}+)K~ 

+ ({Jp, K~}+ + {Kp, J~}+)J~]. (1.3d) 

(In these expressions, {,}+ denotes the anticommu
tator.) 

The UIR's of the principal nondegenerate series of 
SL(3, C) are labeled by four real parameters, in the 
form (rn 2 , rna, P2, P3)' Of these, rn2 and rna are integers 
(positive, negative, or zero), while P2 and Pa are two 
arbitrary real numbers. In every UIR of this series, 
there is a multiplicity in the reduction with respect to 
SU(3). To exhibit the Casimir operators as functions 
of the labeling parameters, we introduce the expres
sions for the values of the quadratic and cubic in
variants of SU(3)6: 

12(A, ft) = t(A2 + Aft + ft2 + 3.1. + 3ft), 

13(.1., ft) = 1 ~ 2 (A - ft)(A + 2ft + 3)(2.1. + ft + 3). 
(1.4) 

Then one finds that, in the UIR (rn2' rna, P2' P3) of 
SL(3, C), the Casimir invariants have the following 
values7 : 

el + ie2 = 612(-1 + Hip3 - rn3), 

-1 + Hrn2 - ip2», 

e3 + ie4 = 1813(-1 + t(iPa - rna), 

-1 + l(rn2 - ip2»' (1.5) 

Of course, the ei are real numbers, and are obtained 
by separating the right-hand sides into real and imagi
nary parts. 

In the principal degenerate series of SL(3, C), each 
UIR is labeled by just two parameters (rn3' Pa), with 

rn3 once again being an integer (positive, negative, or 
zero) and Pa an arbitrary real number. These UIR's 
are free of multiplicity in their reduction under SU(3). 
The values of the Casimir invariants are now given bys 

e1 + ie2 = 612(-i + i(iP3 - rn3), 0), 

es + ie4 = 1813( -! + Hip3 - rna), 0). (1.6) 

Let us next give a brief account of the structure and 
representations of SU(3) X Ts. This group also has 
sixteen generators, which we write as Jp, Pp. Equa
tions (l.1a), (Ub), and (Uc) continue to hold, with 
K replaced in all of them by P. 9 However, in place of 
Eq. (Ud), we now have 

[Pp, P~] = O. (1.7) 

Thus, SU(3) x Ts has the structure of a semidirect 
product. We define the Casimir invariants of SU(3) X 

Ts in such a way that they are the limits of those of 
SL(3, C) under group contraction.lo Writing them as 
e(O), we have 

t 

e(O) - .lp~pfJ 
I --4 fJ a' 

e(O) - .lrpfJ 
2 - 2 fJ ~, 

e(O) = _:J.rpfJpy (1.8) 
3 8 fJ Y a' 

e(O) = _lp~p(JPy 
4 8 fJ Y a' 

The expression for eiO) has been simplified by making 
use of the commutation rules. 

The UIR's of SU(3) x Ts are divided in Paper I into 
three families, denoted as types I, II, and III.n Here 
we need to use only the first two types. A UIR of type 
I is specified by four parameters in the form (Mo, Yo, 
Po, PI)' Here Mo and Yo are real discrete-valued vari
ables, the possible values of the pair (Mo, Yo) being 
all possible "weights" within representations of 
SU(3). [A "weight" within SU(3) is any allowed 
choice of eigenvalues for the ordered pair of operators 
(HJ} - J~), _J:).12] Then, po and Pt are two arbitrary 
real numbers subject only to the condition that PI 
should neither vanish nor be equal to ± (3)1po,13 
Within such a UIR of SU(3) x Ts , the invariants e(O) 

t 

have the following values14: 

e~O) = -f(p~ + p~), 
e~O) = (3)tpIMo - ipoYo, 

e~O) = %(3)1 PoP1Mo + t(p~ - pi) Yo, (1.9) 

elM = -!Po(p~ - 3pi). 

For the UIR's of SU(3) x Ts belonging to type II, 
we need only two parameters, namely, (Yo, Po)' The 
allowed values of Yo are just the possible eigenvalues 
of the operator -J: within representations of SU(3), 
while Po is an arbitrary nonzero real number. The 
values of e:O) are now obtained from (1.9) by just 
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setting PI = 0: 

e~O) = -tP~, e~O) = -iPoYo, 

e~O) = tp~Yo, elO) = -tp~. (1.10) 

We now describe these representations in more 
detail. Let us first consider nondegenerate VIR's of 
SL(3, C) and type I VIR's of SU(3) X Ts. The VIR 
(m2, ma, P2' Pa) of SL(3, C) and the VIR (Mo, Yo, 
Po, PI) of SU(3) x Ts contain the same VIR's of SU(3) 
with the same multiplicities, if 

m2 = 2Mo, 2ma - m2 = 3Yo• (1.11) 

This common SU(3) content is given by the following 
rule: The VIR (A, f-l) of SU(3) occurs as many times as 
it contains vectors with the weight (Mo, Yo). Note that 
the rule does not involve the continuous parameters 
P2, Pa or Po, Pl' Now within a VIR of SU(3), we use 
three labels I, M, and Y to specify a basis vector. The 
last two constitute the weight of the vector, while I 
distinguishes different vectors with the same weight and 
is related to the quadratic invariant of an SU(2) sub
group of SU(3). (In applications to particle physics, 
I is the total isotopic spin.) It is no surprise then that 
we can set up an orthonormal basis in the space of the 
VIR (Mo, Yo, Po, PI) of SU(3) x Ts with the vectors 
labeled 

lA, f-l; IMY; 10 ), (1.12) 

where (A, f-l) denotes the representation of SU(3) for 
which this vector forms a basis element and IMY is 
the triplet of quantities distinguishing vectors within 
this VIR of SU(3). For given A and f-l, the possible 
values of 10 are just the values that I could assume, if 
M and Ywere set equal to Mo and Yo, respectively. In 
writing the basis vectors for the VIR of SU(3) x Ts in 
this way, we have indicated in (1.12) only those labels 
which change from vector to vector in the representa
tion space, omitting the parameters M o, Yo and Po, PI 
which characterize the entire representation. It should 
be clear that transformations of the subgroup SU(3) 
affect the quantities IMYonly, and leave 10 unaltered. 
The VIR of SU(3) x Ts is completely specified if one 
gives the expressions for the SU(3)-reduced matrix 
elements (RME's) of J and P in the basis (1.12).15 
These are 

(A'f-l'; 1~11 J IIAf-l; 10)y = o;,';.0Jt'Jt0lo'IOOy.1[12(A, f-l)]i, 
(1.l3a) 

(A'f-l'; 1~1I P IIAf-l; 10)y = [d(Af-l)/d(A'f-l,)]t 

x ~ Plo"C(Af-lll A'f-l'y; loMoYo 1~00 I~MoYo). 
Io"~O,I 

(1.13b) 

Note that the RME's of P are themselves given in terms 

of Clebsch-Gordan (CG) coefficients. The quantity 
12(.1., f-l) was defined in Eq. (1.4); d(Af-l) stands for the 
dimension of the VIR (A, f-l) of SU(3).16 It may be 
remarked that the RME's of J suffer no change when 
we go from representations of SU(3) x Ts to those 
of SL(3, C). It is also clear that with the range of values 
of 10 described above, the states (1.12) serve as an 
SU(3) basis for the VIR (m2, ma, P2' Pa) of SL(3, C), 
provided Eqs. (1.11) hold. 

The analogous description of the degenerate VIR's 
of SL(3, C) and the type II VIR's of SU(3) x Ts is 
much simpler. If the relation 

2m3 = 3Yo (1.14) 

holds, the VIR (ma, Pa) of SL(3, C) and the VIR 
(Yo, Po) of SU(3) X Ts reduce in the following com
mon multiplicity-free manner under SU(3): The VIR 
(A, f-l) of SU(3) appears once if it contains the state 
IMY = (0,0, Yo) and is absent otherwise. Once again 
omitting labels which do not change within a repre
sentation, we see that an SU(3) basis for the VIR 
( Yo ,Po) is given by the vectors 

IAf-l; IMY), (1.15) 

with the values of A and f-l chosen according to the 
above rule. Again, these vectors just suffice to form a 
basis for the VIR (ma, Pa) of SL(3, C), with (1.14) 
being valid. The RME's of the SU(3) X Ts generators 
now are 

(A'f-l'11 J IIAf-l)y = O;";'OJt'JtOy,l[llA.,f-l)]i, 

(A'f-l'11 p IIAf-l)y = [d(Af-l)/d(A'f-l,)]ipo 

(1.16a) 

X C(Af-lll A'f-l'y; OOYo 000 00 Yo). 

(1.16b) 

Now we come to the expansion formulas. Let a 
nondegenerate VIR (m2, ma, P2' Pa) of SL(3, C) be 
given, and introduce the parameter 

(1.17) 

We say that this VIR of SL(3, C) and the VIR (Mo, 
Yo, Po, PI) of SU(3) X Ts are "corresponding repre
sentations" of the two groups if the two pairs of dis
crete parameters are related by Eqs. (1.11), while Po 
and PI are given by 

Po = t(2s + 1), PI = -H3)-!. (1.18) 

Thus, this is a many-to-one correspondence from 
SL(3, C) to SU(3) X Ts. Then the generators K for 
the VIR (m2, ma, P2' Pa) of SL(3, C) are constructed 
from the generators of the corresponding VIR of 
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SU(3) X Ts according to 

Ka. = pa. + ~i(S2 + 4s + 1)(PJ _ JP)a. 
p P2 p 9 s(s + 1) p 

+ ~i (1 - s) (QJ - JQY 
a s(s + 1) fJ 

+ i (QJP - PJQ)'P, (1.19) 
s(s + 1) 

while the SU(3) generatorsJ are taken over unchanged. 
Here, in addition to the operators J and P, we have 
introduced another octet of operators Q given byI7 

(1.20) 

At the same time, we have used matrix notation in 
(1.19), treating K, J, P, and Q as 3 x 3 matrices with 
the superscript (subscript) being identified as the row 
(column) index. Keeping s fixed, we see that P is the 
contracted form of K: 

Pa. l' 1 Ka. fJ = 1m - p' 
P2'" 00 P2 

(1.21) 

The choice of Casimir invariants for the two groups 
has been made in such a way that the values of the 
SL(3, C) invariants go over under contraction, i.e., 
P2 ~ CfJ at a fixed value of s, into the values of the 
SU(3) x Ts invariants for the corresponding repre
sentation. Thus one may check 

lim (P2rnie/rn2, rn3, P2, P3) = e~Ol(Mo, Yo, Po, Pi), 
P2-+ 00 

ni = 2, 1,2,3, for i = 1,2,3,4, respectively, 

(1.22) 

where the dependences of the e i and e;Ol on their 
arguments are given by Eqs. (1.5) and (1.9), while the 
parameters M o, Yo, po, h are fixed by Eqs. (1.11) and 
(1.18). 

For the degenerate representations of SL(3, C), the 
situation'is as follows. The VIR (rn3, P3) of SL(3, C) 
being given, the "corresponding" (type II) VIR (yo, 
Po) of SU(3) X Ts is that for which Yo is given by Eq. 
(1.14), and 

Po = t· (1.23) 

Once again, this is a many-to-one relationship from 
SL(3, C) to SU(3) X Ts. Then the generators K, for 
the VIR (rna, Pa) of SL(3, C), can be built up from 
the generators of the corresponding VIR of SU(3) x 
Ts by the formula 

K'; = P3P'; + i(PJ - JP)p. (1.24) 

The SU(3) generators are, of course, unchanged. 
Equation (1.21) now holds with Pa written in place of 
P2; for the values of the Casimir invariants one can 

check the following relations: 

lim (P3rnie/rn3, Pa) = e;Ol(yo, Po), 
Pa-+ C() 

Yo = Irna, Po = 1. (1.25) 

[For the values of e i and qOl, see Eqs. (1.6) and (1.10). 
The indices ni are the same as in Eq. (1.22).] 

We close this section with a few remarks. The two 
expansion formulas (1.19) and (1.24) make no 
explicit reference to the discrete parameters, (rn 2 , rna) 
and rna, respectively, in the problem. This means that 
their validity is not restricted to irreducible repre
sentations of SU(3) x Ts. We can take a reducible 
representation of SU(3) X Ts made up of any number 
of type I VIR's of SU(3) X Ts, all of which have the 
same values for Po and Pi [given by Eq. (1.18) but 
possibly corresponding to different values of Mo and 
Yo]. If we then apply formula (1.19) to the generators 
of this reducible representation of SU(3) X Ts, then 
we end up with operators J and K that generate a 
reducible representation of SL(3, C). The irreducible 
parts of this representation operate precisely on those 
subspaces that carry the irreducible representations of 
SU(3) X Ts. All the VIR's of SL(3, C) are of non
degenerate type and have the same values for P2 and Pa 
(we do not mean P2 = P3!)' while the various values of 
rn2 and rn3 are determined by the various values of 
Mo and Yo. A similar statement can be made in the 
case of formula (1.24). This feature of the expansion 
formulas simplifies the calculation of the matrix ele
ments of the last term in (1.19) considerably. 

From the way Q has been constructed, it follows 
that J and Q obey the commutation rules of SU(3) X 

Ts, as do J and P. In a general type I VIR of SU(3) X 

Ts, where the RME's of P are given by Eq. (1.13b), the 
RME's of Q are given by exactly the same expressions 
with Po and h replaced by qo and qi' where 

qo = P~ - pL qi = -2POPi' (1.26) 

(However, the set of operators J, Q is not always 
irreducible.) Therefore, a single calculation is sufficient 
to handle both the term (PJ - JP) and the term 
(QJ - JQ), while the term (QJP - PJQ) has to be 
treated somewhat differently. In the following section, 
we deal with the former kind of term and in Sec. 3 with 
the latter. 

2. TREATMENT OF THE TERM (PJ - JP) 

It is clear that the RME's of the tensor operator 
(PJ - JP) between specified SU(3) representations 
must be proportional to those of P between the same 
representations, the factor of proportionality depend
ing on the representations involved. is This is so 
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because I does not change either the SU(3) represen
tation or any SU(3) invariant labels the vectors may 
carry. Of the eight possible RME's of (PI - IP), we 
see that the two that are representation diagonal in 
SU(3) must vanish. For, if we form the two SU(3) 
scalar operators by combining (PI - IP) with I and 
(II), use of the commutation relations shows that they 
both vanish: 

I~(PI - IP)'; = I~I~(PI - IP)'; = 0. (2.1) 

These two combinations essentially project out two 
independent linear combinations of the representation
diagonal RME's of (PI - IP); hence, the stated result 

(Aft; 1~11 PI - IP IIAft; 1o)y = 0, y = 1,2. (2.2) 

We are then left with the six RME's in which the 
initial and final SU(3) representations are different, 
and we can write these as 

(A'ft'; 1~11 PI - IP IIAft; 10) 

= a(Aft; A'ft') (A'ft'; 1~11 P IIAft; 10), (A'ft') =;6 (Aft)· 

(2.3) 

With the usual SU(3) phase conventions, all the 
a(Aft; A' ft') are real. In the evaluation of the coeffi
cients a(Aft; A' ft'), we use the properties following from 
the behavior of the tensors P and (PI - IP) under 
Hermitian conjugation and R conjugation.19 From the 
former, we get the relation 

a(Aft; X ft') = -a(X ft'; Aft), (2.4) 

while the latter implies 

(2.5) 

Combining these leads to a third useful relation, 

a(Aft; A'tJ.') = a(ftA; ft' X). (2.6) 

As a result, it is enough to compute a(Aft; X ft') for the 
two cases (A'ft') = (A + 1, ft + 1) and (A + 2, ft - 1) 
only. In both these cases, the simplest procedure is to 
compute explicitly the matrix element 

(A'ft'; 1m1mYm; 1~1 (PI - IP)ooo IAft; 1m1mYm; 10), 

(2.7) 

by putting in the relevant intermediate states between 
P and J. (Note that one does not really need to know 
the value of the RME's of P for this calculation.) 

Here we choose the component of the tensor 
PI - JP with labels IMY = 000, while the labels 
Im1m Y m denote the highest weight state in the UIR 
(Aft).20 States with these labels do exist in the two 
UIR's (A' ft') we are interested in. After obtaining (2.7), 
we factor out an SU(3) CG coefficient, compare with 

the right-hand side of (2.3), and deduce the value of 
a(Aft; X ft'). In this way, we obtain a(Aft; X ft') = 
(A + 2), - (A + ft + 1), - A, (A + ft + 3), (ft + 2), 
-ft, for 

(Xft') = (A + 2, ft - 1), (A - 1, ft - 1), 

(A - 2, ft + 1), (A + 1, ft + 1), 

(A - 1, ft + 2), (A + 1, ft - 2), 

respectively. (2.8) 

This completes the evaluation of the nonvanishing 
RME's of (PJ - JP). It is obvious that Eqs. (2.1)-(2.3) 
are valid if in all of them we replace the tensor P by the 
tensor Q introduced in the previous section. Also, Eq. 
(2.3) can be used with the SU(3) invariant labels 10 , I~ 

omitted on both sides. Therefore, the results of this 
section suffice for obtaining the matrix elements of the 
SL(3, C) generators K in the principal degenerate 
series of representations. 

3. THE OPERATOR (QJP - PIQ) 

We turn now to the evaluation of RME's of the 
operator (QIP - PIQ), which occurs only in the 
principal nondegenerate UIR's of SL(3, C). At first 
sight, it appears that this requires a lot more work than 
the last section, since it seems necessary to introduce 
two sets of intermediate states in the calculation of the 
matrix elements. However, this is not so, as a slight 
rewriting of the operator (QIP - PIQ) reduces its 
treatment to the same level of simplicity as the treat
ment of the operator (PI - IP). 

Let us write 

U'; = (QIP - PIQ)';. (3.1) 

Using the commutation relations, we can bring the 
SU(3) generators I to the extreme left in each term, 
and we then find that 

U"-I).TI'" P - I' p)., 

Tff1 = PffQ~ - pm~· (3.2) 
In arriving at this result, we used the following two 
obvious properties: 

[Q';, P~] = 0, Q~P~ = P~Q~. (3.3) 

Of course, the different components of Q commute 
with one another, so that the different components of 
T also commute with one another. Now, we analyze 
the tensor T. It has the anti symmetry property 

T/f)." = -T~~ (3.4) 

which, coupled with the vanishing of the traces 

T;1 = 0, T~: = 0, (3.5) 
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implies that T can be expressed as a linear combina
tion of irreducible tensor operators belonging to those 
VIR's of SU(3) that are contained in the anti symmetric 
part of the direct product of the adjoint representation 
with itself. This direct product contains the VIR's 
(3,0), (0,3), and (1,1) of SU(3), once each. How
ever, the trace operation which would lead to the 
representation (l, 1) also gives a vanishing result on 
account of Eq. (3.3): 

T;~ = O. (3.6) 

Consequently, T can be written as the sum of two 
tensor operators, one belonging to the representation 
(3, 0) of SU(3) and the other to the representation 
(0, 3). The part that transforms by the representa
tion (3,0) is given by a completely symmetric third
rank tensor S«fJ1 obtained from T as follows: 

S«fJ1 = €«p~T'P~ + €fJP~T~~ + €1p~T'P~; (3.7) 

the (0,3) component is a tensor S«fJ1 given by 

S«fJ1 = €«P~T:J + €fJP~T;J + €1p~T::. (3.8) 

These two tensors are related by Hermitian conjuga
tion, for from 

(3.9) 
it follows that 

(3.10) 

We can reconstruct T in terms of Sand S and thereby 
also write U in terms of these tensors. We have 

T Il« - 1 Il«PS + 1. SIl«P fJl - S€ fJlp 6€fJlp , 

U« 1 «PIlJlS 1 S«APJIl fJ = S€ Il fJAP - S€fJpll A' (3.11) 

In the second term in U, we have interchanged the 
order of the operators Sand J and arranged the 
indices to give a minus sign. One can check by using 
the commutation relations between J and S that this 
interchange introduces no extra terms. The point of 
writing U in this form is that one now recognizes one 
term to be essentially the Hermitian conjugate of the 
other; i.e., one has 

Up = -HVp - (V~) t], 
V« - «PIlJlS fJ - € JL fJ).p· (3.12) 

Therefore, the RME's of U can be written in terms 
of those of V in the following way21: 

()..'p,'; I~II U 11)..,u; 10)1 

= t[()..',u'; I~II V 1I)..,u; 10)1 

- (-l)).'-).[d()..,u)/d()..',u')]! ()..,u; loll V 11)..',u'; 1~)1]' 
(3.13) 

Since theRME'sofVturn out to be real, the complex 
conjugation of the second term here has been omitted. 

The job of relating the RME's of V to those of Sis 
only slightly more complicated than finding a similar 
relation between (PJ - JP) and P. First we can check 
whether any of the SU(3) representation-diagonal 
RME's of Vvanish. In contrast to the last section, now 
we find only one relation 

J~Vp = o. (3.14) 

The invariant formed from V and JJ cannot be 
shown to vanish. We can only conclude-that the y = 1 
representation-diagonal RME's of V is zero, since the 
matrix elements of J are essentially the CG coefficients 
with y = 1, and these are orthogonal to the coeffi
cients with y = 2. So we have 

For the seven remaining possibilities, we write22 
.. 

()..',u'; I~II V 11)..,u; 10)1 

= b()",u; )..',u') ()..',u'; I~II S 11)..,u; 10 ), (3.16) 

it being understood that y = 2, in case (A',u') = ()..,u). 
Next we can look for conditions on b()",u; A' ,u') anal
ogous to Eqs. (2.4) and (2.5). Since Hermitian con
jugation does not take V into itself, this can give no 
relation. However, R conjugation does yield the 
relation 

b()",u; )..',u') = 1']).Il').'Il"i-1)tu'-Il'+JL-;')b(,u')..';,u)..). 

(3.17) 

Here, 1']).Il,).'Il',1 is a phase factor that appears in the 
conjugation relation for CG coefficients relating to 
the VIR (1, 1) of SU(3); its precise definition and 
values are given in the Appendix. It suffices to evaluate 
b()",u; )..' ,u') for four cases, the others following from 
(3.17). The technique of calculation is the same as in 
the previous section: Namely, one takes a suitable 
component of V, evaluates its matrix element between 
carefully chosen initial and final states by putting in a 
complete set of intermediate states between the com
ponents of J and S, factors out the proper SU(3)-CG 
coefficient, and then reads off the value of the coeffi
cient b()"p.; ).,' p.'). 23 Note that one need not know the 
reduced matrix elements of S for this work. In this 
way, one gets 

b()"p.; )..'p.') = -t[2()" + ,u + 1)()" + ,u + 4)]1-, 

t[2(,u - 1)(,u + 2)]1, t[2,u(,u + 3)]1-, 

-t(2)"()" + 3)]!, -t[2()" - 1)()" + 2)]1-, 

-t[2().. + ,u)().. + ,u + 3)]1-, 

- [I2().., ,u)/2]1-, 



                                                                                                                                    

UNITARY REPRESENTATIONS OF GROUP SL(3, C) IN SU(3) BASIS 1765 

for 
(A'!-l') = (A + 2, I' - 1), (A - 1, I' - 1), 

(A - 2, I' + 1), (A + 1, I' + 1), 

(A - 1, I' + 2), (A + 1, I' - 2), (A, 1'). 
(3.18) 

To complete the analysis of this section, it is neces
sary to know the structure of the RME's of the tensor 
S.24 This is worked out in the Appendix. The expression 
IS 

(A'I"; 1~11 S II AI'; 10) 
= 18(2)!(POql - Plqo)[d(AI')jd(A'I")]! 

x qAI' 30 A'I"; 10MoYo 100 l~MoYo)· (3.19) 

The analysis that leads to this form for the RME's of 
S is very similar to that which led to.Eq. (1.13b). Just 
like P, S is an irreducible tensor with commuting 
components, the difference being that it belongs to the 
VIR (3,0) while P belongs to the VIR (1, 1). Thus, 
while the RME of P are given in terms of CG coeffi
cients involving the VIR (1,1), those of S involve the 
CG coefficients for the UIR (3, 0). 

Combining Eqs. (3.13), (3.16), and (3.19), we have 
the final expression for the RME's of U as 

(A'I"; 1~11 U IIAI'; 10)y 

= 3(2)!(POQl - Plqo)[b(AI'; A'I")[d(AI')jd(A'I")]! 

x qAI' 30 A'I"; 10MoYo 100 l~MoYo) 
- (-l»):-J.b(A'I"; AI') 

x qA'I" 30 AI'; l~MoYo 100 10MoYo)]. (3.20) 

We remind ourselves that, for (A'I") = (AI'), only 
y = 2 is relevant, the RME's with y = 1 being zero. 

4. MATRIX ELEMENTS OF K 

We have at hand all the information necessary to 
write down the RME's of all the SL(3, C) generators in 
an SU(3) basis. The precise definition of the basis 
states has been given in Sec. 1, and the RME's of the 
SU(3) generators J have also been written down in 
Eqs. (l.l3a) and (l.l6a). All that now remains is to 
use Eqs. (l.l9) and (1.24) and the results of the last 
two sections, to work out the RME's of the "noncom
pact" generators K. Since this is simpler for the 
principal degenerate series, we tackle this case first, 
and the principal non degenerate series later. 

Cafe (1): Principal Degenerate Series. Here we need 
only the results of Sec. 2. Putting together Eqs. (1.l6b), 
(1.23), (1.24), and (2.3), we have the result 

(A'I"II K IIAI'\ = l[Pa + ia(AI'; A'I")] 
x [d(AI')jd(A'I")]! 

x C(AI' 11 A' 1" y; 00 Yo 000 00 Yo). 
(4.1) 

It must be remembered that a(AI'; AI') vanishes so that, 
though the SU(3) off-diagonal RME's of K are complex, 
the SU(3) diagonal ones are real. 25 However, by mak
ing suitable phase transformations on the basic states, 
one can pass to a new basis in which all the RME of K 
become real. For this, we remember that the SU(3) 
content of a UIR of the principal degenerate series is 
very simply stated: Each UIR (A, 1') for which 
I' - A = ! Yo appears once. Therefore, it is possible 
to order the SU(3) VIR's in a definite sequence, in the 
form 

(Amin , I'min), (~in + 1, I'min + 1), ... , (A, 1'), 

(A + 1, I' + 1), .... 

If Yo is positive (negative), then Amin(l'min) is zero and 
I'min( -Amin) is! yo· In Eq. (4.1), a given UIR (A, 1') is 
connected by Konly to the three UIR's(A + 1,1' + 1), 
(A, 1'), and (A - 1, I' - 1), because along with (A, 1') 
these are the only UIR's (A', 1") appearing in the 
space of the representation. The only values of 
a(AI'; A'!-l') that are needed are 

a(AI'; A + 1, I' + 1) = (A + I' + 3), 

a(AI'; A-I, I' - 1) = -(A + I' + 1). (4.2) 

Therefore, we can define a set of angles tp(A, 1') by 

Pa + ia(AI'; A + 1, I' + 1) 

= [p: + (A + I' + W]! exp itp(A, 1'), 

Pa + ia(AI'; A-I, I' - 1) 

= [p: + (A + I' + 1)2]! exp [-itp(A - 1, I' - 1)]. 

(4.3) 

For the two SU(3) off-diagonal RME's of K, we then 
have the expressions 

(A + 1,1' + 111 K IIAI') 

= exp itp(A,I') 

x !{d(AI')[P: + (A + I' + 3)2]jd(A + 1, I' + 1)}! 

x qAI' 11 A + 11' + 1; OOYo 000 OOYo), 

(A - 1,1' - 111 K IIAI') 

= exp [- itp(A - 1, I' - 1)] 

x Hd(AI'){P: + (A + I' + 1)2}jd(A - 1, I' - l)]t 

X qAI'11 A-II' - 1; OOYo 000 00 Yo). (4.4) 

It is now a trivial matter to transform away these 
phase factors. We define a new set of basis vectors by 

IAI'; [MY) = exp [-i4>(AI')] X IAI'; [MY), (4.5) 

the phases 4>(AI') being determined by the difference 
equation 

4>(A + 1, I' + 1) - 4>(AI') = tp(AI'), 

4>(~n' I'mIn> = O. (4.6) 
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This is really a single-variable difference equation 
since A - ft is constant. In the new basis, all the RME's 
of K are real, and we have, in place of Eq. (4.1), the 
final result 

(A'ft'll K IIAft)1 = Hd(Aft)[p: + a(Aft; A'ft,)2]jd(A'ft')}! 

x C(Aftll A'ft'y; OOYo 000 OOYo), (4.7) 

for the RME's of K in the VIR (ma, Pa) of SL(3, C). It 
should be mentioned that the RME's of J are unaltered 
by this change of basis, since J only has representa
tion-diagonal matrix elements. Thus, Eq. (1.16a) is 
unchanged with round brackets substituted for angular 
ones. 

We have now completely solved the problem of 
obtaining the RME's of the SL(3, C) generators in an 
SU(3) basis, for the principal degenerate series. Such 
a calculation had previously been performed for the 
particular case when Yo = 0, i.e., for the subset of 
degenerate VIR's (0, Pa), by directly solving the 
SL(3, C) commutation rules and taking advantage of 
the fact that these VIR's do not have multiplicity 
problems.26 Our results could also have been obtained 
by this method. 

Case (2): Principal Nondegenerate Series. We now 
need the results of both Secs. 2 and 3. From Eqs. 
(1.13b), (1.18), (1.19), (1.26), (2.3), and (3.20), we 
have, for the RME's of K in the VIR (m2' ma, P2' Pa), 
the result 

(A'ft'; 1~11 K IIAft; 10)1 

= t[d(Aft)/d(A'ft')]![2Pa - P2 + 2ia(Aft; A'ft')] 

x C(Aftll A'ft'y; 10MoYo 000 I~MoYo) 

- t(3r![d(Aft)/d(A'ft')]![3p2 + 2ia(Aft; A'ft')] 

x C(Aftll A'ft'y; 10MoYo 100 I~MoYo) 

+ i(6r![b(Aft; A'ft'){d(Aft)/d(A'ft')}! 

x C(Aft30 A'ft'; 10MoYo 100 I~MoYo) 
- (-l);:-),b(A'ft'; Aft) 

x C(A'ft' 30 Aft; I~MoYo 10010MoYo)]. (4.8) 

In arriving at this form, we have collected together 
and simplified the coefficients of the CG coefficients, 
which originally involve the parameter s, and then 
expressed the result in terms of P2 and Pa. It is worth 
noting that the worrisome factor of s(s + 1), which 
appears in the denominator in the terms of the ex
pansion formula (1.19), has disappeared in Eq. (4.8) 
after combination of all factors. A more symmetrical 
way of writing the result is to express the last CG 
coefficient in Eq. (4.8) in terms of the CG coefficients 
involving the VIR (0, 3) instead of (3,0).27 Then we 

have 

6[d(A'ft')jd(Aft)]! (A'ft'; 1~11 K IIAft; 10)1 

= [2pa - P2 + 2ia(Aft; A'ft')] 

x C(Aftll A'ft'y; 10MoYo 000 I~MoYo) 

- (3)-![3p2 + 2ia(Aft; A'ft')] 

x C(Aftll A'ft'y; 10MoYo 100 I~MoYo) 

+ i(6)![b(Aft; A'ft') 

x C(Aft30 A'ft'; 10MoYo 100 I~MoYo) 

- b(A'ft'; Ap)C(Aft 03 A'ft'; 10MoYo 100 I~MoYo)]· 
(4.9) 

In connection with Eqs. (4.8) and (4.9), one must 
remember that for (A'ft') = (Aft), a(Aft; A'ft') vanishes 
while b(Aft; A' ft') contributes only for y = 2. 

The problem of obtaining the SL(3, C) generator 
matrices in an SU(3) basis is thereby solved for the 
principal nondegenerate series of VIR's. One can ask 
whether by a suitable alteration of the phases of the 
basis states, one can render all the RME's of K real, as 
was possible in the case of the degenerate series.28 We 
do not attempt to do so here, since that would make 
this paper unduly long. The situation is a little more 
complicated now, since it might require that one per~ 
form a unitary transformation, for each fixed A, ft and 
with respect to 10 , in which one constructs nontrivial 
superpositions of states with different values of 10 , If 
this becomes necessary, then the dependence of the 
RME's of K on the labels 10 , 1~ may no longer be iso
lated in the CG coefficients, as has b'een possible in 
Eqs. (4.8) and (4.9). We hope to discuss this question 
elsewhere, leaving the RME's of K complex for the 
present. 

5. CONCLUSION 

We wish to make some comments on the results of 
Paper I and the present paper. 

Prior to the evaluation of the RME's of K, the struc
ture of the expansion formula (1.19) might have 
suggested that it would break down in some cases. 
Certainly, the individual terms of the formula are 
singular at the point s = 0 and s = -1, correspond
ing to the conditions Pa = P2 and Pa = 0, respectively. 
However, one would be surprised if, after evaluation 
of the matrix elements of K, these singularities 
persisted, becau-se there is nothing to single out these 
values of Pa from all others when one contemplates the 
VIR's of SL(3, C) as a totality. Therefore, it is 
gratifying to see that there are cancellations between 
various terms of the expansion formula, and we are 
left with very simple and nonsingular dependences on 
P2 and Pa· 
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Since the RME's of the SL(3, C) generators have 
found their simplest expression in terms of various 
CG coefficients of SU(3), from a practical point of 
view it is necessary that one employ CG coefficients 
evaluated within the framework of a single, consistent 
phase convention for the VIR's of SU(3). Fortunately, 
mutually consistent tables of the CG coefficients for 
the VIR's (1, 1), (3,0), and (0,3) of SU(3), all of 
them employing the Biedenharn phase convention for 
SU(3), do exist in the literature, and these are just the 
coefficients needed here.29 

An interesting property of the SU(3) multiplicity 
label 10 deserves mention. If one had tried to solve the 
SL(3, C) commutation relations directly by working 
from the· Lie algebra of SL(3, C) and functions of the 
elements of the algebra, a natural thing to have done 
would have been to first construct some operator in 
terms of J and K which would have been a scalar 
under SU(3), but which would not commute with 
K. 30 The eigenvalues of such an operator could 
possibly be used to distinguish multiple occurrences of 
SU(3) representations. A possible choice is, for ex
ample, the operator 

{J;, J~}+K~. (5.1) 

This is an SU(3) scala~, but not a Casimir operator of 
SL(3, C). However, it is quite a difficult matter to 
determine the possible eigenvalues of such an operator, 
and then harder still to determine the RME's of K be
tween eigenvectors of this operator, if all along one 
uses just the commutation relations of SL(3, C).31 In the 
first place, of course, one must make sure that the oper
ator has enough distinct eigenvalues to "tell apart" dif
ferent vectors behaving identically under SU(3). Thus, 
it may be easy to write down such operators, but it is 
difficult to make use of them. On the other hand, the 
multiplicity label 10 used by us has a range of values 
which is easy to describe, and the RME's of K have a 
fairly simple and easily expressed dependence on it. 
But it is quite difficult to construct an operator function 
of J and K which is diagonal in the basis we have 
chosen and whose eigenvalues are, say, 10(10 + 1) or 
some nontrivial function thereof! Undoubtedly, such 
an operator does exist, since J and K form an irre
ducible set, but we suspect that no finite polynomial 
function of J and K has the properties described 
above. 

The multiplicity label 10 originated in the reduction 
of the regular representation of SU(3) in the Hilbert 
space Je of square integrable functions on SU(3). 
According to general theorems, the space Je is large 
enough to accommodate any UIR of SL(3, C); more 
generally, the regular representation of the maximal 

compact subgroup of a semisimple noncompact Lie 
group can accommodate any VIR of the whole group. 
These facts confer greater validity to the use of multi
plicity labels of the nature of 10 in general.32 Some of 
the practical advantages of working with the space Je 
and, therefore, with many VIR's of 8L(3, C) at the 
same time in the form of a direct sum have been 
alluded to before and are more fully explained in the 
Appendix. 

We mentioned in Sec. 1 that the non-Hermitian 
combinations M, N of the Hermitian generators J and 
K obey the commutation relations of SU(3) ® SU(3). 
Therefore, one must be able to reach nontrivial 
finite-dimensional unitary representations of SU(3) ® 
SU(3) in a basis in which the vectors belong to definite 
VIR's of the "total" SU(3), by a process of analytic 
continuation of the RME's of K in the principal non
degenerate series of SL(3, C). The parameters that 
have to be varied to effect this continuation are P2 and 
P3. This process could probably be carried out with 
ease only after we have made all the RME's of K real, 
by a suitable transformation. If this can be done, then 
one might see a way to defining a complete set of 
orthonormalized CG coefficients for the most general 
case in SU(3). It is interesting to observe in this 
connection that Biedenharn's lemma shows that 
the way one counts outer multiplicities in the Clebsch
Gordan series for SU(3) is similar to the counting 
of SU(3) representation multiplicities within UIR's 
of SL(3, C).33 

In connection with the possibility of analytic con
tinuation of representation matrices, we remark that 
the RME's of K in the principal degenerate series have 
already been brought to the form where we can pass 
over to the supplementary series of VIR's of SL(3, C), 
by the method of the master analytic representation.34 

The need for rendering all the RME's real in the prin
cipal nondegenerate series, which was mentioned 
in the previous paragraph, is reinforced by the need to 
see exactly how the master analytic representation 
method goes through in a case involving multiplicity. 

Turning to possible physical applications of the 
UIR's of SL(3, C), we refer to recent attempts to 
incorporate the Lie algbras of SL(3, C) and the 
Poincare group in a common associative-algebra 
framework to describe the spectrum of elementary 
particle states. 35 Here SL(3, C) acts as an agency for 
providing a sequence of SU(3) multiplets. If the 
multiplicity-free degenerate representations of SL(3, 
C) prove inadequate in this connection, one may then 
have to utilize the non degenerate series UIR's worked 
out here. Needless to say, in such applications the use 
of an SU(3) basis is absolutely essential! 
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Last of all, there is the question of using similar 
methods for other noncompact groups. One way is to 
proceed in more or less the path we follow, by dis
covering expansion formulas. However, possibly a 
more useful (and therefore harder!) way might be to 
try to understand precisely what there is in the struc
ture of the group SL(3, C) that allows us to express the 
RME's of K in terms of the CG coefficients of SU(3) 
corresponding to the VIR's (1,1), (3,0), and (0,3). 
What is desirable is the connection of this fact to 
something intrinsic to SL(3, C), without making 
mention of the expansion formula at all. If one 
examines the VIR's of SL(2, C) (in which case there 
are no multiplicity problems), it turns out that the 
RME's of the noncompact generator K can be ex· 
pressed in terms of the CG coefficients of SU(2) corre
sponding to the single 3-dimensional VIR of SU(2). 
(This is clear from the discussion in Appendix A of I.) 
If such an understanding can be achieved, then that 
might be the most efficient way of extending the present 
methods to other groups of interest. We hope to come 
back to this question elsewhere. 
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APPENDIX 

Here we outline the manner in which the RME's of 
the tensor operator S which occurred in Sec. 3 have 
been evaluated. We also give the details of the R
conjugation operation which leads to useful results like 
Eqs. (2.5) and (3.17), and record some useful identities 
obeyed by those SU(3) CG coefficients that have ap
peared in this paper. The formalism used is a special
ization to SU(3) of the general one given in Appendix 
B of I. 

Let us refer to elements of SU(3) by a, a', ... , etc., 
and to the corresponding 3 X 3 unitary unimodular 
matrices by Aft, Aft", ... ,etc. The group composition 
corresponds to multiplication of these matrices with 
the superscript (subscript) being the row (column) 
index. We define the Hilbert space Je to be the space 
of all square-integrable functions on SU(3). A continu
ous basis for Je consists of the vectors la), with 
normalization properties as given in Eqs. (BS) and 
(B6) of I. The regular representation of SU(3) 
associates, with each a, the unitary operator U(a) , 
which acts as follows: 

U(a) 10') = laa'). (AI) 

The reduction of this representation is accomplished 
by passing to the discrete orthonormal basis 

(A2) 

related to the continuous basis by Eq. (B9) of J.3 
Since we need it later, we write down the expansion 

la) = ~ [d(A,u)]I(a)j~)y,IoMoYo 
.. /dMYIoMoYo 

x lAp; IMY; IoMoYo). (A3) 

Apart from the dimensionality factor, the coefficient 
of the vector on the right-hand side of (A3) is the 
matrix representing the element a in the VIR (A,u), ex
pressed in the canonical basis labeled by [MY. We 
define a set of orthogonal subspaces Je(Mo, Yo) of Je 
by defining the vectors (A2) for fixed M o, Yo and all 
possible values of the other labels to form a basis for 
Je(M 0, Yo). So we have the decomposition 

Je = ~ lOB Je(Mo, Yo). (A4) 
MaYo 

Since we wish to be able to deal with tensor operators 
labeled with upper and lower tensor indices or with 
their canonical components labeled by [MY, inter
changeably, we write down the transformation laws in 
both languages. For a tensor operator belonging to the 
VIR (1, 1), the transformation law 

U(a)PpU(a-1
) = (A!)* A~P; (AS) 

is exactly equivalent to the statement 

U(a)pjl}~ U(a-1
) = ~ (a)~~iY'Y'.IMYP}~.iJ~Y" 

I'M'Y' 
(A6) 

which is Eq. (B4b) of! for this case. For theVIR (3, 0), 
the two equations are 

U(a)S"pp(a-
1

) = A!A~A~S"/l" 
U( )S

(3.0) U( -1) ~ ()(3,O) S'3,O) a IMY a =,t;., a I'M'Y',IMY I'M'Y" 
I'M'Y' 

(A7) 

The relation between the two sets of components for 
the UIR (1, 1) is given in Eq. (3.3) of I; for the VIR 
(3, 0), it is 

SUI = S111, SUI = (3)ls112 , SI-11 = (3)IS122 ' 

S!_!l = S222 , S110 = (3)IS113 , S100 = (6)IS123 ' 

Sl-10 = (3)IS223 , SU-l = (3)IS133' SI-1-1 

= (3)IS233' S00-2 = S333' (A8) 

We can now define a reducible representation of 
SU(3) x Ts in Je by setting 

(A9) 
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This is Eq. (B8) of I, use having been made of the 
unitarity of the matrix A. We choose the 3 x 3 
traceless Hermitian matrix p! to be diagonal, with 
elements 

p~ = -Po + (3)ipI' P; = -Po - (3)tpI' 

P: = 2po' (AIO) 

Assuming that po, PI obey the conditions for a type I 
VIR of SU(3) x Ts , this representation of SU(3) x 
Ts breaks up into a sum of type-I VIR's, the subspace 
Je(Mo, Yo) carrying the VIR (Mo, Yo, Po, PI)' Note 
that po, PI are the same for all the VIR's in the direct 
sum. Let us now calculate the values of the Casimir 
operator e~O) of SU(3) x Ts. If e denotes the identity 
element of SU(3), then from Eq. (A3) we have 

Ie) = 1 [d(A,u)]t IA,u; IoMoYo; IoMoYo). (All) 
AJJIoMoYo 

Thus, this vector Ie) is a superposition of contributions 
from all the subspaces Je(Mo, Yo). Now the operator 
e~O) reduces within each Je(Mo, Yo) to a multiple of 
the identity, the magnitude being a function of M o, 
Yo (and, of course, Po ,PI), We can easily get the value 
of e~O) in each subspace by applying the operator e~O) 
to the vector Ie) and seeing by what numerical factor 
each term on the right-hand side of (All) gets multi
plied. Using the fact that p! is diagonal, we get 

e~O) Ie) == !J;P~ Ie) 

= t(J~p~ + J:p: + J:p:) Ie) 

= UPI(3)t(J~ - J~) + 3PoJ:] Ie) 

= t 1 [d(A,u)]1[2(3)lpIMo - 3poYo] 
AJJloMoYo 

x IA,u; IoMoYo; IoMoYo). (AI2) 

Comparing (All) and (AI2), we read off the value of 
e~O) in the VIR (Mo, Yo, po, PI), and get the expres
sion given in Eq. (1.9). A similar calculation leads to 
the value of e~O). 

The ease with which we obtain the values of these 
Casimir operators demonstrates the advantages of 
working with a sum of infinitely many VIR's in the 
space Je. The point is that many calculations are most 
efficiently performed in the continuous basis in Je; 
specialization to the various VIR's only involves 
restriction of the results to the subspaces Je(Mo, Yo). 

Following the remarks made in Sec. I, just after 
Eq. (1.25), we define a set of operators K; in terms of 
the generators J, P of the reducible representation of 
SU(3) x Ts in Je, by Eq. (1.19), after imposing Eq. 
(1.18) on the parameters Po and PI. Then J and K give 
a reducible representation of SL(3, C) in Je, the 
subspace Je(Mo, Yo) carrying the VIR (rn2, rna, P2, Pa) 
of SL(3, C) [cf. Eq. (1:11)]. The values of Pa and Pa 

do not change from one VIR to another in this direct 
sum. Now any function of J and P and, therefore, each 
of the terms on the right-hand side of Eq. (1.19) 
leave each subspace Je(Mo, Yo) invariant. This is also 
true of the tensor S belonging to the VIR (3,0), 
introduced in Sec. 3. We get the RME's of S by first 
finding out its action on the states 10). The tensor Q 
obeys Eq. (A9) with the matrixp! replaced by another 
traceless Hermitian diagonal matrix q! with diagonal 
elements 

q~ = -qo + (3)lql' q: = -qo - (3)lql' 

q: = 2Qo, (A13) 

qo = p~ - pL qi = -2POPI' 

Since both P and Q are diagonal in the basis 10), it 
follows that the tensors T and S given in Eqs. (3.2) and 
(3.7) are also diagonal in this ba~s. In fact, we have 

T;~ la) = tn:A:,(A~,)* A:,(Ai,)* la), 

Safly la) = sa'flAA-I):'(A-I)f(A-I)r la), (AI4) 

where t is obtained from Eq. (3.2), by replacing the 
operators P, Q by the numerical matrices P and q, 
and in the same way s comes from Eq. (3.7) after 
replacing T by t. The second of Eqs. (AI4) is of the 
same form as Eq. (B8) of I; written in terms of canoni
cal components, it reads 

sj1J~ la) = 1 SI'M,y,(a-l)j~'1l'Y"IMY la). (AIS) 
I'M'Y' 

[ef. Eq. (AS) for going from tensor to canonical com
ponents.) We can therefore use Eq. (BI7) of I to 
directly write down the RME's of S. The only nonzero 
component of s turns out to be 

SIOO = IS(2)I(Poql - PIqo), (AI 6) 

and this immediately leads to Eq. (3.19) of the text. 
The simplification achieved by working in the basis 
la) for Je, rather than restricting oneself from the 
start to the space of a single VIR of SU(3) x Ts , is 
once again evident. 

We describe next the operation of R conjugation. 
We find it simplest to define R to be antilinear, anti
unitary, and diagonal in the basis la) in Je: 

Ria) = la). (A17) 

From this and Eq. (AI) follows the characteristic 
behavior of the SU(3) generators 

(AIS) 

To know the action of R on the discrete basis states 
(A2), it is necessary to have the precise connection 
between the representation matrices for the UIR's 
(,l,u) and (,u,l). With the standard Biedenham phase 
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conventions for SU(3), this is36 

[( )().Il) ]* a IMY.I'M'Y' 
_ ( I)M'-11-1-!(Y'-Y'( )(IlA) 
- - a I-M-Y.I'-M'-Y" 

From this and Eq. (B9) of 1,3 we get 

R IAft; IMY; IoMoYo) 
= (_l)M-Mo-!(Y-Yo) 

X IftA; 1 - M - Y; 10 - M 0 - Yo). 

(A19) 

(A20) 

We next work out the effect of R on various tensor 
operators. From Eqs. (A9), (AI7), and the reality of 
the diagonal elements of p~, we get 

RPpR-1 = (Pp)t. (A21) 

In terms of the canonical components, the relation is 

RP1MyR-1 = plMY' (A22) 

Combining Eqs. (AI8) and (A2I), we get 

R(PJ - JP)rpR-1 = -(PJ - JP)j/. (A23) 

From the definitions of the tensors S and V in Sec. 3, 
we can work out the effect of R on them: 

RS«pyR-1 = S!py, RV;R-l = - Vrpt. (A24) 

These equations imply specific consequences for the 
RME's of these operators. To arrive at these conse
quences, we need two relations obeyed by the SU(3) 
CG coefficients pertaining to the UIR's (I, 1) and 
(3, 0). These relations are3? 

C(Aft 11 A'ft'y; IMY JNZ I'M'Y') 

= 'YJ).Il).'lli -1)tz-N[d(A'ft')/d().ft)]t 

X C(ft'A' 11 ft).Y; I' - M' - Y' JNZ I - M - Y) 

(A2S) 
and 

C().ft 30 A'ft'; IMY JNZ I'M'Y') 
= _( _l)f().'-Il'+Il-).)+!z-N[d().'ft')/d(Ap)]t 

X C(ft'A' 30 ftA; l' - M' - Y' JNZ 1- M - Y). 

(A26) 

Here 'YJ is a phase factor with the value + 1 for 
(A'ft') = (A - 2, P + 1), (A - I, ft + 2), and (A, ft), 
I' = 2, and the value -1 for the other cases. 

Since we know the effect of R both on the states and 
on the operators, we can work out the relations obeyed 
by the RME's. For P, for instance, we get 

(A'p'; I~MoYoll P II Aft; loMoYo>y 

= 'YJ).Il).'Il'y[d(Aft)/d(A'ft')]! 

X (ftA; 10 - Mo - YoU P IIp'A'; 10 - Mo - Yo)y. 
(A27) 

Here we have taken the same values for Mo and Yo in 
both states, since in our application these lead to the 
only nonvanishing RME's of P; we have also used the 
reality of the RME's. For the RME's of the operator 
(PJ - JP), we get a relation which differs from (A27) 
only in having an extra minus sign on the right be
cause of the extra minus sign in (A23) as compared to 
(A2I): 

(A'ft'; I~MoYo" PJ - JP IIAft; loMoYo)y 

= -'YJAIl).'P.'y[d(Aft)/d().'ft')]! 

x <ftA; 10 - Mo - Yo II PJ - JP 

11ft').'; 10 - Mo - Yo)y. (A28) 

From Eqs. (A27) and (A28), it is easy to see that Eq. 
(2.5) follows. Since the operators V and (PJ - JP) 
behave in the same way under R, as shown by Eqs. 
(A23) and (A24), Eq. (A28) holds for the RME's of V 
also. (These RME's are also real.) On the other hand, 
for the RME's of S, we have the relation 

(A'ft'; IoMo Yo II S II).p; loMoYo) 

= -( -l)f().'-P.'+P.-).)[d().p)/d(A'ft,)]t 

X (ft).; 10 - Mo - Yoll S 11ft').'; 10 - Mo - Yo). 
(A29) 

The condition (3.17) on the coefficients bOp; A' ft'), 
now follows from Eq. (A28), written for V, and Eq. 
(A29). 

The last item to be mentioned is the relation im
posed by Hermiticity conditions on the RME's of an 
operator belonging to the VIR (1, 1). This relation was 
used in going from Eq. (3.12) to Eq. (3.13), as well as 
in getting Eq. (2.4). 

Let T; be an arbitrary octet tensor operator obeying 
the condition 

T «t TP 
P = ",' (A30) 

This can also be written as 

TIt.l)t _ (_l)M-!YT(l,l) 
IMY - I-M-Y' (A31) 

To derive the consequences of this property, we need 
a corresponding relation for the CO coefficients, and 
this turns out to be3S 

C(Aft 11 ).Ip'y; IMY JNZ I'M'Y') 

= (-l)A'-).+lz-N[d().'ft')/dO.ft)]! 

X C(A'ft' 11 AftI'; I'M'Y' J - N - Z IMY). 

(A32) 

We then get 

(A'ft'; P\I T IIAft; oc)i = (-l»).'-;'[d(Aft)/d(A'ft,)]t 

x (Aft; ocll T 1I).'ft'; P)7' (A33) 
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Here <X and fJ are any SU(3) invariant labels the 
vectors may carry, and no assumption has been made 
about the reality of the RME's of T. This relation can 
easily be generalized to an operator like Y; in Sec. 3, 
which does not obey any relation like (A30). In that 
case, we get a connection between the RME's of Vand 
those of the (distinct) tensor operator vt, whose com
ponents are defined by 

(A34) 

the relation being 

(A'p'; fJII V IIAp; <X): = (-l»).·-).[d(Ap)/d(A'p,)]l 

X <Ap; <xII yt IIA'p'; fJ\. (A35) 

In our use of Eq. (A35), we have operators V, Vt with 
real RME's, which allow us to omit the complex 
conjugation on the left-hand side. FinaIIy, the RME's 
of (PJ - JP) obey Eq. (A33), with an extra minus sign 
on the right (and no complex conjugation on the left), 
because the corresponding Hermiticity relation differs 
by a sign from Eq. (A30). This explains the origin of 
Eq. (2.4). 

1 For the construction of the unitary representations of the 
groups SL(n, C), the standard reference is I. !'1. Gel'fand and M. A. 
Neumark, Unitiire Darstellungen der Klasslschen Gruppen (Akad-
ernie-Verlag, Berlin, 1957). '., 

• An investigation of cases where rather simple solutions to thiS 
problem exist has recently been carried out by D. W. Joseph and C. 
J. Hieggelke, J. Math. Phys. 11,272 (1970). . 

3 N. Mukunda, J. Math. Phys. 10, 897 (1969). We refer to thIS 
paper as I. Further references may b~ found there. 'Ye take this 
opportunity to inform the re.ader that, l!l Eq. (B9) of t~IS paper, the 
subscripts m and n on the fight-hand SIde should be Interchanged. 

4 C. J. Goebel, Phys. Rev. Letters 16, 1130(1966). See also Appen
dix B of I. 

5 Repeated indices are to be summed over. 
6 The Casimir invariants of SU(3) and their values in the UIR 

(A, p,) are Jp1~ = 612(A, p,), l{Jp, J~}+J~ = 1813(A, p,). 
? For evaluating the C/, we have used Eqs. (4.13), (4.17), and 

(4.18) of I. 
S Here we have used Eqs. (5.9), (5.12), and (5.13) of!. 
9 When there is no danger of confusion, we omit tensor indices on 

tensor operators when they are referred to in the text. 
10 The precise connection is contained in Eqs. (1.22) and (1.25). 
11 We do not consider the trivial representations in which P = O. 

This was not explicitly mentioned in I. 
12 For details regarding UIR's of SU(3), see, for instance, N. 

Mukunda and L. K. Pandit, J. Math. Phys. 6,746 (1965), and other 
papers quoted therein. 

13 If we take the formulas defining a type-I UIR of SU(3) X Ts 
and set PI equal to zero or ±(3)tpo, the representation breaks up 
into a direct sum of UIR's of types II and III. 

14 The values of Cia' and e~O) are given by Eq. (4.30) of!. A simple 
way to evaluate C~O) and C~O) is described in the Appendix. 

15 For tensor operators belonging to the UIR (1, 1) of SU(3), such 
as P, K, and J, the SU(3) RME are defined, as in I, by 

<A'{.t';I'M'Y'; bl PJNZ \A{.t; IMY; a) 
= ~ C(A{.t 11 A'{.t'Y; IMY JNZ I'M'Y') (A'p,'; b/l P /lAP,; a)y 

y 

and similarly for K and J. Tables of the C~ebsch-Gorda~ coefficients 
appearing here are given by J. G. Kunyan, D. LUrIe, and A. J. 
Macfarlane, J. Math. Phys. 6, 722 (1965). To go from the tensor 
components of P to the canonical ones, use Eq. (3.3) of I. 

16 d(A{.t) = l(A + I)(p, + 1)(A + p, + 2). . .. 
17 To avoid confusion, the operator wntten as k In I IS here 

called Q. . 
IS This factor is essentially a Racah coeffiCIent of SU(3). 
19 R conjugation is discussed by D. Lurie and ~. J. ~acfarlan.e, 

J. Math. Phys. 5, 565 (1964). A detailed treatment IS also Included In 

the. Appendix to the present paper. 
201m = leA + {.t), Ym = 1(A - {.t). 
2) For details, see the Appendix, Eq. (A35). 
22 The coefficients b(A{.t; A' {.t') are essentially Racah coefficients of 

SU(3). 
23 The CG coefficients of SU(3) relating to the UIR (3,0), needed 

for writing out the various matrix elements of S, have been compiled 
by L. K. Pandit and N. Mukunda, J. Math. Phys. 6, 1547 (1965). 

24 The RME's of S are defined by an equation exactly like that for 
P in Footnote 15, except that the subscript y is no longer neces~ary, 
and in place of the CG coefficients for the UIR (1, I), we substItute 
those for the UIR (3, 0). 

25 The reality of the SU(3)-diagonal RME's of K is required by the 
Hermiticity properties of K. 

26 S. K. Bose, Phys. Rev. 150, 1231 (1966). .. 
27 The connection between these two sets of CG coeffiCients IS 

given in L. K. Pandit and N. Mukunda, Ref. 23. 
28 For (A' {.t') = O.{.t) and 1~ = 10 , the expression for the RME's of 

K becomes real for both values of y, as required by the Hermiticity 
properties of K. . 

29 J. G. Kuriyan, D. Lurie, and A. J. Macfarlane, quoted In 

Footnote 15, and L. K. Pandit and N. Mukunda, Ref. 23. The phase 
convention used in these papers is that of L. C. Biedenharn, Phys. 
Letters 3, 69 (1962). 

30 An analogous approach was followed by V. Bargmann and M. 
Moshinsky, Nucl. Phys. 23, 177 (1961), in their work on the repre
sentations of SU(3) in an R(3) basis. 

31 Using our results for the RME's of K, we can see easily that the 
operator expression (5.1) has nonzero matrix elekents connecting 
different values of the multiplicity label 10 , 

32 Such an approach was used by A. Kihlberg, V. F. Miiller, and 
F. Halbwachs [Commun. Math. Phys. 3, 194 (1966)] in their work 
on the representations of the group SU(2, 2). '" 

33 L. C. Biedenharn, Phys. Letters 3, 254 (1963). A mce dISCUSSIOn 
of these questions is given by A. J. Macfarlane, L. O'Raifeartaigh, 
and P. S. Rao, J. Math. Phys. 8, 536 (1967). 

34 J. G. Kuriyan, N. Mukunda, andE. C. G.Sudarshan,Commun. 
Math. Phys. 8, 204 (1968); J. Math. Phys. 9, 2100 (1968). 

3D A. Bohm and E. C. G. Sudarshan, Syracuse University, Syra
cuse, N.Y., Preprint NYO-3399-188. References to earlier work of 
these authors are given here. 

34 We use here the results of L. K. Pandit and N. Mukunda, Ref. 
23, Sec. 2. 

37 The existence of relations of this type follows from general 
arguments; see J. J. deSwart, Rev. Mod. Phys. 35, 916 (1963), and 
A. J. Macfarlane, N. Mukunda, and E. C. G. Sudarshan, J. Math. 
Phys. 5, 576 (1964). The first of Eqs. (11.16) in L. K. Pandit and N. 
Mukunda, Ref. 23, is incorrect, as an extra minus sign is needed on 
the right-hand side. The correct form is given here in Eq. (A26). 

38 The existence of a relation of this general nature again follows 
on general grounds. The exact form is determined by inspection of 
the tables compiled by J. G. Kuriyan, D. Lurie, and A. J. Macfarlane, 
quoted in Footnote 15 . 
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The first two quantum corrections to the classical second virial coefficient are evaluated in the case that 
the intermolecular potential is 

V(r) = 00, 0 < r ~ a, 
= --- U < 0, a < r ~ b, 
= 0, r > b. 

The first terms of the expansion of B(T) in powers of). = (h'/21TmkT)' are 

B(T) = i1TNa3eUP [1 + evt)A/a + (1T)-1(A/a)2) + i1TNb3 (1 - eUP + (V*)().lb)[1 + eUP - 2e1uPl o(W,B)} 

+ (1T)-l()./W{t(eUP - 1) - 1(1TU,B)ietuP[3It(W,B) + It(lU,B)} 

+ [1 + !(U,B)-1}3el'P(U,B)-i Erf[(U,B)iJ - [1 - !(U,B)-1}3(U,B)-1 Erfi [(U,B)!) - ~(U,B)-l 
X (1 + eUP)}) + 0().3). 

The contribution of the bound states to the first quantum correction is evaluated and the behavior of 
Bib) IBl vs T is plotted. 

I. INTRODUCTION the equation 

The second virial coefficient for a monatomic gas 
can be expressed as a sum of a direct and exchange 
contribution. For nonanalytic potentials, the direct 
part can be expanded in powers of the thermal wave
length A = (h2/27TmkT)i, where h is the Planck's 
constant, k the Boltzmann's constant, m the mass of 
the particle, and T the absolute temperature. The ex
change contribution was shown to decrease faster than 
any power of A in the presence of a repulsive hard 
core.1•2 In the following, we consider only the direct 
part, which we denote by B(T). 

[s - (Ji2/m)V2 + V(r)]G(r, r', s) = oCr - r'), (2) 

where 

The first terms in the expansion of B(T) for a gas of 
hard spheres were studied by several authors.3-7 Our 
purpose here is to calculate the first two quantum 
corrections to the second virial coefficient when the 
interacting potential is a hard core plus an attractive 
square well. 

We follow the method introduced by Hill,7 which 
consists of relating the thermal Green's function at 
high temperatures to the Green's function of the 
Schrodinger equation at large negative energies by 
means of a Laplace transform. We refer the reader to 
Ref. 7, in the following indicated by H, for details in 
the mathematical justification of the method. 

B(T) is given by 

G(r, r', s) = l'" e-psG(r, r', f3) df3 (3) 

and VCr) is the intermolecular potential; in our case 

V(r) = + 00, 0< r ~ a, 
= -u < 0, a < r ~ b, (4) 

= 0, r > b. 

We find in Sec. II the solution to Eq. (2), and in 
Sec. III we evaluate explicitly the first two quantum 
corrections to the classical B(T). The first term was 
already calculated by Nilsen,S con&idering that to 
lowest order in A the boundary conditions on a sphere 
can be replaced by boundary conditions on a plane. 

In Sec. IV the contribution of the bound states of the 
attractive potential to the first quantum correction is 
analyzed. 

If we write 

(5) 

and indicate by Bib) the bound state's contribution to 
B1 , we find that the ratio B~b) / Bl is always larger than 
unity at low temperatures and vanishes slowly as 

B(T) = iN f d3r[1 - 2~A3G(r, r, fJ)], (1) T- 00. In Fig. 1, we plot B~b)/Bl vs kT in the 
special case b = 2a. It shows a maximum at kT ~ tu 

where N is Avogadro's number, fJ = l/kT, and A the and it becomes less than unity when kT ~ 3.47 U, but 
thermal wavelength. G(r, r', fJ) is the thermal Green's it has still an appreciable value at finite temperatures 
function and its Laplace transform G(r, r', s) satisfies when Eq. (5) is a valid expansion. 

1772 
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3 

2 3 4 5 KT/U 

FIG. 1. Relative contribution from bound states to the first 
quantum correction to the second virial coefficient. The range b of 
the potential is here chosen to be twice the hard core diameter a. 

II. GREEN'S FUNCTION 

We introduce the following notation: 

y2 = sm/1i2, 

1X2 = (s - U)m/1i2, (6) 

g(r, r', s) = 47T(1i2/m)G(r, r', s). (7) 

It follows from Eqs. (2) and (4) that g(r, r', s) can be 
written as 

g(r, r', s) = g«r, r/, s), r < b, 

=g>(r,r/,s), r>b, (8) 

where g < and g> are the solutions to the pair of differ
ential equations 

where 0 is the angle between rand r/, v = I + t, and 
g(~l , g(;l satisfy the equations 

- - r2 - ___ 4 _ 1X2 g~)(r, r', s) 
[ 

1 d ( d ) v
2 

- 1 ] 

r2 dr dr r2 

_ d(r - r') b 
-- 2 ,r<, 

r 
(15) 

- - r2 ,- - -- - y2 g~l(r, r', s) [
1 d ( d ) v

2 
- ! ] 

r2 dr dr r2 

__ d(r - r') b 
- 2' r> , 

r 
(16) 

with the boundary conditions given in Eqs. (11)-(13). 
The linearly independent solutions to the homoge
neous equations (15) and (16) are r-!I.(ocr) and 
'-!Kiocr) when r < b, and r-!I.(yr) and r-!K.(yr) 
when r > b. I.(z) and K.(z) are the modified Bessel 
functions, 9 regular at zero and infinity, respectively. 

To find a solution to Eqs. (9) and (10) we have to 
consider separately the cases a < r' ~ band r' > b. 

A. a < r' :5: b 

g«r, r/, s) = goer, r', IX) 

- (rrY!! 2vPv_!(cos 0) I.(IXQ) Kv(IXr')Kv(lXr) 
v=! K.(oca) 

- (rr'r!! 2vPv_!(cos 0)A.~.(a, r/)~v(a, r), 
.=! 

a < r ~ b, (17) 

g>(r, r', s) = -(rrTl~ 2vPv_!(cos 0)BvK.(yr), 
v=! 

(V2 - 1X2)g«r, r', s) = -47Td(r - r/), r < b, (9) where 
r> b, (18) 

(V2 - y2)g>(r, r', s) = -47Td(r - r/), r> b, (10) 

with the boundary conditions 

g«r, r', s) = 0, 0 < r ~ a, (11) 

(12) 

(13) 

In the case of a spherically symmetric potential, each 
one of the functions g <(r, r', s) and g> (r, r', s) can be 
expressed as a sum over partial waves: 

00 

g«r, r', s) = !2vP._!(cos 0)g~)(r, r', s), 
v=! 

00 

g>(r, r', s) = ! 2vPv_!(cos 0)g~)(r, r', s), (14) 
v=! 

~.(a, r) = Kv(lXa)Iv(lXr) - Iv(lXa)K.(ocr) (19) 

and 

(20) 

is the free space solution to Eq. (9). It is shown in H 
that goer, r', IX) can be expanded in partial waves: 

goer, r', IX) = (rr/)-li2vP._!(cos 0)Iv{lXr')Kv(ocr), 
.=! 

r> r', 

= (rr')-! i 2vP._!(cos 0)K.(ocr')I.(ocr), 
v=! 

r < r'. (21) 

The first sum in Eq. (17) is a solution of the homo
geneous equation, and it can be seen from Eq. (21) 
[bottom] that it cancels the value of go at r = a. The 
second sum in Eq. (18) is an arbitrary solution of the 
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homogeneous equation that vanishes at r = a, while 
g>(r, r', s) is a solution of the homogeneous Eq. (10) 
with the appropriate behavior at infinity. 

The constants Av and Bv are determined by fitting 
the boundary conditions at r = b, Eqs. (12) and (13), 
and using Eq. (21) [top] for goer, r/, s). 

B. r'> b 

In this case the source is outside the well. Therefore 
we need the solution of the homogeneous equation 
(9), when a < r S b, 

g«r, r', s) = -(rrlrtI2vpv_~(cos 8)Cv~v(a, r), 
v=! 

a < r S b, (22) 
g>(r, r', s) = goer, r', y) 

- (rr'rt I 2vPv_!(cos 8)DvKvCyr')Kv(yr), 
v=! 

r> b. (23) 

Using the expression (21), for r < r', for goer, r', y) 
and the boundary conditions (12) and (13) we deter
mine the coefficients Cv and Dv' 

To evaluate B(T) from Eq. (1), we need g(r, r, s); 
hence, we need only the value of g(r, r', s) when rand 
r' are both inside or both outside the well. 

We obtain 

g(r, r', s) = goer, r', IX) + gh.c.(r, r', IX) + gw«r, r', s), 

as r, r' S b, 

g(r, r', s) = goer, r', y) + gw>(r, r', s), r, r' > b, 

g(r, r', s) = 0, 0 < r S a, 

where 

gh.C.(r, r', IX) 

(24) 

= -(rrTt I 2vPv_!(cos 8) Iv(lXa) Kv(IXr')Kv(lXr), 
v=! KvClXa) 

(25) 

gw«r, r', s) 

= -(rrT! I 2vPv_!(cos 8)Av~vCa, r)~v(a, r'), (26) 
v=t 

gw>(r, r', s) 

= -(rr'rt i 2vPv_!(cos 8)DvKvCyr')Kv(yr), (27) 
v=! 

IXK~(IXb)Kv(yb) - yK~(yb)KvCIXb) 1 

Av = IX~~(a, b)K/yb) - y~v(a, b)K~(yb)Kv(IXa)' 
(28) 

D = IX~~(a, b)Iv(yb) - yI~(yb)~v(a, b), (29) 
v IX~~(a, b)Kv(yb) - yK~(yb)~v(a, b) 

~~(a, b) = KvCIXa)I~(IXb) - IvCIXa)K~(lXb). (30) 

The series for gw< and gw> are convergent for every 
value of r, but gh.c. has a pole' at r = r' = a, while go 
diverges at r = r'. 

III. QUANTUM CORRECTIONS 

We add and subtract a term to gh.c. that has the 
same residue at the pole and gives the first quantum 
correction for a gas of hard spheres': 

g(r, r', s) = goer, r/, IX) + gl(r, IX) + g2(r, r', IX) 

+ gw«r, r/, s), a < r, r' < b, (31) 

where 
gl(r, IX) = _a2e-2~(r-a)/2r2(r - a), (32) 

g2(r, r', IX) = gh.c.(r, r', IX) - gl(r, IX). (33) 

We can now find the inverse Lap!ace transform of 
goer, r', IX), gl(r, IX), and goer, r/, y), with IX and y 
defined by Eq. (5), and integrate afterwards over 
r = r', remembering that g(r, r/, s) = 0 when r S a. 

The contribution of these terms to B(T) are 

BO(T) + B(1)(T) 

= j7TNa 3eUIl [1 + (.)-£-)A/a] + j7TNb3(1 - eUIl) 

+ O(exp [-(b - a)2/A2]). (34) 

Now we can put r' = r in g2(r, r', IX) and integrate 
over r. We define 

r > b, 
(35) 

and obtain from Eqs. (25)-(27) and (32), using Eq. 
(37) of H, 

(00 g3(r, r, s) d3r = ~im [27Ta2 (lOg ~ + O(e-2~(b-a)) 
Ja L .... oo lXa 

L+t I (lXa) (b ] 
- 47T I 2v _v __ j. K~(lXr)r dr 

v=! Kv(lXa) a 

- 47T i 2vAv f~e(a, r)r dr 
v=! a 

- 47T i 2vDvioo K~(yr)r dr. 
v=! b 

(36) 

The indefinite integrals of the modified Besselfunctions 
arelO 

f W~(lXr)r dr = tr2[(1 + v2/1X2r2)W;(IXr) - W~2(lXr)], 
(37) 
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where W.(ocr) is either Iy{ocr) or K.(ocr) and 

J Ilocr)K.(ocr)r dr 

= ~ {IvCOCr)KlOCr) ( 1 + ~:2) - K~(ocr)I~(ocr)}. (38) 

Taking into account that ~.(a, a) = 0 and ~~(a, a) 
is the Wronskian 

~~(a, a) = Kv(oca)I~(oca) - I.(oca)K~(oca) = -(oca)-l, 

we obtain, for Eq. (36), 

L'" ga(r, r, s) dar 

= lim [21Ta2 (IOg L + o(e-2a(b-a») 
L-+ 00 oca 

+ 21Ta2Li,! 21' I.(oca) 
v~! K.(oca) 

X ((1 + oc~:2)K~(lXa) - K~2(oca») 

_ 21Tb2Li,! 21' I.(oca) 
.~! Kioca) 

X ((1 + oc~:2)K~(OCb) - K~2(ocb») ] 

- 21Tb2 I 21'A.( (1 + :2 2)~~(a, b) - ~~2(a, b») 
.~! oc b 

00 1 
- 21Ta2 Z 21'A -

1 • oc2a2 
.=J[ 

+ 21Tb2I 21'D.((1 + :22)K~(Yb) - K~2(Yb») . 
• =! oc b 

(39) 

For large values of the Laplace variable s, that is, 
for large values of oc or y, Debye's series9 provide us 
with an asymptotic expansion of IvCx), KvCx), I~(x), 
and K~(x) uniformly valid in v for large values of x. 

The Debye expansions read 

I.(x) = (21T)-!(1'2 + x2rtel'(X) I 1'-kUk(t
X

) , 

k=O 

Kix) = (7!.)\v2 + x2rie-p("')i;(-v)-kuitx), 
2 k=O 

I~(x) = (21T)-!X-\1'2 + x2)tel'(x) i 1'-kVk(t
X
)' 

(40) 

k~O 

where 
p.(x) = (1'2 + X2)! - v sinh-1 (1'/x), 

Ix = 1'(1'2 + x2)-i. (41) 

The first five polynomials uitx) and vk(tx) and their 
recurrence relations are explicitly given in Ref. 9. 

We can see from (40) that 

K.(oca)I.{ocb) ~ O(exp [p.(ocb) - p.(oca)]), 

K.(ocb)I.(oca) '" O(exp [-p.(ocb) + ,u(oca)]). (42) 

Hence, we can approximate Eqs.(19) and (30) by 

~.(a, b) ~ K.(oca)IvCocb) 

X {1 + O( exp [-2p.( ocb) + 2,u( oca )]) }, 

~~(a, b) ~ K.(oca)I~(ocb) 

x {1 + O(exp [-2,u(ocb) + 2p.(oca)])}. (43) 

All the terms O( exp [-2oc( b - a)]) give contribu
tions to B(T) ~ O(exp [- (b - a)2j,1.2]), and do not 
contribute to any finite power of A. 

Introducing (43) in Eqs. (28), (29), and (39) we 
obtain 

where 

00 

- 21Tb2Z21'F.(x, y) + O(exp [-2oc(b - a»)), 
.=! 

(44) 

Fix, y) = ([yK~(y)K.(x) - xK~(x)Kiy)] 

X [(1 + 1'2/l)I~(y) - I~2(y)] 

- [yI~(y)I.(x) - xI~(x)Ily)] 

X [(1 + 'P2/X2)K~(x) - K~2(X)]} 

X [yI~(y)Kix) - xK~(x)Iv(Y)r\ (45) 

x = yb, y = ocb. (46) 

Aside from exponentially small terms, what we 
obtain in (44) are the separate contributions of a hard 
core at r = a, given by the first two terms in paren
thesis, and a new contribution corresponding to a 
square well for 0 < r ~ b. 

The limit in (44) was already evaluated in H up to 
O«AJa)6) and taking into account that oc2 = (s - U)mj 
1i2 the second-order contribution from this term to 
B(T) is 

(47) 
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From Eq. (40) we find 

(1 + 'JI2/x2)I~(x) - I~2(x) 

= (27Tr1X-2('JI2 + X2)te2/l(o:l iak'JI-\ (48) 
k=O 

(1 + v2/x2)K~(x) - K~2(X) 

= t7TX-2(V2 + X2)te-2/l(o:l iak( -'11)-\ (49) 
k=O 

yI~(y)Iv(x) - xI~(x)Iv(Y) 

= (27T)-1e[/l(o:l+/l{jllJ(v2 + x~-t(V2 + l)-t i v-kbk , 
k=O 

(50) 

yK~(y)Kv(x) - xK~(x)Kv(Y) 

= _t7Te-[/l(o:l+/l{jlll('JI2 + x2rt(v2 + l)-ti(-'JIrkbk , 
k=O 

(51) 

yI~(y)KvCx) - xK~(x)Iv(Y) 

= te[/l(l/l-/l(o:ll(v2 + x2)-t(V2 + l)-t i CkV -k, (52) 
k=O 

where 
k 

aix) = l [UI(to:)Uk-l(to:) - vlto:)vk_/(to:)], (53) 
1=0 

k 

bk(x, y) = ('112 + l)t l VI(ty)Uk-/(to:) 
1=0 

k 

- ('112 + X2)t l v,(to:)Uk_l(tl/)' (54) 
1=0 

k 

ck(x, y) = ('112 + l)t l (- )k-IVI(tll)Uk_l(to:) 
1=0 

k 

+ ('112 + X2)t l (- )'VI(to:)Uk_l(tl/). (55) 
1=0 

Introducing Eqs. (48)-(55) in (45), we obtain an 
expansion for Fix, y): 

OC! 

F.(x, y) = t l ~nv-n, (56) 
n=O 

where the ~n can be found from the recurrence relation 

in 1 n-l 

~n = - - - LCn-'~I' (57) 
Co Co 1=0 

and the in are given by 

+ (_1)nx-2(v2 + x2)! i (_1)lhtex, y)an_l(x). 
1=0 

(58) 

The first ~n are 

~o = 0, 

I: _ ('11
2 + X2)t - ('11 2 + l)t( v v) 

;'1 - ('112 + x2)! + ('112 + l)t '112 + l- '112 + x2 ' 

2 [('112 + X2)t - ('112 + l)t]2 
~2 = V ""-"-----'----<.-----'-'----.:.---"--~ 

(X2 -l) 

- ('112 + X2)(V2 + l)! 

3 1 (1 1)] 
- 4: x2 _ l ('112 + l)! - ('112 + X2)! . (59) 

The sum over v in Eq. (44) can be expressed as an 
integral with the help of the Euler-M(lcLaurin sum 
formula. 7 The corrections to the integral can be 
shown to give contributions of 0(A,3), and the lower 
limit can be extended to v = 0, the corrections being 
also of higher order. 

After integrating over v, we find 

(OC! [g3(r, r,s) _ g2(r, r, (X)]47Tr2 dr 
Ja t 
~ -27Tb2(t log s - U _ 2 log ;(s - U) t) 

s (s) + (s - U) 

(
h2)![2( 1 1) 

- 27Tb ~ 3" (s)t - (s - U)! 

+ 1 (S - U S) 
[(s)! + (s - U)!]2 (s)l- (s - U)! 

+1(S-U+ S) 
U (s)! (s - U)! 

+ (1 s - U _ 1)_1_ log (s)! - (U)! 
2 U (U)! (s)! + (U)! 

(1 s 1) i I (s - U)! - j(U)!] - - - + - og (60) 
2 U (U)! (s - U)! + i(U)! . 
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Expressing the logarithmic terms as a power series 
in Uj[(s)t + (s - U)t]2, (U)tj(s)t, and (U)tj(s - U)t, 
respectively, we find that the contribution of gs - g2 
to B(T) is 

B(S)(T) = N7Tb2[Aj(2)t][1 + eUP - 2etuPlo(tU~)] 
+ NbA2{!(eUP - 1) - H7TU~)! 

where10 

X etuP[3It(!U~) + I!(tU~)] 
+ [2 + (U~)-l]eUP(U~r! Erf [(U~)!] 
- [2 - (U~)-l](U~r! Erfi [(U/I)!] 

- (U~)-l(1 + eUP)}, (61) 

00 2n[( )t]2n+l 
Erf[(x)t] = e-"'I _~,--,x~ __ 

n=O (2n + 1) ... 3 . 1 

= (!7T)t! (- )in1n_t(x), 
n=O 

Erfi [(x)t] = e'" i (_2t[(x)!]2n+l 
n=o(2n + 1)(2n - 1)'" 3·1 

= (t7T)t! (- )in1n+t(x). (62) 
n=O 

The first three terms of the expansion of B(T) in 
powers of A, from Eqs., (34), (47), and (61) are 

B(T) = i7TNaS [1 + _3_ ~ + 1(~)2JeUP 
2(2)t-a 7T a 

+ i7TNbS
( 1 - eUP 

+ _3_ ~ [1 + eUP _ 2etuPlo(!U~)] 
2(2)! b 

+ ~(~Ja(eUP - 1) - i(7TU~)t 
X iUP[3It(!U~) + I!(tU~)] 
+ [1 + (2U~rl]3eUP(U~rt Erf [(U~)t] 
- [1 - (2U~rl]3(U~)-! Erfi [(U~)t] 

In this approximation we can also consider r = b 
in the volume element of Eq. (1) and write for the 
linear term in Eq. (5) 

(64) 

where BW.D.)l is the first quantum correction to the 
second virial coefficient for the I-dimensional po
tential 

Vex) = 00, x < a, 

= -U, a ~ x ~ b, (65) 

= 0, x> b, 

in the half-space x > 0. 
The I-dimensional second virial coefficient BO.D . 

can be expresseds.7 in the form 

B = - N A("" e-Pf .. + 1.100 

dk d'YJ(k) e-k2
;.2/2,,) 

O.D. l £., , 
2- n 7T 0 dk 

(66) 

where the En form the spectrum of discrete negative 
energies, - U ~ En < 0, and satisfy the equation 

(-En)han [(U + En)(b - a)2mjIi2]! + (U + En)! = 0, 

(67) 

while 'YJ(k) is the phase shift of the wave with wave 
vector k. 

In terms of the new variable, 

p2 = ~(U + E), 0:::;; p2 ~ up, (68) 

Eq. (67) can be written 

sin (p(27T)t(b - a)/A + q;(p» = 0, (69) 

where 
q;(p) = tan-1 (p(U~ - p2)-t). (70) 

It follows from (69) that the Pn are given by 
the successive values of n in the equation 

(63) Pn[(b - a).j27TjA] + q;(Pn) = n7T, n = 1,2,3···. 

It can be verified that, when U -4- 0, the only con
tribution left is that of a hard core <;If diameter a, while 
when U -4- - 00 we obtain B(T) for a hard core-of 
diameter b. 

IV. CONTRIBUTION OF THE BOUND STATES 
TO B1(T) 

The first quantum correction can be obtained from 
the analogous I-dimensional problem considering 
that, to the lowest order in A, the spherical surface can 
be replaced by a plane.3•5 

(71) 

The term with n = ° should be discarded because it 
gives the trivial solution Pn = 0. In the limit A -4- 0, 
(b - a).j27TjA -4- 00, more solutions appear and they 
become closer together, forming a continuum.s 

Therefore, in this limit we can write from Eqs. (66) 
and (68) 

Bg>.~. = -rtNAeUP(~e-Pfl' - 1) 
n=O 

c:: _r!NAeUp(L<OP)ie-p"g(p) dp -!} (72) 
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where g(p) is the density of states 

(b - a).J27T dq;(p) 
g(p) = A + d;' 

pu. [Bull. Am. Phys. Soc. 13, 646 (1968); J. J. 
D'Arruda and R. N. Hill, preprint). We thank 

(73) Professor Hill for this communication and for valuable 

and we approximate the sum by an integral with the 
help of the Euler-MacLaurin sum formula. Keeping 
only the term linear in A in Eq. (72), we obtain from 
Eq. (64), 

Blb ) = 27Tb 2N2-1A[e uP - e1uPlo(tUP»). (74) 

From Eqs. (74) and (81), the ratio B~b)/Bl is 

B~b) 2b 2[1 - e-1uPlo(lUP») 

~ = a2 + b2[e- UP + 1 - 2e-1ufll o(iUm) . 
(75) 

We show in Fig. (1) the variation of B~b)/Bl with 
temperature for the special value of the parameter 
b = 2a. 

Note added in proof" The quantum corrections to 
B(T) have been evaluated previously by Jose J. 
D'Arruda in first order of an expansion in powers of 

comments. 
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We show that the inhomogeneous pseudo-unitary symplectic Lie algebra IUSp(2))1, 2)).) can be ex
~anded ~o USp(2))l + 2, 2v.) or to USp(2v" 2v. + 2). We also identify a (2V, + 2v. + 2)-dimensional 
lmear Lie group g(2)), + 2v. + 2, R) ~ J<t18j2(2v

" 
2)).), which under this expansion is being globally 

expanded to a (2))1 + 2)). + 2)-dimensionallinear group &(2)), + 2, 2)).; R) ~ <t181'(2)), + 2, 2)).) or to 
&(2)), , 2)). + 2; R) ~ <t18j2(2v

" 
2)). + 2). 

INTRODUCTION 

Let us first define the concept of expansion of a Lie 
algebra G over the field k, where k is either the real 
field R or the complex field C. By expansion of Gone 
understands a process, which can be roughly described 
as one of replacing some of the elements of G by new 
operators, which are certain functions of the elements 
of G, and also adding further operators of this form 
such that the new set of operators close under com
mutation. The new Lie algebra E(G) which is spanned 
by these operators is called an expansion of G. More 
precisely, one can say that E(G) is a Lie algebra, the 
elements of which are elements of an algebraic ex
tension of the quotient-division algebral - 4 of the 
enveloping algebra of G. 

The expansion problem was first treated by Melvin5 

who expanded the Poincare Lie algebra to the de 
Sitter Lie algebra. Later, several other authors ex
panded various special cases of the inhomogeneous 
pseudo-orthogonal Lie algebras6- I6 ISO(nl , n2; R), and 
some authors expanded the inhomogeneous pseudo
unitary Lie algebrasI1.12.I5.I6 IU(n1 , n2)' Sankarana
rayanan7 obtained the expansion of ISO(n; R) to 
SO(n, 1; R), Rosen and Romanll and RosenI2 of 
ISO(nl, n2; R) to SO(nl + 1, n2; R) or to SO(nl , 
n2 + I; R) and, furthermore, of IU(nl , n2) to U(nl + 
1, n2) or to U(nl , n2 + 1). 

For the expansion problem for the general linear 
Lie algebras, it was found by NageP7 that the semi-

-+-
direct sum T(2n, k) + GL(n, k), with T(2n, k) the 
ideal, can be expanded to GL(n + 1, k) in a similar 
way as the expansion of IU(n1 , n;J. 

For the symplectic Lie algebras it was shown by 
-+-

Nagel and Shah18 that T(2n, k) + Sp(n, k) can be 
expanded to Sp(n + 2, k). 

The method of expansion has been applied to 
various areas of physics. In relativistic quantum 
mechanics it has been used to obtain a relativistic 

position operator. 6 In connection with particle physics, 
it has been utilized to construct dynamical groups 
from symmetry groups.5.8.9.10.l5 In representation 
theory for Lie algebras, this method ha~ been applied 
to obtain representations of the expanded Lie algebra 
from representations of the original Lie algebra. In 
particular, it has been used to expand representations 
of the homogeneous Galilei Lie algebra to representa
tions of the Lorentz Lie algebra and to expand 
representations of the Poincare Lie algebra to repre
sentations of the de Sitter Lie algebra.14 It has also 
been utilized to obtain representations of noncom pact 
Lie algebras from representations of inhomogeniza
tions of compact Lie algebras.13.I6 The method has also 
been applied in representation theory for Lie groups. 
Philips and WignerI9 thus obtained representations of 
the Lie group O(n, 1; R) from its Lie algebra O(n, 1; 
R) considered as an expansion of a Lie algebra iso
morphic to Wen; R). 

In this paper we shall solve the last and more com
plicated of the expansion problems for the classical 
Lie algebras, namely that of the pseudo-unitary sym
plectic Lie algebras. We show that IUSp(2vl, 2v2) can 
be expanded to USp(JVl + 2, 2V2) or to USp(2VI, 
2V2 + 2). We also identify a (2vI + 2v2)-dimensional 
linear Lie group ~(2VI + 2V2 + 2, R) "-' Jcu,SjZ(2vl , 

2v2), which under this expansion is being globally 
expanded to a (2Vl + 2V2 + 2)-dimensionallinear Lie 
group &(2VI + 2, 2v2; R) "-' cu,SjZ(2VI + 2, 2V2) or to 
&(2Vl, 2V2 + 2; R) "-' cu,SjZ(2Vl, 2V2 + 2). 

1. THE GROUPS J <t181'(2))1' 2))2) 

Let us start by giving a few facts about the inhomo
geneous pseudo-unitary symplectic groups Jcu,8jZ(2vl, 
2v2). The latter is the real Lie group of those complex 
transformations 

x~p = S~:xpa + aap, aap = bap + icap , 
ex, {3 = 1, -1, p, (] = 1, ... , v 

1779 
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of a 2v-dimensional complex vector space of '\1S;(2Vl , 2'1'2) and the generators 

where 

Here '\1S;(2V1' 2'1'2), '\1(2'1'1' 2'1'2), and S;(2v, C) are 
the 2v-dimensional pseudo-unitary symplectic, pseudo
unitary and complex symplectic groups,20 respectively. 
@ and (l denote tensor product and intersection, 
respectively. We have that 

J'\1S;(2V1' 2'1'2) "'-J J'\1(2V1' 2v~) (l JS;(2v, C) 

"'-J 'b(4v, R) X '\1S;(2V1' 2v2), 

the semidirect product of '\1S;(2V1' 2'1'2) by 'b(4v, R), 
and leaves invariant the nondegenerate antisymmetric 
bilinear form 

( - - ) - Gap pac - )( - ) X - X, Y - Y = g Xap - Xap Ypa - Ypa 

and the pseudo-Hermitian form 

( - - > _ $lap pac -* *)( - ) X - X, Y - Y = u g Xap - Xap Ypa - Ypa . 

Here the asterisk denotes complex conjugation and the 
metric GaP of X2 has the property 

Since 

we also have 

The metric gPa of V~ has the property 

v 

The generators 

Npa = -Nap 

N~a = N~p, 

1· .. '1'1 '1'1 + 1 ... v 

-1 

-1 

} 

r-.I sPIT.ap , 

r = 1,2,3 

Q l r-.I bIT a p, 

vfJ = 1, -1, 

of T(4v, R) form a basis for the real Lie algebra -IUSp(2v1, 2'1'2) "'-J T(4v, R) + USp(2v] , 2'1'2), 

of J'\1S;(2Vl' 2'1'2)' The generators of J'\1 S; (2'1'1 , 2vJ 
satisfy the perhaps not so well-known commutation 
relations 

[Npa' N p'a'] 

= gap,Npa' - gp'pNaa, + gaa,Np'p - ga'pNp'a' (Ia) 

[Npa , N~'a'] 

= gap,N~a' - gp'pN~a' + gaa,N~,p - ga'pN~'a' (lb) 

[N~a' N~'a'] 
= lJrs(-gap,Npa' - gp'pNaa, + gaa,Np'p + ga'pNp'a) 

- f.rst(gap,N!a' + gp'pN!a' + gaa,N!,p + ga'pN!'a)' 

(lc) 

[Npa , Qa'] = gaa,Qp - ga'pQa, (Id) 

[Npa , Q~,] = gaa,Q~ - ga'pQ~, (Ie) 

[N~a' Qa'] = - gaa,Q~ - ga'pQ~, (If) 

[N~a, Qa~] = lJrs(gaa,Qp + ga'pQa) 

- f.rs\gaa,Q! + ga'pQ!), (lg) 

[Qa, Qa'] = [Qa, Q~,] = [Q~, Q~,] = o. (lh) 

Here and in the following the summation convention 
is also applied for the Latin indices, even though these 
only appear in the upper position. The second-order 
Casimir operator of USp(2Vl' 2'1'2) is given by 

C2(USp(2v1 , 2'1'2» = NpaNPa + N~aNrpa. 

2. EXPANSION OF IUSp(2v1 , 2'1'2) to 
USp(2vl + 2, 2'1'2) OR TO USp(2vl' 2'1'2 + 2) 

Our aim is to show that we can expand IUSp(2vl' 
2'1'2) to the Lie algebra of the linear group '\1S;(2V1 + 2, 
2'1'2) or to '\1 Sjt (2'1'1 , 2'1'2 + 2). Instead of considering 
the 2v-dimensional complex vector space V2v and the 
group J'\1S;(2Vl' 2'1'2), which is nonlinear because of 
'b(4v, R) c J'\1S;(2Vl' 2'1'2), let us therefore extend 
V~ to 

and consider the (2'1' + 2)-dimensional complex vector 
space 
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and the real Lie group §(2v + 2, R) of all those 
complex linear transformations 

x~p = 8~:xpa + b"px1 v+l + iC,.pX_l v+l , 

0(, (3 = 1, -1, p, a = 1, ... , V, 

X~V+l = X,.v+l' 

of U2v+2, where 

8~: E 'l18fi(2v1 , 2'112), b"p, c"P E R. 

It is seen that 

and, therefore, also has the Lie algebra given in Eqs. 
(1). 

We shall now show that, out of the generators of 
§(2v + 2, R), we can construct certain new operators 
which obey the commutation relations of USp(2Vl + 2, 
2'112) or of USp(2Vl' 2'112 + 2). 

To this end we shall extend the metric gpa of V: to 
all of Uv+l by the following definitions: 

gv+l a == 0 == ga v+l' 

gv+l v+l == Y E R. 

Let us now define the operators 

Q2 == y-l(QaQa + Q~Qra), 
Qa == HC2(USp(2vl, 2'112», Qal = {QPNpa - QrPN;a}, 

Q~ == HC2(USp(2v1 , 2'112», Q:l 
= {QPN' + QrPN _ ErstQsPNt } pa pa pa , 

IJ == {Q~Qa _ QaQra + ErstQ~Qta} 
= {2Qrp(QsaN~a + QaNpa) - (QsPQsa - QPQa)N;a 

- ErstQsP(2QaN!a - QtaN pa)}, 

where { } denotes that the expression inside the 
bracket has been symmetrized with respect to the 
position of the Qa and Qra relative to Npa and N;a and 
to Qa and Q: (but not relative to one another as they 
commute) and then divided by the number of terms. 

In terms of the above operators we define 

N~a == N pa ' 

N;: == Np,I' 

N~+1 a == Qa + ),QaJ.j _Q2, 

N~:la == Q; + )'Q;J.j_Q2, 

N~:IV+l == -I!JQ2, 

where), is a free parameter. For these operators we 

obtain the following commutation relations: 

[N;a, N~'a'l 
= gap,N;a' - gp'PN;a' + gaa,N;,p - ga'pN;'a' (2a) 

(2b) 

.s:.rs( N- ' N-' + N-' + N-I) = u -gap' pa' - gp'p aa' gaa' p'p ga'p p'a 

rst( N- ,t + N- ,t + N- ,t + N-,t) 
- E gap' pa' gp'P aa' gaa' p'p ga'p p'a' 

[N-" N-IS 1 .s:..S( N-' + N-' ) pa' v+l a' = U gaa' v+l p ga'p v+l a 

rst( N- ,t + N-,t) 
- E gaa' v+l P ga'p v+l a , 

[N'r N" 1 0 pa' v+l v+l = , 

(2c) 

(2d) 

(2e) 

(2f) 

(2g) 

(2h) 

(2i) 

(2j) 

(2k) 

(2m) 

[N" N'S 1 - 2 (drsN-' + rstN-,t ) 
v+lv+l' v+la - - gv+lv+l v+la E v+la' 

[N,r N'S 1 4 rst N- ,t 
v+l v+l , v+l v+l = - I: gv+l v+l v+l v+l • 

(2n) 

(20) 

In order to remove the parameter), from the above 
commutation relations, we finally define the operators 
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/ 

USp (2.1+2.2"2) d. 

~ 
IUSp (2v"2"2),, / IUSp (2v,,2.2)+USp(2) 

USp (2.1 .2.2 +2) 

FiG. 1. Expansion, contraction. and deformation diagram for the 
pseudo-unitary symplectic Lie algebras. Here =>-, ..... , and +- denote 
expansion, contraction, and deformation, respectively. 

which then satisfy 

[NAB' NA'B'] = gBA,NAB, - gA'ANBB, 

+ gBB,NA'A - gB'ANA'B' 

[NAB' N~'B'] = gBA,N~B' - gA'AN~B' 
+ gBB,NA'A - gB'ANA'B' 

[N~B' N~'B'] = C{"(-gBA,NAB, - gA'ANBB, 

+ gBB,NA'A + gB'ANA'B) 
rst -t -t 

- € (gBA,NAB, + gA'ANBB, 

+ gBB,N~'A + gB'AN~'B)' 
A, B = 1, ... , v + 1, 

where 

NBA = -NAB' N1A = NAB' and gBA = gAB' 

These commutation relations are evidently those of 
USp(2Vl + 2v~, 2V2 + 2v~) where 

v{ + v~ = 1, v{ - v~ = y/lyl = ±l. 
We have shown that IUSp(2vl' 2v2) can be expanded 

to USp(2Vl + 2, 2V2) or to USp(2Vl' 2V2 + 2). These 
expansions correspond globally to the expansions 
of ~(2v + 2, R) r-J J9.1Sjt(2v1 , 2V2) to a linear Lie 
group E(2vl + 2, 2v2; R) r-J 9.1Sjt(2v1 + 2, 2v2) or to 
E(2vl' 2V2 + 2; R) r-J 9.1Sjt(2v1 , 2V2 + 2). 

By analyzing the commutation relations (2), we find 
that, when taking the limit A -->- 0, USp(2Vl + 2v~, 
2V2 + 2v~) contracts21- 23 to 

. +-
T(4v, R) + (USp(2Vl' 2v2) + USp(2) 

+-
r-J IUSp(2v1 , 2V2) + USp(2) , 

where + denotes direct sum, i.e., USp(2Vl + 2v~, 

2V2 + 2v~) IS an expansion of IUSp(2v1 , 2v2) but a 
+-

deformation24
-

27 of IUSp(2vl' 2v2) + USp(2) (see 
Fig. 1). 
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Recurrence relations for the "onter multiplicity" (multiplicity of irreducible representations occurring 
in the reduction of the direct product of two irreducible representations) as well as the "branching 
multiplicity" (multiplicity of irreducible representations into which an irreducible representation of a 
group decomposes, if this group is restricted to a subgroup) are obtained. These recurrence relations are 
shown to be closely related to each other. Racah has obtained a recurrence relation for the "inner 
multiplicity" (multiplicity of weights). It turns out that the recurrence relation for the inner multiplicity is 
a special case of the recurrence relation for the outer multiplicity which, in turn, can be looked upon as a 
special case of recurrence relation for the branching multiplicity. Moreover, Kostant's recurrence 
relation for the partition function as well as Racah's recurrence relation for the inner multiplicity have 
been generalized. This generalization introduces a parameter which can be used to simplify actual calcu
lations. In an appendix, finally, a formula is given which allows one to calculate the branching multi
plicity from known inner multiplicities of the subgroup to which it is restricted. 

I. INTRODUCTION 

The multiplicity of irreducible representations 
occurring in the decomposition of tensor products of 
two irreducible representations is called "outer 
multiplicity" throughout this paper. By "branching 
multiplicity" is meant the multiplicity of irreducible 
representations of a subgroup into which an irreduc
ible representation of a group decays if the group is 
restricted to this subgroup. Finally, by "inner multi
plicity" is meant the multiplicity of weights. 

The groups for which these multiplicities are 
studied are the semisimple compact and connected 
Lie groups, namely SU(l + I), SO(21 + 1), Sp(2/) , 
and SO(2/), and the five exceptional groups G2 , F4 , E6 
E7 , and E8'1.2 

A. Review of Present Situation 

An explicit formula also exists for the outer multi
plicity, namely Steiberg's formula;7 This formula has a 
structure similar to Kostant's formula, namely it is 
given as a sum over the same partition function which 
appears in Kostant's formula. However, it involves a 
double summation over the Weyl group W. There are 
yet other types of formulas for the outer multiplicity, 
namely relationships which express the outer multi
plicity in terms of the inner multiplicity. Such a for
mula, relating the outer multiplicity to a sum which is 
quadratic in inner multiplicities, was obtained by 
Straumann8 and by Gruber.9 

A simpler formula which relates the outer 
multiplicity to the inner multiplicity was obtained by 
Racah6 (see also Ref. 9). This formula is linear and is 
an explicit expression for the so-called Racah-Speiser 
lemma.1o Of the formulas mentioned, this formula 
seems to be the easiest one to use in actual calculations. 

Before giving an outline of the contents of this This is true in particular for the case of the SU(n) 
paper, it might be of interest to review the present groups for which the inner multiplicities can be 
status of these multiplicities. obtained easily,u·s 

There already exist several explicit formulas for the Finally, we consider the branching multiplicity. 
three multiplicities. For the inner multiplicity there are Mandel'tsveig12 has obtained an expression for the 
available Kostant's formula3 and Freudental's form- branching multiplicity with respect to subgroups 
ula. 4 Kostant's formula is given as a sum over the which are "naturally embedded" and maximal. A 
Weyl group W in terms of the so-called partition naturally embedded subgroup is a subgroup whose 
function. 5 Freudenthal's formula is a recurrence algebra is reductive (a direct sum of a semisimple Lie 
relation which involves a summation over all positive algebra and a commutative algebra), such that its 
multiples of the positive roots. Neither of these root system is part of the root system of the algebra of 
formulas is very easy to work with in actual calcula- the group. Maximal means that the algebra of the 
tions. Racah6 obtained a recurrence relation for the subgroup must be of the same rank as the algebra of 
inner multiplicity. This recurrence relation seems to the group. Then Mandel'tsveig's formula is given as a 
be the most convenient formula for actual calculations. sum over the Weyl group W of the group in terms of 

1783 
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a partition function (this partition function is different 
from the one in Kostant's and Steinberg's formula). 
As in the case of outer multiplicity, there also exists 
in the case of branching multiplicity a formula 
relating the branching multiplicity to the inner multi
plicity. This formula was first obtained by Straumann8 

(Kostant's formula for the inner multiplicity is written 
out explicitly in his expression), then rederived inde
pendently by KlymykI3 and also by Delaney and 
GruberY This formula holds for a wider class of 
subgroups than Mandel'tsveig's formula does, namely 
for all subgroups such that the toroid of the subgroup 
is part of the toroid of the group (the Cartan algebra 
of the subgroup is part of the Cartan algebra of the 
group). 

B. Outline of Paper 

In this paper, recurrence relations for the outer 
and branching multiplicity are obtained. These 
recurrence relations are analogous to the one obtained 
by Racah6 for the inner multiplicity. In fact, it is shown 
that Racah's recurrence relation for the inner multi
plicity is a special case of the recurrence relation for the 
outer multiplicity. This special case appears under the 
conditions of the Biedenharn lemma,I° i.e., when 
there are no cancellations in the Clebsch-Gordan 
series as generally happens by virtue of the Racah
Speiser lemma.lO Moreover, the recurrence relation 
for the branching multiplicity can be seen to contain 
in turn the recurrence relation for the outer multiplic
ity. This again holds under certain circumstances, 
namely when in this recurrence relation the subgroup 
to which the group is restricted is chosen to be the 
group itself. Thus, the recurrence relation for the 
branching multiplicity turns out to be the most funda
mental recurrence relation, containing both the recur
rence relations for outer and inner multiplicities as 
special cases. However, this is not too surprising. After 
all, the Biedenharn lemma is a special case of the 
Racah-Speiser lemma (the limits for the validity of the 
Biedenharn lemma have been determined by ZaccariaI4 

and VitaleI5), and the fact that the outer multi
plicity can be looked upon as a special case of the 
branching multiplicity has been noticed already by 
Straumann.8 

In addition to recurrence relations for outer and 
branching multiplicities, this paper contains a generali
zation of Racah's recurrence relation for the inner 
multiplicity as well as a generalization of Kostant's 
recurrence relation for the partition function. I6 These 
generalizations are of particular value in actual 
calculations. Due to the introduction of a parameter 
into the recurrence relations (the parameter is a 
dominant weight satisfying a condition), it is generally 

possible to reduce in an actual calculation the number 
of successive steps considerably. 

In the Appendix, a formula for the branching 
multiplicity is given. This formula expresses the 
branching multiplicity in terms of inner multiplicities 
of the subgroup and the Weyl group of the group. It 
is clear that this formula is of particular interest in 
the case when the inner multiplicities of the subgroup 
are known. Then this formula reduces to a system of 
linear equations for the unknown branching multi
plicities. 

II. NOTATION AND DEFINITION 

Let G denote a semisimple compact and connected 
Lie group, and Q its (semisimple compact) Lie 
algebra of rank I. With HI, H 2 , ••• , HI' we denote 
the I independent generators of its Cartan subalgebra. 
The eigenvalues of this set HI, H 2 , ' •• , HI' corre
sponding to a simultaneous eigenvector, are denoted 
by mI, m2 , ••• , mi. Thus, a general weight is denoted 
by m = (mI' m2, ... ,mz). A dominant weight (the 
highest weight of a set of equivalent weights Sm, 
SEW, where S is an arbitrary element of the Weyl 
group W) is denoted by M = (MI' M 2 , ••• , M ,). 
Thus, in particular, the highest weight of an irreducible 
representation is denoted by M = (MI' M 2 , ••• , M,). 

The inner multiplicity is denoted by y(m) [or 
yM (m)], i.e., y(m) is the multiplicity of the weight m 
[which is contained in the irreducible representation 
D(M)]. Similarly, reM) denotes the outer multiplicity, 
i.e., the multiplicity of the irreducible representation 
D(M) with highest weight M. All symbols referring 
to a subgroup Gs of G are characterized by a suffix s. 
Thus, m., M s, S., and Ws stand for a general weight, a 
dominant weight, an element of the Weyl group, and 
the Weyl group of the subgroup, respectively. Then 
r(M.) denotes the branching multiplicity, i.e., the 
multiplicity of the ifreducible representation D(M.) 
of the subgroup. 

[m, IP] = m1IPl + m2IP2 + ... + mlIPI is a linear 
form in terms of the parameters IPi of the toroid of 
the group G (Cartan subgroup of the group G). If the 
group G is restricted to a subgroup Gs , then 

[m, IP] --+ [ms' IPs] == ms1 IPsi + ... + m.I·IPsl', 

where I' ~ I is the rank of the subgroup Gs • We look 
at this restriction as a mapping L such thatll 

L(m) = ms ' 

[m, IP lrestricted = [L(m), IPs] = [m., IPsl. (1) 

Rand Rs denote half the sum over the positive roots 
of the group G and subgroup G.,respectively. bs = -1 
if SEW is a reflection; otherwise bs = + 1. b"'.l1 
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denotes the Kronecker symbol; i.e., b",.l1 = I if the 
two weights x and y are equal, and b",.l1 = ° otherwise. 

The positive roots are denoted by !X and, if necessary 
to distinguish them, by !Xi' i = 1, 2, .... By conven
tion, the first I of the !Xi are taken to be the simple 
positive roots. Similarly, {3 denotes the negative roots, 
and {3I, {32, ... , (31 the simple negative roots. 

m. THE PARTITION FUNCTION 

From what was said in Sec. I.A, it can easily be 
recognized that all three multiplicities, namely inner, 
outer, and branching multiplicity, can be expressed 
in terms of one and the same partition function. The 
respective formulas are Kostant's formula,3 Stein
berg's formula,7 and Straumann's formula. s Thus 
the partition function is of considerable interest and it 
might be worthwhile to say a few words about it. 

The partition function P(m) with 

m = k{{31 + ... + ki{3I' all k~ integers, 

is defined as follows: 
P(m) = number of solutions of 

I kp{3 = m, kp nonnegative integers, (2) 
p<o 

where the sum extends over all negative roots (3. It is 
clear from definition (2) that 

P(m) = 0, if any k~ < 0, i = 1, 2, ... , 1. (3) 

An example will make the meaning of the partition 
function easily understandable, and we choose the 
partition function of SU(3) for this purpose. The 
weights of SU(3) are taken to be of the form 

m = (ml, m2, m3), m1 + m2 + ms = 0, 

mi = t X (integer) 

(hypercharge Y and third component of isotopic spin 
Ts are then given as Y = -m2, Ts = m1 + tm2)' 
Then P(m), where 

P(m) = P(k{{31 + k~(32) == P(k~, k~), 
is the number of solutions of 

k{ = kl + k2, 

k~ = kl + k3 , k~, k j nonnegative integers; 
i.e., 

P(k~, k~) = min (k~, k~) + 1, k~, k~ ~ 0, 

= 0, for any k~ < 0. 

In general, however, it is very complicated to obtain 
an explicit expression for the values of the partition 
function. Tarski17 has studied this problem for SU(4) 
and the rank-two groups. Explicit formulas for the 
partition function of SU(4) and the rank-two groups, 

except G2 , have been given in Refs. 18 and 19. 
Kostant16 has obtained a very elegant and useful 
recurrence relation for the partition function in 
general. It is the aim of the present section to generalize 
Kostant's recurrence relation. 

Kostant's recurrence relation is given as 

P(m) = -I bsP(m + R - SR), (4) 
SeW 
S*1 

where the sum extends over all elements S of the Weyl 
group W, except for the identity. A generalization of 
Eq. (4) is obtained as follows: 

Kostant's formula for the inner multiplicity reads 
asS 

yM(m) = I bsP(m + R - S(M + R». (5) 
SeW 

Now yM(m) = ° if m i D(M), by virtue of Eq. (3). 
Thus, iflml > IMI, we obtain the generalized Kostant 
recurrence relation as20 

P(m - M) = -I bsP(m + R - S(M + R», 
SeW 
S*1 

Iml > IMI. (6) 

For M = 0, the original equation is obtained. Equation 
(6) has the advantage that, through suitable choice of 
the parameter M, the number of steps in a calculation 
of some P(m) can be reduced considerably, except for 
very small weights m ("small" and "large" are meant 
with respect to the length of the weight). In order to 
illustrate this point, a simple example is given, again 
for the partition function P(m) of SU(3). The value of 
the weight m is chosen to be m = (-3,0,3). Then 
one obtains, from Eq. (4), 

P(-3, 0, 3) = -[-P(-2, -1,3) - P(-3, 1,2) 

+ P(-l, -1,2) + P(-2, 1, 1) 

- P(-I, 0,1)] 

= -[-3 - 3 + 2 + 2 - 2] = 4, 

if the values on the right-hand side of the equation are 
assumed to be already known. On the other hand, 
from Eq. (6) follows, with M = (1, 0, -1), 

P( -3,0,3) = - [-P(-I, -2,3) - P( -3,2,1)] 

= - [ - 2 - 2] = 4. 
See Fig. 1. 

IV. INNER MULTIPLICITY 

In this section, Racah's recurrence relation for the 
inner multiplicity will be generalized. Racah's recur
rence relation is' 
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FIG. 1. /31 = (0, -I, I), /32 = (-I, 1,0), R = -(/31 + /32); the 
five encircled points correspond to the example given for Kostant's 
recurrence relation and add up (taking care of t5s) to 4. The two 
points characterized by squares correspond to the example given for 
the generalized Kostant recurrence relation. Again, they add up to 
4, the value of P(-3, 0, 3). 

In order to generalize Eq. (7), the generalized 
Kostant recurrence relation for the partition function, 
namely Eq. (6), is inserted in Kostant's formula (5) 
for the inner multiplicity. This yields 

yM(m) = ~ bs ( -1) ~ bs,P(m + R - SCM + R) 
s~w S'eW 

S'*1 

+ R + £1 - S'(M + R» 

= - ~ bs,yM(m + R + £1 - S'(M + R», 
S'eW 
s'n (8a) 

with the condition 

1m + R + £1 - SCM + R)I > 1£11, 
SEW, m yf:. M. (8b) 

For m = M, we have 

yM(M) = 1. (8c) 

Equations (8) are the desired relations and, for £1 = 0, 
Racah's original formula is obtained. For reasons of 
illustration, a simple example is given in the following. 
The SU(3) representation D(2, 0, -2) is considered, 
and the multiplicity of the weight (-1, -1, 2) deter
mined. For the parameter Mthe value M = (1,0, -1) 
(= R) is chosen. For this value of £1 Eq. (8b) is satis
fied. Then, it follows from Eq. (8a) that 

y(-I, -1,2) = -rye-I, 1,0) + y(1, 1, -2)] 

=-[-2+1]=1, 
where the values on the right side of this equation were 

FIG. 2. The representation D(2, 0, -2); the numbers denote 
the multiplicities of the weights, the signs the values of t5 • The 
points characterized by squares correspond to the examples given, 
the encircled points correspond to a straight application of Racah's 
recurrence relation. /3, and /32 are as in Fig. 1. 

assumed to be already known. This compares with 
six terms on the right-hand side when Racah's 
relation is being used. See Fig. 2. Thus, for large 
representations and when only the multiplicity of a 
particular weight is of interest, Eqs. (8) can save 
considerable work. 

V. OUTER MULTIPLICITY 

In this section, a recurrence relation for the outer 
multiplicity is obtained in a very simple manner. 
Let X(M) denote the character of the irreducible 
representation D(M). Then the product of two charac
ters is given as21 

X(M) . X(M') = ~ y(MI/)X(MI/). (9) 
.M" 

Inserting Weyl's formula22 for all three characters in 
Eq. (9), one obtains 

~ bsbs,ei[S(M+R)+S'UW+R),rp] 

SeW 
S'eW 

= ~ y(MI/) ~ bsbs"ei[S"(M"+R)+SR,rp]. (10) 
111" S"eW 

SEW 

From Eq. (10) (using the orthogonality of the trigono
metric functions), by multiplying both sides with 
e-i [1I1'+2R.'PJ and by.integrating over all parameters f{!i' 
one easily obtains the recurrence relation for the outer 
multiplicity,21 

y(M) = -1 bsy(SI/(M + 2R) - SR - R) 
S,S"EW 
s=s"n 

+ I bs bs ,bS (M+R)+S'(M'+R),1I1'+2R' (11) 
S,S'eW 
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In deriving Eq. (11), the fact has been used that 
SCm + m') = Sm + Sm', 

and 

.2 S"SR = .2 SR, 
SeW SeW 

together with the fact that the values of the integrals 
involved are invariant under Weyl reflections. 

Looking at Eq. (11), one realizes immediately that 
the first line of it is just Racah's recurrence relation 
for the inner multiplicity if S" = 1. On the other hand, 
it is known that outer and inner multiplicity are the 
same under certain conditions, namely when one of 
the two representations forming the direct product 
"dominates" the other.14oI5 This is just the content 
of the Biedenharn lemma.1o These considerations 
suggest finding the conditions under which Eq. (11) 
goes over into Racah's recurrence relation (7). It is 
shown that this happens under the condition that 

M + S'M' + SR = dominant weight, "IS, S' E W. 

(12) 

It should be noted that this condition is stronger than 
the condition for an irreducible representation D(M) 
to dominate the irreducible representation D(M'), 
namely that 

M + S'M' = dominant weight, "IS' E W. (13) 

Assuming that Eq. (12) holds, we now show that 
the second term of Eq. (11) disappears, except for the 
case of M" = M + M', where this term equals one, 
and S" = 1 only. 

The weights M" which occur as highest weights of 
the irreducible representations D(M") in the Clebsch
Gordan series D(M) ® D(M') = .2M" ji(M")D(M") 
are contained in the polygon ~(M, M') with extremal 
points M + S' M', S' E W. Thereby, the weights M" 
can be reached from anyone of these extremal points 
by means of the root vectors. Thus, one can write 
M" E ~(M, M'), meaning that M" is a weight con
tained in the polygon ~(M, M'). Then, if Eq. (12) is 
assumed to hold, the weights M + R + S'M' + SR, 
S, S' E W, are not only dominant, but lie inside the 
fundamental domain (i.e., not on a singular hyper
plane). The set of weights M + R + S'(M' + R), 
S' E W, forms a subset of this set of weights. There
fore, the weights 

S(M + R + S' (M' + R», S, S' E W, S ¥= 1, 

are all nondominant. The same set of weights is also 
given as SCM + R) + S'(M' + R), S, S' E W,S ¥= 1. 

However, it should be true that 

SCM + R) + S' (M' + R) = M + 2R. (14) 

Since the right-hand side of this equation is a dominant 
weight, it follows that this relation can hold, at most, 
for S = 1. In the following, it is also shown that 
S' = 1 is the only possibility and, thus, M = M + M'. 

In the equation 

M + S' (M' + R) = M + R, 

the weights M are contained, by assumption, in the 
polygon ~(M, M'). The polygon ~'(M, M') is, how
ever, contained inside the polygon ~(M, M' + R) 
with extremal points M + S'(M' + R), S' E W, since 

IS'M'I < IS'(M' + R)I. 

Shifting the polygon ~(M, M') by the vector R brings 
into concidence the two extremal points M + M' of 
~(M, M') and M + M' + R of ~(M, M' + R), 
while all other extremal points do not coincide with 
each other. From this, it follows that the relation 

M + R + S' (M' + R) = M + 2R, 

S' E W, M E ~(M, M'), (15) 

is valid only for 

S' = 1 and M = M + M'. 

What is left to be shown is that, under condition 
(12), the sum over S" E Win Eq. (11) is trivial, i.e., 
S" = 1 only. If Eq. (11) is assumed to hold, then 

M"+SR 

is a dominant weight for all SEW, M" E ~(M, M"), 
and again the, weights M" + R + SR lie inside the 
fundamental domain for all SEW, M" E ~(M, M'). 
Thus, S" (M" + R + SR) is a nondominant weight for 
all S, S" E W, S" ¥= 1, M" E ~(M, M"). However, the 
two sets of weights S"(M" + R) + S"SR and 
S"(M" + R) + SR, S, S" E W, S" ¥= 1, are equal. It 
should hold that 

S"(M" + R) + SR = M + 2R. (16) 

However, this is impossible unless S" = 1 since the 
right-hand side of Eq. (16) is a dominant weight while 
the left-hand side is nondominant for S S" E W 
S" ¥= 1. ' , 

This shows that Racah's recurrence relation (7) for 
the inner multiplicity is a special case of the recurrence 
relation for the outer multiplicity. Accordingly, to the 
property 

y(M) = 1 (17) 

in the case of Racah's recurrence relation, there 
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corresponds 
'9(M + M') = 1 (18) 

in the case of the recurrence relation for the outer 
multiplicity. Two examples are given for Eq. (II). The 
first example is chosen such that the Racah-Speiser 
lemma applies, while in the second example the 
Biedenharn lemma applies. [Thus, the second example 
can also be taken as an example for Racah's recurrence 
relation (7) for the inner multiplicity.] 

Example 1: D(t(2, 2, -4) ® D(I, 0, -1): One 
obtains, from Eq. (11), 

'90(5,2, -7» = 1, 

Y<H2, -1, - I» = '9(t(2, 2, -4» 
-'9(t(5, 2, -7» + I, 

'9(t(2, 2, -4» = '90(5, -1, -4», 

'90(5, -1, -4» = Y<t(5, 2, -7», 

and thus 

'90(5,2, -7» = '9(!(2, -1, -1» 

= Y<t(2, 2, -4» 

= y<!(5, -1, -4» = 1. (19a) 

Example 2: D(3, 0, -3) ® D(1, 0, -1): One ob
tains, from Eq. (11), 

'9(4,0, -4) = 1, 

'9(2,0, -2) = '9(4,0, -4) + '9(3, -1, -2) 

+ '9(2, 1, -3) - '9(3, 1, -4) 

- '9(4, -1, -3), 

'9(3, -1, -2) = -'9(4,0, -4) + H3, 0, -3), 

'9(3,0, -3) = '9(4, -1, -3) + '9(3, 1, -4), 

H4, -1, -3) = H4, 0, -4), 

H3, 1, -4) = H 4,0, -4), 

H2, 1, -3) = H3, 0, -2) - '9(4,0, -4), 

and thus 

'9(4,0, -4) = H4, -1, -3) = '9(3, 1, -4) 

= y(2, 1, -3) = y(3, -1, -2) 

= '9(2,0, -2) = 1, 

'9(3,0, -3) = 2. (19b) 

VI. BRANCHING MULTIPLICITY 

A recurrence relation for the branching multiplicity 
of an irreducible representation of the group Gunder 
the restriction of this group to a subgroup G. can be 
obtained by methods similar to those used in the 
previous section. The subgroups G. for which this 

formula for the branching multiplicity holds are 
limited by the methods used for its derivation. It turns 
out that the subgroups G. for which this recurrence 
relation is valid are semisimple Lie groups with the 
property that the toroid (Cartan subgroup) of the 
subgroup G8 is contained in the toroid of the group G. 
The reason for this requirement is that under this 
condition the elements of the toroid of the subgroup 
G. and the elements of the toroid of the group G can be 
diagonaliied simultaneously. In other words, the 
"weight space of the subgroup" then forms a subspace 
of the "weight space of the group." This condition on 
the subgroups G. can be recognized by following the 
proof of the recurrence relation. Similarly, it can be 
verified that a generalization of the formula is not 
difficult for restriction of the group G with respect to 
subgroups G', which are direct products of semi
simple Lie groups (each satisfying the condition 
stated above) and to subgroups which are groups of 
the form G' X UO) x ... X U(1) (or locally iso
morphic to it), where G' is a sernisimple Lie group 
(satisfying the condition stated above). 

If a group G is restricted to a subgroup G., an irre
ducible representation D(M) of the group G remains 
in general not irreducible, but decomposes into 
several irreducible representations of the subgroup G •. 
In terms of characters, this reads as 

where '9(M.) is the multiplicity of the irreducible 
representation D(M.) of the subgroup G •. Substituting 
Weyl's formula for the character on both sides of 
Eq. (20) yields 

[ ( 
.LbseilS(M+R),tpl) / ( .L bseilSR,tpl)] 

SEW seW restricted 

= .L '9(M;) ( l bs,eilS.(M"+R.),tp,l) / M, S.eW. 

( .L bs.eilS,R"tp.l). 
S.eW, 

(21) 

Using Eq. (1), Eq. (21) goes over, after some rearrange
ments, into 
~ b () eilLS(M+R)+S.R.,tp,l 
k S s, 

Sew 
SBEW, 

- ~ y-(M') ~ b b eilS,(M.'+R,)+LSR,tp.l 
- k • k S S, . 

M.' Sew 
S,eW, 

(22) 

Multiplying both sides of Eq. (22) by e-i[M.+ R,+ LR,tp,l 

and using the orthogonality properties of the trigono
metric functions, one obtains the recurrence relation 
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for the branching multiplicity 

y(M,) 
= - ! osos,Y(S.{M. + R. + L(R - SR)} - R.) 

SeW 
S,eW. 

S=S, .. 1 

+ ! OSOS,OLS(M+R)+S.(~I.+R.),M,+R.+LR' (23) 
SeW 

S,eW. 

with Ms = 0. 
In deriving Eq. (23), the fact has been used that a 

reflection or a product of reflections (i.e., the applica
tion of an element SEW) does not change the content 
of the relation 

S.(M; + R.) = M. + R. + L(R - SR), (24) 

and thus the equation 

M~ + R. = S:;-l[M. + R. + L(R - SR») (25) 

is equivalent to Eq. (24). In fact, in Eq. (24) a succes
sion of reflections brings the weight M; + R. into the 
vector given on the right-hand side of the equation, 
while in Eq. (25) a succession of reflections brings the 
vector M. + Rs + L(R - SR) into the vector M; + 
R •. (Note that it is summed over S. E W., and that 
os, = (ls,-I.) Writing S. again, instead of S;\ we see 
that Eq. (23) follows. 

Looking at Eq. (23) more closely, we note the 
interesting fact that Eq. (23) contains the recurrence 
relation for the outer multiplicity as a special case; 
that is, when the subgroup G. to which the group G is 
restricted is chosen to be the group G itself, then Eq. 
(23) goes into the recurrence relation (II) for the 
special ca~e of D(M) ® D(M' = 0). [This explains 
why the M. = ° has been introduced into Eq. (23).] 
That this is true can be verified easily. If G. = G, 
then L = 1, W. = W,and S8 = S'. Moreover, all 
weights lose the s suffix and M s .....,.. M. 

Thus, the following chain has been obtained. The 
recurrence relation (23) for the branching multi
plicity contains as special case the recurrence relation 
(1J) for the outer multiplicity [for D(M) ® D(O)], 
which in turn contains as a special case the recurrence 
relation (7) for the inner multiplicity. In concluding 
this section, two examples are given for the recurrence 
relation (23). 

Example 1: G = SU(3), Gs = SU(2); R = <x, the 
positive root of SU(2). In this case R. = tR and 

L{m) = m. = (ml + im2 , -(mi + tms», 
with m = (mI , ma, ma), ml + ma + ma = 0, and 
I1'lsl + m.2 = 0. Moreover, in 

S.(M. + R. + L(R - SR» - RB , S. E W., 

only S. = 1 is possible, since M, + R. + L(R - SR) is 
dominant. Then one obtains the following for D(M) := 

D(1,O, -1) (the octet): 

y(l, -1) = I, 

y(i, -t) = -[-2y(l, -1)J = 2, 

yeO, 0) = - [2y(!, -t)] - 3 = 1. 

For y(l, -1), the first term on the right-hand side of 
Eq. (23) is equal to zero, while for yet, -t), the 
second term is equal to zero. Both terms contribute 
to yeO, 0). 

Example 2: G = SU(3), G. = SO(3); L(m) = 
m. = m1 - ma, m = (ml' ma, ma), m1 + ma + ma = 
0, R = (1, 0, -1), R. = t. Again, S. = 1 is the only 
possibility for the first term of Eq. (23). One obtains 

2y(!) = yeO) + 2, 

2y(2) = y(l) + 1, 

yeO) = y(2) - 1, 

and from these equations there follows 

y(2) = 1, y(1) = 1, y(O) = 0. 

ACKNOWLEDGMENT 

The author wishes to express his thanks for the 
hospitality extended to him at the Research Institute 
for Theoretical Physics, Helsinki, during July and 
August, 1968, where the first version of this paper was 
completed. 

APPENDIX 

By the same simple methods as used throughout 
this paper a formula for the branching multiplicity 
Y(M.) can be derived which expresses the branching 
multiplicity in terms of inner multiplicities of the 
subgroup G. and the Weyl group W of the group G. 
Thus, this formula is of particular interest, if the 
subgroup should happe.n to be very familiar, i.e., if 
the inner multiplicities are either known or easily 
accessible (the Weyl group W presents no problem). 
For properties of the subgroup G. and other details 
the reader is referred to Sec. VI of this paper. 

The formula is obtained as 

! ! bsji(M.)yM'(m. + L(R - SR» 
M, SeW 

= ! (ls(lLS(M+R),m,+LR' (At) 
SeW 

where the sum extends over all D(M.) occurring under 
the restriction of the group G to the subgroup G •. 

Assuming the multiplicities yM'(m. + L(R - SR» 
of the subgroup G. to be known, then Eq. (AI) pro
vides a set of linear equations for the Y(M.) , one 
equation for each m. = M!l), ... , M!n), where the 
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M!l), ... ,M!n) are the highest weights of the irre
ducible representations D(M.) occurring under the 
restriction of the group G to the subgroup Gs • 

A simple example is given in order to illustrate 
Eq. (AI). The group G is taken to be SU(3), the group 
Gs is taken to be SU(2). R = (1,0, -I), L(m) = 
ms = (ml + tm2, - (ml + tm2», m = (ml , m2, ma), 
ml + m2 + ma = 0. D(M) = D(I, 0, -1), i.e., the 
octet of SU(3). Then [denoting the weights of SU(2) 
by the first component ml + tm2 only] one obtains, 

for ,,!!s = I, y(1)yl(1) = 1, 

for ms = t, 
-2y(1)yl(1) + y(t)yt(t) = 0, 

and, for ms = 0, 

y(1)yl(O) - 2ymy!(t) + y(O)yO(O) = -2. 

Since, however, yMs(ms) = 1 ifms E D(M.), it follows 
that 

(-~ ° 0) (y(l») (1) ° ym = 0, 

I \y(O) -2 -2 
and, solving this set of equations, one obtains 

y(l) = yeO) = 1, ym = 2. 

It might be worthwhile pointing out that, for Gs = G, 
Eq. (AI) goes over into Racah's formula ('7). 
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